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1 Introduction

Non-Hermitian Hamiltonians and complex extension of quantum mechanics have recently re-
ceived a lot of attention (see review [1]). This field of mathematical physics came into flower
due to the eigenvalue problem

−ψ′′(x) + ix3ψ(x) = Eψ(x), −∞ < x <∞, (1.1)

where ψ(x) is a desired solution, i =
√
−1 is the imaginary unit, E is a complex parameter

(“energy” or spectral parameter).
A complex value E0 of the parameter E is called an eigenvalue of equation (1.1) if this

equation with E = E0 has a nontrivial (non-identically zero) solution ψ0(x) that belongs to the
Hilbert space L2(−∞,∞) of complex-valued functions f defined on (−∞,∞) such that∫ ∞

−∞
|f(x)|2 dx <∞

with the inner (scalar) product

〈f, g〉 =
∫ ∞

−∞
f(x)g(x)dx (1.2)

in which the bar over a function denotes the complex conjugate. The function ψ0(x) is called
an eigenfunction of equation (1.1), corresponding to the eigenvalue E0.

If we define the operator S : D ⊂ L2(−∞,∞) → L2(−∞,∞) with the domain D consisting of
the functions f ∈ L2(−∞,∞) that are differentiable, with the derivative f ′ absolutely continuous
on each finite subinterval of (−∞,∞) and such that

−f ′′ + ix3f ∈ L2(−∞,∞),
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by letting

Sf = −f ′′ + ix3f for f ∈ D, (1.3)

then eigenvalue problem (1.1) can be written as Sψ = Eψ, ψ ∈ D, ψ 6= 0. Consequently,
eigenvalues of equation (1.1) are eigenvalues of the operator S.

Because of the fact that the operator S defined by (1.3) has the complex non-real coefficient
(potential) equal to ix3, this operator is not Hermitian with respect to the inner product (1.2),
that is, we cannot state that

〈Sf, g〉 = 〈f, Sg〉 for all f, g ∈ D.

Therefore it is not obvious that the eigenvalues of S may be real (remember that the eigenvalues
of any Hermitian operator are real and the eigenvectors corresponding to the distinct eigenvalues
are orthogonal).

Around 1992 Bessis and Zinn-Justin had noticed on the basis of numerical work that some
of the eigenvalues of equation (1.1) seemed to be real and positive and they conjectured (not in
print) that for equation (1.1) the eigenvalues are all real and positive.

In 1998, Bender and Boettcher [2] generalized the BZJ conjecture, namely, they conjectured
(again on the basis of numerical analysis) that the eigenvalues of the equation

−ψ′′(x)− (ix)mψ(x) = Eψ(x), −∞ < x <∞, (1.4)

are all real and positive provided m ≥ 2. Note that in equation (1.4) m is an arbitrary positive
real number and equation (1.1) corresponds to the choice m = 3 in (1.4).

Bender and Boettcher assumed that the reason for reality of eigenvalues of (1.4) (in particular
of (1.1)) must be certain symmetry property of this equation, namely, the so-called PT -symmetry
of it (for more details see [1]).
P (parity) and T (time reversal) operations are defined by

Pf(x) = f(−x) and Tf(x) = f(x),

respectively. A Hamiltonian

H = − d2

dx2
+ V (x) (1.5)

with complex potential V (x) is called PT -symmetric if it commutes with the composite opera-
tion PT :

[H,PT ] = HPT − PTH = 0.

It is easily seen that PT -symmetricity of H given by (1.5) is equivalent to the condition

V (−x) = V (x).

The potentials ix3 and −(ix)m of equations (1.1) and (1.4), respectively, are PT -symmetric
(note that ix3 is not P -symmetric and T -symmetric, separately).

The first rigorous proof of reality and positivity of the eigenvalues of equation (1.4) was given
in 2001 by Dorey, Dunning, and Tateo [3] (see also [4]).

Note that for 0 < m < 2 the spectrum of (1.4) considered in L2(−∞,∞) is also discrete,
however in this case only a finite number of eigenvalues are real and positive, and remaining
eigenvalues (they are of infinite number) are non-real. Besides, if m = 4k (k = 1, 2, . . .) then for
any complex value of E all solutions of equation (1.4) belong to L2(−∞,∞) (the so-called Weyl’s
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limit-circle case holds) and, therefore, all complex values of E are eigenvalues of equation (1.4)
and hence the spectrum is not discrete for m = 4k (k = 1, 2, . . .) if we consider the problem
in L2(−∞,∞). In order to have in the case m ≥ 4 a problem with discrete spectrum Bender
and Boettcher made in [2] an important observation that the equation can be considered on an
appropriately chosen complex contour. Namely, it is sufficient to consider the equation

−ψ′′(z)− (iz)mψ(z) = Eψ(z), z ∈ Γ (1.6)

together with the condition that

|ψ(z)| → 0 exponentially as z moves off to infinity along Γ, (1.7)

where Γ is a contour of the form

Γ = {z = x− i |x| tan δ : −∞ < x <∞}

with

δ =
π(m− 2)
2(m+ 2)

.

Note that the contour Γ forms an angle in the lower complex z-plane, of value π − 2δ with the
vertex at the origin and symmetric with respect to the imaginary axis.

Next, Mostafazadeh showed in [5] that problem (1.6), (1.7) is equivalent to finding solutions
in L2(−∞,∞) of the problem

−ψ′′(x) + |x|m ψ(x) = Eρ(x)ψ(x), x ∈ (−∞, 0) ∪ (0,∞), (1.8)

ψ(0−) = ψ(0+), ψ′(0−) = e2iδψ′(0+), (1.9)

where

ρ(x) =
{
e2iδ if x < 0,
e−2iδ if x > 0.

(1.10)

The main distinguishing features of problem (1.8), (1.9) are that it involves a complex-valued
coefficient function ρ(x) of the form (1.10) and that transition conditions (impulse conditions)
of the form (1.9) are presented which also involve a complex coefficient. Such a problem is
non-Hermitian with respect to the usual inner product (1.2) of space L2(−∞,∞).

Our aim in this paper is to construct and investigate a discrete version of problem (1.8), (1.9).
Discrete equations (difference equations) form a reach field, both interesting and useful [6, 7].
Discrete equations arise when differential equations are solved approximately by discretization.
On the other hand they often arise independently as mathematical models of many practical
events. Discrete equations can easily been algorithmized to solve them on computers. There is
only a small body of work concerning discrete non-Hermitian quantum systems. Some examples
are [8, 9, 10, 11, 12, 13, 14, 15]. Note that in [15] the author considered a finite discrete
interval version of the infinite discrete interval problem (1.12), (1.13) formulated below, and
found conditions that ensure the reality of the eigenvalues. In the finite discrete interval case
with the zero boundary conditions the problem is reduced to the eigenvalue problem for a finite-
dimensional tridiagonal matrix.

Let Z denote the set of all integers. For any l,m ∈ Z with l ≤ m, [l,m] will denote the discrete
interval being the set {l, l+1, . . . ,m}. Semi-infinite intervals of the form (−∞, l] and [l,∞) will
denote the discrete sets {. . . , l− 2, l− 1, l} and {l, l+ 1, l+ 2, . . .}, respectively. Throughout the
paper all intervals will be discrete intervals. Let us set

Z0 = Z \ {0, 1} = {. . . ,−3,−2,−1} ∪ {2, 3, 4, . . .} = (−∞,−1] ∪ [2,∞). (1.11)
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We offer a discrete version of problem (1.8), (1.9) to be

−∆2yn−1 + qnyn = λρnyn, n ∈ Z0, (1.12)

y−1 = y1, ∆y−1 = e2iδ∆y1, (1.13)

where y = (yn)n∈Z is a desired solution, ∆ is the forward difference operator defined by ∆yn =
yn+1 − yn so that ∆2yn−1 = yn+1 − 2yn + yn−1, the coefficients qn are real numbers given for
n ∈ Z0, δ ∈ [0, π/2), and ρn are given for n ∈ Z0 by

ρn =
{
e2iδ if n ≤ −1,
e−2iδ if n ≥ 2.

(1.14)

One of the main results of the present paper is that if

qn ≥ c > 0 for n ∈ Z0 (1.15)

and

lim
|n|→∞

qn = ∞, (1.16)

then the spectrum of problem (1.12), (1.13) is discrete.
The paper is organized as follows. In Section 2, we choose a suitable Hilbert space and define

the main linear operators L, M , and A = M−1L related to problem (1.12), (1.13). Using these
operators we introduce the concept of the spectrum for problem (1.12), (1.13). In Section 3,
we demonstrate non-Hermiticity of the operators L and A. In Section 4, we present general
properties of solutions of equations of type (1.12), (1.13). In Section 5, we construct two special
solutions of problem (1.12), (1.13) under the condition (1.15). Using these solutions we show in
Section 6 that the operator L is invertible and we describe the structure of the inverse opera-
tor L−1. Finally, in Section 7, we show that the operator L−1 is completely continuous if, in
addition, the condition (1.16) is satisfied. This fact yields the discreteness of the spectrum of
problem (1.12), (1.13).

2 The concept of the spectrum for problem (1.12), (1.13)

In order to introduce the concept of the spectrum for problem (1.12), (1.13), define the Hilbert
space l20 of complex sequences y = (yn)n∈Z0

such that∑
n∈Z0

|yn|2 <∞

with the inner product and norm

〈y, z〉 =
∑
n∈Z0

ynzn, ‖y‖ =
√
〈y, y〉 =

{ ∑
n∈Z0

|yn|2
}1/2

,

where Z0 is defined by (1.11) and the bar over a complex number denotes the complex conjugate.
Now we try to rewrite problem (1.12), (1.13) in the form of an equivalent vector equation

in l20 using appropriate operators. Denote by D the linear set of all vectors y = (yn)n∈Z0
∈ l20

such that (qnyn)n∈Z0
∈ l20. Taking this set as the domain of L, L : D ⊂ l20 → l20 is defined by

(Ly)n = −∆2yn−1 + qnyn for n ∈ Z0,
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where y0 and y1 are defined from the equations

y−1 = y1, ∆y−1 = e2iδ∆y1.

Note that y0 and y1 are needed when we evaluate (Ly)n for n = −1 and n = 2, respectively:

(Ly)−1 = −∆2y−2 + q−1y−1 = (y0 − 2y−1 + y−2) + q−1y−1,

(Ly)2 = −∆2y1 + q2y2 = (y3 − 2y2 + y1) + q2y2

and (1.13) gives for y1, y0 the expressions

y1 = y−1,

y0 = y−1 + e2iδ(y2 − y1) =
(
1− e2iδ

)
y−1 + e2iδy2.

Next, define the operator M : l20 → l20 by

(My)n = ρnyn for n ∈ Z0,

where ρn is given by (1.14). Obviously, the adjoint M∗ of M is defined by

(M∗y)n = ρnyn, n ∈ Z0,

and since |ρn| = 1, we get that M is a unitary operator:

MM∗ = M∗M = I,

where the asterisk denotes the adjoint operator and I is the identity operator.
Therefore problem (1.12), (1.13) can be written as

Ly = λMy, y ∈ D, or M−1Ly = λy, y ∈ D.

This motivates to introduce the following definition.

Definition 1. By the spectrum of problem (1.12), (1.13) is meant the spectrum of the operator
A = M−1L with the domain D in the space l20.

Remember that (see [16]) if A is a linear operator with a domain dense in a Hilbert space,
then a complex number λ is called a regular point of the operator A if the inverse (A− λI)−1

exists and represents a bounded operator defined on the whole space. All other points of the
complex plane comprise the spectrum of the operator A. Obviously the eigenvalues λ of an
operator belong to its spectrum, since the operator (A− λI)−1 does not exist for such points
(the operator A−λI is not one-to-one). The set of all eigenvalues is called the point spectrum of
the operator. The spectrum of the operator A is said to be discrete if it consists of a denumerable
(i.e., at most countable) set of eigenvalues with no finite point of accumulation.

A linear operator acting in a Hilbert space and defined on the whole space is called completely
continuous if it maps bounded sets into relatively compact sets (a set is called relatively compact
if every infinite subset of this set has a limit point in the space, that may not belong to the set).
Any completely continuous operator is bounded and hence its spectrum is a compact subset of
the complex plane. As is well known [16], every nonzero point of the spectrum of a completely
continuous operator is an eigenvalue of finite multiplicity (that is, to each eigenvalue there
correspond only a finite number of linearly independent eigenvectors); the set of eigenvalues is
at most countable and can have only one accumulation point λ = 0. It follows that if a linear
operator A with a domain dense in a Hilbert space is invertible and its inverse A−1 is completely
continuous, then the spectrum of A is discrete.

In this paper we show that the operator L is invertible under the condition (1.15) and that its
inverse L−1 is a completely continuous operator if, in addition, the condition (1.16) is satisfied.
This implies that the operator A = M−1L is invertible and A−1 = L−1M is a completely
continuous operator. Hence the spectrum of the operator A is discrete.
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3 Non-Hermiticity of the operators L and A

Let (fk) be a given complex sequence, where k ∈ Z. The forward and backward difference
operators ∆ and ∇ are defined by

∆fk = fk+1 − fk and ∇fk = fk − fk−1,

respectively. We easily see that

∇fk = ∆fk−1,

∆2fk = ∆(∆fk) = fk+2 − 2fk+1 + fk,

∇2fk = ∇(∇fk) = fk − 2fk−1 + fk−2,

∆∇fk = fk+1 − 2fk + fk−1 = ∇∆fk = ∆2fk−1 = ∇2fk+1.

For any integers a, b ∈ Z with a < b we have the summation by parts formulas

b∑
k=a

(∆fk)gk = fk+1gk

∣∣b
a−1

−
b∑

k=a

fk(∇gk) = fb+1gb − faga−1 −
b∑

k=a

fk(∇gk),

b∑
k=a

(∇fk)gk = fkgk+1

∣∣b
a−1

−
b∑

k=a

fk(∆gk) = fbgb+1 − fa−1ga −
b∑

k=a

fk(∆gk), (3.1)

b∑
k=a

(∆∇fk)gk = (∆fk)gk

∣∣b
a−1

−
b∑

k=a

(∇fk)(∇gk), (3.2)

b∑
k=a

(∆∇fk)gk = (∆fk)gk+1

∣∣b
a−1

−
b∑

k=a

(∆fk)(∆gk),

b∑
k=a

[(∆∇fk)gk − fk(∆∇gk)] = [(∆fk)gk − fk(∆gk)]ba−1

= [(∆fb)gb − fb(∆gb)]− [(∆fa−1)ga−1 − fa−1(∆ga−1)]. (3.3)

Theorem 1. Let δ ∈ [0, π/2). If δ = 0, then the operator L is Hermitian:

〈Ly, z〉 = 〈y, Lz〉 for all y, z ∈ D.

But if δ 6= 0, then the operator L is not Hermitian.

Proof. Using formula (3.3) and equation

(Ly)n = −∆2yn−1 + qnyn = −∆∇yn + qnyn for n ∈ Z0,

where y0 and y1 are defined from the equations

y−1 = y1, ∆y−1 = e2iδ∆y1, (3.4)

and taking into account that for any y = (yn)n∈Z0
∈ l20 we have yn → 0, ∆yn → 0 as |n| → ∞,

we get for all y, z ∈ D,

〈Ly, z〉 − 〈y, Lz〉 = −
∑
n∈Z0

[(∆∇yn)zn − yn(∆∇zn)]

= −
n=−1∑
−∞

[(∆∇yn)zn − yn(∆∇zn)]−
∞∑

n=2

[(∆∇yn)zn − yn(∆∇zn)]
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= −[(∆y−1)z−1 − y−1(∆z−1)] + [(∆y1)z1 − y1(∆z1)]

= −[(∆y−1)z−1 − y−1(∆z−1)] +
[
e−2iδ(∆y−1)z−1 − y−1e

2iδ(∆z−1)
]

=
(
e−2iδ − 1

)
(∆y−1)z−1 −

(
e2iδ − 1

)
y−1(∆z−1).

Thus,

〈Ly, z〉 − 〈y, Lz〉 =
(
e−2iδ − 1

)
(∆y−1)z−1 −

(
e2iδ − 1

)
y−1(∆z−1), (3.5)

for all y, z ∈ D. Formula (3.5) shows that if δ = 0, then the operator L is Hermitian:

〈Ly, z〉 = 〈y, Lz〉 for all y, z ∈ D.

The same formula shows that if δ 6= 0 (recall that δ ∈ [0, π/2)), then the operator L is not
Hermitian:

〈Ly, z〉 6= 〈y, Lz〉 for some y, z ∈ D.

The theorem is proved. �

Theorem 2. Let δ ∈ [0, π/2). If δ = 0, then the operator A = M−1L is Hermitian:

〈Ay, z〉 = 〈y,Az〉 for all y, z ∈ D.

But if δ 6= 0, then the operator A is not Hermitian.

Proof. We have for any y, z ∈ D,

〈Ay, z〉 − 〈y,Az〉 =
〈
M−1Ly, z

〉
−
〈
y,M−1Lz

〉
= 〈Ly,Mz〉 − 〈My,Lz〉

=
∑
n∈Z0

[−(∆∇yn) + qnyn]ρnzn −
∑
n∈Z0

ρnyn[−(∆∇zn) + qnzn]

= −
∑
n∈Z0

[(∆∇yn)ρnzn − ρnyn(∆∇zn)] +
∑
n∈Z0

(ρn − ρn)qnynzn.

Next, from

ρn =
{
e2iδ if n ≤ −1,
e−2iδ if n ≥ 2,

and ρn =
{
e−2iδ if n ≤ −1,
e2iδ if n ≥ 2,

we find

ρn − ρn =
{
−2i sin 2δ if n ≤ −1,
2i sin 2δ if n ≥ 2,

so that∑
n∈Z0

(ρn − ρn)qnynzn = −2i sin 2δ
n=−1∑
−∞

qnynzn + 2i sin 2δ
∞∑

n=2

qnynzn.

Besides, using formula (3.2) and equations in (3.4), we obtain

−
∑
n∈Z0

[(∆∇yn)ρnzn − ρnyn(∆∇zn)] = −e−2iδ
n=−1∑
−∞

(∆∇yn)zn − e2iδ
∞∑

n=2

(∆∇yn)zn

+ e2iδ
n=−1∑
−∞

yn(∆∇zn) + e−2iδ
∞∑

n=2

yn(∆∇zn)
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= −e−2iδ(∆y−1)z−1 + e−2iδ
n=−1∑
−∞

(∇yn)(∇zn) + e2iδ(∆y1)z1 + e2iδ
∞∑

n=2

(∇yn)(∇zn)

+ e2iδy−1(∆z−1)− e2iδ
n=−1∑
−∞

(∇yn)(∇zn)− e−2iδy1(∆z1)− e−2iδ
∞∑

n=2

(∇yn)(∇zn)

=
(
1− e−2iδ

)
(∆y−1)z−1 −

(
1− e2iδ

)
y−1(∆z−1)

− 2i sin 2δ
n=−1∑
−∞

(∇yn)(∇zn) + 2i sin 2δ
∞∑

n=2

(∇yn)(∇zn).

Thus,

〈Ay, z〉 − 〈y,Az〉 =
(
1− e−2iδ

)
(∆y−1)z−1 −

(
1− e2iδ

)
y−1(∆z−1)

− 2i sin 2δ
n=−1∑
−∞

[(∇yn)(∇zn) + qnynzn] + 2i sin 2δ
∞∑

n=2

[(∇yn)(∇zn) + qnynzn]. (3.6)

Formula (3.6) shows that if δ = 0, then the operator A is Hermitian and if δ 6= 0, then A is not
Hermitian. �

Remark 1. In the case δ = 0 we have A = L.

4 Second order linear difference equations with impulse

Consider the second order linear homogeneous difference equation with impulse

−∆2yn−1 + pnyn = 0, n ∈ Z0 = Z\ {0, 1} = (−∞,−1] ∪ [2,∞), (4.1)
y−1 = d1y1, ∆y−1 = d2∆y1, (4.2)

where y = (yn) with n ∈ Z is a desired solution, the coefficients pn are complex numbers given
for n ∈ Z0; d1, d2 presented in the “impulse conditions” (transition conditions) in (4.2) are
nonzero complex numbers.

Using the definition of ∆-derivative we can rewrite problem (4.1), (4.2) in the form

−yn−1 + p̃nyn − yn+1 = 0, n ∈ (−∞,−1] ∪ [2,∞), (4.3)
y−1 = d1y1, y0 − y−1 = d2(y2 − y1), (4.4)

where

p̃n = pn + 2, n ∈ (−∞,−1] ∪ [2,∞).

Theorem 3. Let n0 be a fixed point in Z and c0, c1 be given complex numbers. Then problem
(4.1), (4.2) has a unique solution (yn), n ∈ Z, such that

yn0 = c0, ∆yn0 = c1, that is, yn0 = c0, yn0+1 = c0 + c1 = c′1. (4.5)

Proof. First assume that n0 ∈ (−∞,−1]. We can rewrite equation (4.3) in the form

yn−1 = p̃nyn − yn+1 = 0, n ∈ (−∞,−1] ∪ [2,∞) (4.6)

as well as in the form

yn+1 = p̃nyn − yn−1 = 0, n ∈ (−∞,−1] ∪ [2,∞). (4.7)



On the Spectrum of a Discrete Non-Hermitian Quantum System 9

Using the initial conditions (4.5) we find, recurrently (step by step), yn for n ≤ n0 + 1 uniquely
from (4.6) and for n0 + 2 ≤ n ≤ −1 uniquely from (4.7). Then we find y1 and y2 from the
transition conditions (4.4) and then we find yn for n ≥ 3 uniquely from (4.7).

In the case n0 ∈ [1,∞) we are reasoning similarly; using equations (4.6), (4.7) we first
find yn uniquely for n ≥ 1 and then using the transition conditions (4.4) we pass to the interval
(−∞,−1].

Finally, if n0 = 0, then we find y0 and y1 uniquely from the initial conditions (4.5) with n0 = 0.
Then we find y−1 and y2 from the transition conditions (4.4). Next, solving equation (4.6) at
first on (−∞,−1] we find yn uniquely for n ∈ (−∞,−2] and then solving (4.7) on [2,∞) we
find yn uniquely for n ∈ [3,∞). �

Definition 2. For two sequences y = (yn) and z = (zn) with n ∈ Z, we define their Wronskian by

Wn(y, z) = yn∆zn − (∆yn)zn = ynzn+1 − yn+1zn, n ∈ Z.

Theorem 4. The Wronskian of any two solutions y and z of problem (4.1), (4.2) is constant
on each of the intervals (−∞,−1] and [1,∞):

Wn(y, z) =
{
ω− if n ∈ (−∞,−1],
ω+ if n ∈ [1,∞).

(4.8)

In addition,

ω− = d1d2ω
+ (4.9)

and

W0(y, z) = −d2ω
+. (4.10)

Proof. Suppose that y = (yn) and z = (zn), where n ∈ Z, are solutions of (4.1), (4.2). Let us
compute the ∆-derivative of Wn(y, z). Using the product rule for ∆-derivative

∆(fngn) = (∆fn)gn + fn+1∆gn = fn∆gn + (∆fn)gn+1,

we have

∆Wn(y, z) = ∆ [yn∆zn − (∆yn)zn] = (∆yn)∆zn + yn+1∆2zn − (∆yn)∆zn − (∆2yn)zn+1

= yn+1∆2zn − (∆2yn)zn+1.

Further, since yn and zn are solutions of (4.1), (4.2),

∆2yn = pn+1yn+1, n ∈ (−∞,−2] ∪ [1,∞),

∆2zn = pn+1zn+1, n ∈ (−∞,−2] ∪ [1,∞).

Therefore

∆Wn(y, z) = 0 for n ∈ (−∞,−2] ∪ [1,∞).

The latter implies that Wn(y, z) is constant on (−∞,−1] and on [1,∞). Thus we have (4.8),
where ω− and ω+ are some constants (depending on the solutions y and z).

Next using (4.8) and the impulse conditions in (4.2) for yn and zn, we have

ω− = W−1(y, z) = y−1∆z−1 − (∆y−1)z−1 = d1d2[y1∆z1 − (∆y1)z1]
= d1d2W1(y, z) = d1d2ω

+,

so that (4.9) is established.
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Finally, from the impulse conditions in (4.2) we find that

y0 = (d1 − d2)y1 + d2y2.

Substituting this expression for y0 and z0 into

W0(y, z) = y0z1 − y1z0,

we get

W0(y, z) = −d2W1(y, z) = −d2ω
+.

Therefore (4.10) is also proved. �

Corollary 1. If y and z are two solutions of (4.1), (4.2), then either Wn(y, z) = 0 for all n ∈ Z
or Wn(y, z) 6= 0 for all n ∈ Z.

By using Theorem 3, the following two theorems can be proved in exactly the same way when
equation (4.1) does not include any impulse conditions [6].

Theorem 5. Any two solutions of (4.1), (4.2) are linearly independent if and only if their
Wronskian is not zero.

Theorem 6. Problem (4.1), (4.2) has two linearly independent solutions and every solution
of (4.1), (4.2) is a linear combination of these solutions.

We say that y = (yn) and z = (zn), where n ∈ Z, form a fundamental set (or fundamental
system) of solutions for (4.1), (4.2) provided that they are solutions of (4.1), (4.2) and their
Wronskian is not zero.

Let us consider the nonhomogeneous equation

−∆2yn−1 + pnyn = hn, n ∈ (−∞,−1] ∪ [2,∞), (4.11)

with the impulse conditions

y−1 = d1y1, ∆y−1 = d2∆y1, (4.12)

where hn is a complex sequence defined for n ∈ (−∞,−1] ∪ [2,∞). We will extend hn to the
values n = 0 and n = 1 by setting

h0 = h1 = 0. (4.13)

Theorem 7. Suppose that u = (un) and v = (vn) form a fundamental set of solutions of the
homogeneous problem (4.1), (4.2). Then a general solution of the corresponding nonhomogeneous
problem (4.11), (4.12) is given by

yn = c1un + c2vn + xn, n ∈ Z,

where c1, c2 are arbitrary constants and

xn =


−

0∑
s=n

unvs − usvn

Ws(u, v)
hs if n ≤ 0,

n∑
s=1

unvs − usvn

Ws(u, v)
hs if n ≥ 1.

(4.14)

Proof. Taking into account (4.13) it is not difficult to verify that the sequence xn defined
by (4.14) is a particular solution of (4.11), (4.12), namely, xn satisfies equation (4.11) and the
conditions

x−1 = ∆x−1 = 0, x1 = ∆x1 = 0.

This implies that the statement of the theorem is true. �
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5 Two special solutions

Consider the homogeneous problem

−∆2yn−1 + qnyn = 0, n ∈ Z0 = Z\{0, 1}, (5.1)

y−1 = y1, ∆y−1 = e2iδ∆y1, (5.2)

where δ ∈ [0, π/2) is a fixed real number and

qn ≥ c > 0 for n ∈ Z0. (5.3)

In this section we show that under the condition (5.3) problem (5.1), (5.2) has two linearly
independent solutions ψ = (ψn) and χ = (χn), where n ∈ Z, such that

∞∑
n=0

|ψn|2 <∞ and
n=0∑
−∞

|χn|2 <∞. (5.4)

These solutions will allow us to find the inverse L−1 of the operator L introduced above in
Section 2 and investigate the properties of L−1.

First we derive two simple useful formulas related to the nonhomogeneous problem

−∆2yn−1 + qnyn = fn, n ∈ Z0, (5.5)

y−1 = y1, ∆y−1 = e2iδ∆y1, (5.6)

where (qn) is a real sequence with n ∈ Z0, and δ ∈ [0, π/2); (fn) is a complex sequence with
n ∈ Z0.

Lemma 1. Let y = (yn) with n ∈ Z be a solution of problem (5.5), (5.6) and a, b be any integers
such that a ≤ −1 and b ≥ 2. Then the following formulas hold:

b∑
n=2

(
|∆yn|2 + qn |yn|2

)
= (∆yn)yn+1

∣∣b
1
+

b∑
n=2

fnyn, (5.7)

−1∑
n=a

(
|∆yn|2 + qn |yn|2

)
= (∆yn)yn+1

∣∣−1

a−1
+

−1∑
n=a

fnyn. (5.8)

Proof. To prove (5.7), multiply equation (5.5) by yn and sum from n = 2 to n = b:

−
b∑

n=2

(∆2yn−1)yn +
b∑

n=2

qn |yn|2 =
b∑

n=2

fnyn.

Next, applying the summation by parts formula (3.1) we get that

−
b∑

n=2

(∆2yn−1)yn = −
b∑

n=2

(∇∆yn)yn = −(∆yn)yn+1

∣∣b
1
+

b∑
n=2

|∆yn|2 .

Therefore the formula (5.7) follows.
The formula (5.8) can be proved in a similar way. �

Theorem 8. Under the condition (5.3) problem (5.1), (5.2) has two linearly independent solu-
tions ψ = (ψn) and χ = (χn) with n ∈ Z, possessing the properties stated in (5.4).
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Proof. Denote by ϕ = (ϕn) and θ = (θn), where n ∈ Z, solutions of problem (5.1), (5.2)
satisfying the initial conditions

ϕ1 = 1, ∆ϕ1 = −1, (5.9)
θ1 = 1, ∆θ1 = 0. (5.10)

Such solutions exist and are unique by Theorem 3. It follows from (5.9), (5.10) that ϕ2 = 0,
θ2 = 1. According to Theorem 4 we find that

W0(ϕ, θ) = −e2iδ, Wn(ϕ, θ) =
{
e2iδ if n ≤ −1,
1 if n ≥ 1.

(5.11)

Therefore Wn(ϕ, θ) 6= 0 and by Theorem 5 the solutions ϕ and θ are linearly independent.
We seek the desired solution ψ = (ψn) of problem (5.1), (5.2) in the form

ψn = ϕn + vθn, n ∈ Z, (5.12)

where v is a complex constant which we will choose.
Take an arbitrary integer b ≥ 2. Applying (5.7) to

−∆2ψn−1 + qnψn = 0, n ∈ Z0,

ψ−1 = ψ1, ∆ψ−1 = e2iδ∆ψ1,

we get

b∑
n=2

(
|∆ψn|2 + qn |ψn|2

)
= (∆ψn)ψn+1

∣∣b
1
.

Since ∆ψ1 = −1 and ψ2 = v, by (5.12) and (5.9), (5.10), hence

b∑
n=2

(
|∆ψn|2 + qn |ψn|2

)
= (∆ψb)ψb+1 + v.

Multiply the latter equality by eiδ and take then the real part of both sides to get

(cos δ)
b∑

n=2

(
|∆ψn|2 + qn |ψn|2

)
= Re

{
eiδ(∆ψb)ψb+1

}
+ Re

(
ve−iδ

)
. (5.13)

Now we choose v so that to have

Re
{
eiδ(∆ψb)ψb+1

}
= 0. (5.14)

Since

Re
{
eiδ(∆ψb)ψb+1

}
= |ψb+1|2 Re

{
eiδ

∆ψb

ψb+1

}
,

it is sufficient for (5.14) to have

Re
{
eiδ

∆ψb

ψb+1

}
= 0. (5.15)

Note that ψb cannot be zero for any two successive values of b (otherwise ψn would be identi-
cally zero by the uniqueness theorem for solution, that is not true since ϕ and θ are linearly
independent). Therefore ψb 6= 0 for infinitely many values of b.



On the Spectrum of a Discrete Non-Hermitian Quantum System 13

Under the condition (5.15) the equation (5.13) becomes

(cos δ)
b∑

n=2

(
|∆ψn|2 + qn |ψn|2

)
= Re

(
ve−iδ

)
.

The condition (5.15) can be written as

eiδ
∆ϕb + v∆θb

ϕb+1 + vθb+1
= β, (5.16)

where β is a pure imaginary number (β = it, t ∈ R). Note that

ϕb+1∆θb − (∆ϕb)θb+1 = −ϕb+1θb + ϕbθb+1 = Wb(ϕ, θ) = 1 6= 0 (5.17)

by (5.11). Therefore (5.16) defines a linear-fractional transformation of the complex v-plane
onto the complex β-plane. Solving (5.16) for v, we get

v(β) =
ϕb+1β − eiδ∆ϕb

−θb+1β + eiδ∆θb
. (5.18)

Thus, condition (5.15) will be satisfied if we choose v by (5.18) for pure imaginary values of β.
On the other hand, when β runs in (5.18) the imaginary axis, v(β) describes a circle Cb in the
v-plane. The center of the circle is symmetric point of the point at infinity with respect to the
circle. Since

v(β′) = ∞, where β′ = eiδ
∆θb

θb+1
,

the point

β0 = −β′ = −e−iδ ∆θb

θb+1

which is symmetric point of the point β′ with respect to the imaginary axis of the β-plane, is
mapped onto the center of Cb. So the center of Cb is located at the point

v(β0) = −e
−iδϕb+1∆θb + eiδ(∆ϕb)θb+1

e−iδθb+1∆θb + eiδθb+1∆θb

. (5.19)

Note that the denominator in (5.19) is different from zero. This fact follows from the equality

e−iδθb+1∆θb + eiδθb+1∆θb = 2Re
{
eiδ(∆θn)θn+1

∣∣b
1

}
= (2 cos δ)

b∑
n=2

(
|∆θn|2 + qn |θn|2

)
, (5.20)

which can be derived as (5.13) taking into account (5.10). The radius Rb of the circle Cb is equal
to the distance between the center v(β0) of Cb and the point v(0) on the circle. Calculating the
difference v(β0)− v(0) by using (5.17)–(5.20) we easily find that

Rb =
1

(2 cos δ)
b∑

n=2

(
|∆θn|2 + qn |θn|2

) .
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Further, since

Re(eiδθb+1∆θb) = − |θb+1|2 Reβ0,

we get from (5.20)

(cos δ)
b∑

n=2

(
|∆θn|2 + qn |θn|2

)
= − |θb+1|2 Reβ0.

Therefore Reβ0 < 0. This means that the left half-plane of the β-plane is mapped onto the
interior of the circle Cb. Consequently, v(β) belongs to the interior of the circle Cb if and only if
Reβ < 0. This inequality is equivalent by (5.13), (5.16) to

(cos δ)
b∑

n=2

(
|∆ψn|2 + qn |ψn|2

)
< Re

(
ve−iδ

)
. (5.21)

Thus, v belongs to the interior of the circle Cb if and only if the inequality (5.21) holds and v
lies on the circle Cb if and only if

(cos δ)
b∑

n=2

(
|∆ψn|2 + qn |ψn|2

)
= Re

(
ve−iδ

)
.

Now let b2 > b1. Then if v is inside or on Cb2

(cos δ)
b1∑

n=2

(
|∆ψn|2 + qn |ψn|2

)
< (cos δ)

b2∑
n=2

(
|∆ψn|2 + qn |ψn|2

)
≤ Re

(
ve−iδ

)
and therefore v is inside Cb1 . This means Cb1 contains Cb2 in its interior if b2 > b1. It follows
that, as b → ∞, the circles Cb converge either to a limit-circle or to a limit-point. If v̂ is the
limit-point or any point on the limit-circle, then v̂ is inside any Cb. Hence

(cos δ)
b∑

n=2

(
|∆ψn|2 + qn |ψn|2

)
< Re

(
v̂e−iδ

)
,

where

ψn = ϕn + v̂θn, n ∈ Z, (5.22)

and letting b→∞ we get

(cos δ)
∞∑

n=2

(
|∆ψn|2 + qn |ψn|2

)
≤ Re

(
v̂e−iδ

)
. (5.23)

It also follows that

Re
(
v̂e−iδ

)
> 0. (5.24)

Since qn ≥ c > 0, (5.23) implies that for the solution ψ = (ψn) defined by (5.22) we have (5.4).
Thus, the statement of the theorem concerning the solution ψ = (ψn) is proved.

Let us now show existence of the solution χ = (χn) satisfying (5.4). We seek the desired
solution θ = (θn) of problem (5.1), (5.2) in the form

χn = ϕn + uθn, n ∈ Z,
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where u is a complex constant to be determined.
Take an arbitrary integer a ≤ −1. Applying (5.8) to the equations

−∆2χn−1 + qnχn = 0, n ∈ Z0,

χ−1 = χ1, ∆χ−1 = e2iδ∆χ1,

we get

−1∑
n=a

(
|∆χn|2 + qn |χn|2

)
= (∆χn)χn+1

∣∣−1

a−1
.

Since

∆χ−1 = −e2iδ, χ0 = 1− e2iδ + u,

we have

−1∑
n=a

(
|∆χn|2 + qn |χn|2

)
= −e2iδ + 1− ue2iδ − (∆χa−1)χa. (5.25)

Multiply both sides of (5.25) by e−iδ and take then the real part of both sides to get

(cos δ)
−1∑

n=a

(
|∆χn|2 + qn |χn|2

)
= −Re

(
ue−iδ

)
− Re

{
e−iδ(∆χa−1)χa

}
. (5.26)

Now we choose u so that to have

Re
{
e−iδ(∆χa−1)χa

}
= 0. (5.27)

Since

Re
{
e−iδ(∆χa−1)χa

}
= |χa|2 Re

{
e−iδ ∆χa−1

χa

}
,

it is sufficient for (5.27) to have

Re
{
e−iδ ∆χa−1

χa

}
= 0. (5.28)

Then (5.26) becomes

(cos δ)
−1∑

n=a

(
|∆χn|2 + qn |χn|2

)
= −Re

(
ue−iδ

)
.

The condition (5.28) can be written as

e−iδ ∆ϕa−1 + u∆θa−1

ϕa + uθa
= α, (5.29)

where α is a pure imaginary number (α = it, t ∈ R). Note that

ϕa∆θa−1 − (∆ϕa−1)θa = Wa−1(ϕ, θ) = e2iδ 6= 0 (5.30)
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by (5.11). Therefore (5.29) defines a linear-fractional transformation of the complex u-plane
onto the complex α-plane. Solving (5.29) for u, we get

u(α) =
ϕaα− e−iδ∆ϕa−1

−θaα+ e−iδ∆θa−1
. (5.31)

Thus, condition (5.28) will be satisfied if we choose u by (5.31) for pure imaginary values of α.
On the other hand, when α runs in (5.31) the imaginary axis, u(α) describes a circle Ka in the
u-plane. The center of the circle is symmetric point of the point at infinity with respect to the
circle. Since

u(α′) = ∞, where α′ = e−iδ ∆θa−1

θa
,

the point

α0 = −α′ = −eiδ ∆θa−1

θa

which is symmetric point of the point α′ with respect to the imaginary axis of the α-plane, is
mapped onto the center of Ka. So the center of Ka is located at the point

u(α0) = −e
iδϕa∆θa−1 + e−iδ(∆ϕa−1)θa

eiδθa∆θa−1 + e−iδθa∆θa−1

. (5.32)

Note that the denominator in (5.32) is different from zero. This fact follows from the equality

e−iδθa∆θa−1 + eiδθa∆θa−1 = 2Re
{
eiδ(∆θa−1)θa

}
= −(2 cos δ)

−1∑
n=a

(
|∆θn|2 + qn |θn|2

)
(5.33)

which can be derived as (5.26) taking into account ∆θ−1 = 0, θ0 = 1. Calculating the difference
u(α0)− u(0) we easily find the radius Ra = |u(α0)− u(0)| of the circle Ka, using (5.30)–(5.33),

Ra =
1

(2 cos δ)
−1∑

n=a

(
|∆θn|2 + qn |θn|2

) .
Further, since

Re
(
e−iδθa∆θa−1

)
= − |θa|2 Reα0,

we get from (5.33)

(cos δ)
−1∑

n=a

(
|∆θn|2 + qn |θn|2

)
= |θa|2 Reα0.

Therefore Reα0 > 0. This means that the right half-plane of the α-plane is mapped onto the
interior of the circle Ka. Consequently, u(α) lies inside the circle Ka if and only if Reα > 0.
This inequality is equivalent by (5.26), (5.29) to

(cos δ)
−1∑

n=a

(
|∆χn|2 + qn |χn|2

)
< −Re

(
ue−iδ

)
. (5.34)
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Thus, u lies inside the circle Ka if and only if the inequality (5.34) holds and u lies on the
circle Ka if and only if

(cos δ)
−1∑

n=a

(
|∆χn|2 + qn |χn|2

)
= −Re

(
ue−iδ

)
.

Now let a2 < a1. Then if u is inside or on Ka2

(cos δ)
−1∑

n=a1

(
|∆χn|2 + qn |χn|2

)
< (cos δ)

−1∑
n=a2

(
|∆χn|2 + qn |χn|2

)
≤ −Re

(
ue−iδ

)
and therefore u is inside Ka1 . This means Ka1 contains Ka2 in its interior if a2 < a1. It follows
that, as a→ −∞, the circles Ka converge either to a limit-circle or to a limit-point. If û is the
limit-point or any point on the limit-circle, then û is inside any Ka. Hence

(cos δ)
−1∑

n=a

(
|∆χn|2 + qn |χn|2

)
< −Re

(
ûe−iδ

)
,

where

χn = ϕn + ûθn, n ∈ Z, (5.35)

and letting a→ −∞ we get

(cos δ)
n=−1∑
−∞

(
|∆χn|2 + qn |χn|2

)
≤ −Re

(
ûe−iδ

)
. (5.36)

It also follows that

Re
(
ûe−iδ

)
< 0. (5.37)

Since qn ≥ c > 0, (5.36) implies that for the solution χ = (χn) defined by (5.35) we have (5.4).
Thus, the statement of the theorem concerning the solution χ = (χn) is also proved.

Finally, let us show that the solutions ψ = (ψn) and χ = (χn) defined by (5.22) and (5.35),
respectively, are linearly independent. We have

Wn(ψ, χ) = Wn(ϕ+ v̂θ, ϕ+ ûθ) = (û− v̂)Wn(ϕ, θ). (5.38)

Next, Wn(ϕ, θ) 6= 0 by (5.11) and û 6= v̂ by (5.24), (5.37). Therefore Wn(ψ, χ) 6= 0 and hence ψ
and χ are linearly independent by Theorem 5. �

6 The inverse operator L−1

The following lemma will play crucial role in this and next sections.

Lemma 2. Let us set

σn =
{
e−iδ for n ≤ −1,
eiδ for n ≥ 0.

(6.1)

Under the conditions of Lemma 1 the following formula holds:

(cos δ)

( −1∑
n=a

+
b∑

n=2

)(
|∆yn|2 + qn |yn|2

)
= Re

{
σn(∆yn)yn+1

∣∣b
a−1

+

( −1∑
n=a

+
b∑

n=2

)
σnfnyn

}
. (6.2)
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Proof. To prove (6.2) we multiply (5.8) by e−iδ and (5.7) by eiδ and add together to get(
e−iδ

−1∑
n=a

+eiδ
b∑

n=2

)(
|∆yn|2 + qn |yn|2

)
= e−iδ(∆yn)yn+1

∣∣−1

a−1
+ eiδ(∆yn)yn+1

∣∣b
1
+

(
e−iδ

−1∑
n=a

+eiδ
b∑

n=2

)
fnyn. (6.3)

Next, using the conditions (5.6) we have

e−iδ(∆y−1)y0 − eiδ(∆y1)y2 = eiδ(∆y1)y0 − eiδ(∆y1)y2

= eiδ(∆y1)(y0 − y2) = eiδ(∆y1)(y0 − y1 + y1 − y2)

= eiδ(∆y1)(y0 − y−1 + y1 − y2) = eiδ(∆y1)(∆y−1 −∆y1)

= −eiδ |∆y1|2 + eiδ(∆y1)e−2iδ∆y1 = −eiδ |∆y1|2 + e−iδ |∆y1|2 = −2i(sin δ) |∆y1|2 .

Therefore taking (6.1) into account we can rewrite (6.3) in the form( −1∑
n=a

+
b∑

n=2

)
σn

(
|∆yn|2 + qn |yn|2

)
= −2i(sin δ) |∆y1|2 + σn(∆yn)yn+1

∣∣b
a−1

+

( −1∑
n=a

+
b∑

n=2

)
σnfnyn. (6.4)

Taking in (6.4) the real parts of both sides and taking into account that Reσn = cos δ for all n,
we obtain (6.2). �

Let L : D ⊂ l20 → l20 be the operator defined above in Section 2. Further, let ψ = (ψn) and
χ = (χn), where n ∈ Z, be solutions of problem (5.1), (5.2), constructed in Theorem 8. Let us
introduce the discrete Green function

Gnk =
1

Wk(ψ, χ)

{
χkψn if k ≤ n,
χnψk if k ≥ n,

of discrete variables k, n ∈ Z. Note that by (5.38) and (5.11), we have

W0(ψ, χ) = −(û− v̂)e2iδ, Wk(ψ, χ) =
{

(û− v̂)e2iδ if k ≤ −1,
û− v̂ if k ≥ 1,

(6.5)

and, besides,

û 6= v̂

by (5.24) and (5.37).

Theorem 9. Under the condition (5.3) the inverse operator L−1 exists and is a bounded operator
defined on the whole space l20. Next, for every f = (fn) ∈ l20(

L−1f
)
n

=
∑
k∈Z0

Gnkfk, n ∈ Z0, (6.6)

and ∥∥L−1f
∥∥ ≤ 1

c cos δ
‖f‖ for all f ∈ l20, (6.7)

where c is a constant from condition (5.3) and δ is from (5.2), ‖·‖ denotes the norm of space l20.
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Proof. Let us show that

kerL = {y ∈ D : Ly = 0}

consists only of the zero element. Indeed, if y ∈ D and Ly = 0, then (y)n∈Z0 satisfies the
equation

−∆2yn−1 + qnyn = 0, n ∈ Z0, (6.8)

in which y0 and y1 (these values arise in (6.8) for n = −1 and n = 2, respectively) are defined
from the equations

y−1 = y1, ∆y−1 = e2iδ∆y1. (6.9)

Since χ and ψ form a fundamental system of solutions of (6.8), (6.9), we can write

yn = C1ψn + C2χn, n ∈ Z,

with some constants C1 and C2. Hence

Wn(y, ψ) = C1Wn(ψ,ψ) + C2Wn(χ, ψ), n ∈ Z. (6.10)

Next, since y ∈ l20, we have yn → 0 as |n| → ∞ and by (5.4) we have ψn → 0 as n→∞ Hence
Wn(y, ψ) → 0 as n → ∞. Besides Wn(ψ,ψ) = 0 for all n and Wn(χ, ψ) is equal to a nonzero
constant for n ≥ 1 by (6.5). Therefore taking the limit in (6.10) as n→∞ we get that C2 = 0.
It can similarly be shown, by considering Wn(y, χ), that C1 = 0. Thus y = 0.

It follows that the inverse operator L−1 exists. Now take an arbitrary f = (fn)n∈Z0 ∈ l20 and
extend the sequence (fn)n∈Z0 to the values n = 0 and n = 1 by setting

f0 = f1 = 0.

Let us put

gn =
∑
k∈Z0

Gnkfk =
∑
k∈Z

Gnkfk = ψn

k=n∑
−∞

χkfk

Wk(ψ, χ)
+ χn

∞∑
k=n+1

ψkfk

Wk(ψ, χ)
, n ∈ Z. (6.11)

Then it is easy to check that this sequence (gn), where n ∈ Z, satisfies the equations

−∆2gn−1 + qngn = fn, n ∈ Z0, (6.12)

g−1 = g1, ∆g−1 = e2iδ∆g1. (6.13)

We want to show that g = (gn)n∈Z0 ∈ l20 and that

‖g‖ ≤ 1
c cos δ

‖f‖ . (6.14)

For this purpose we take the sequences of integers am and bm defined for any positive integer m,
such that

am < 0 < bm and am → −∞, bm →∞ as m→∞.

Next, for each m we define the sequence (f (m)
n )n∈Z by

f (m)
n = fn if am ≤ n ≤ bm, (6.15)

f (m)
n = 0 if n < am or n > bm, (6.16)
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and put

g(m)
n =

∑
k∈Z0

Gnkf
(m)
k =

∑
k∈Z

Gnkf
(m)
k = ψn

k=n∑
−∞

χkf
(m)
k

Wk(ψ, χ)
+ χn

∞∑
k=n+1

ψkf
(m)
k

Wk(ψ, χ)
, n ∈ Z.

It follows that

g(m)
n =


χn

bm∑
k=am

ψkfk

Wk(ψ, χ)
if n < am,

ψn

bm∑
k=am

χkfk

Wk(ψ, χ)
if n > bm.

(6.17)

We have also that, for each m,

−∆2g
(m)
n−1 + qng

(m)
n = f (m)

n , n ∈ Z0, (6.18)

g
(m)
−1 = g

(m)
1 , ∆g(m)

−1 = e2iδ∆g(m)
1 . (6.19)

Fix m and take a positive integer N such that

−N < am and bm < N.

Then applying Lemma 2 to (6.18), (6.19) we can write

(cos δ)

( −1∑
n=−N

+
N∑

n=2

)(∣∣∆g(m)
n

∣∣2 + qn
∣∣g(m)

n

∣∣2)
= Re

{
σn(∆g(m)

n )g(m)
n+1

∣∣N
−N−1

+

( −1∑
n=−N

+
N∑

n=2

)
σnf

(m)
n g(m)

n

}
. (6.20)

It follows from (6.17) by (5.4) that∑
n∈Z

∣∣g(m)
n

∣∣2 <∞.

Therefore the sums on the right-hand side of (6.20) are convergent as N →∞ and besides

Re
{
σn(∆g(m)

n )g(m)
n+1

∣∣N
−N−1

}
→ 0 as N →∞.

(note that |σn| = 1 for all n by (6.1)). Now taking the limit in (6.20) as N →∞, we get

(cos δ)
∑
n∈Z0

(∣∣∆g(m)
n

∣∣2 + qn
∣∣g(m)

n

∣∣2) = Re
∑
n∈Z0

σnf
(m)
n g(m)

n . (6.21)

Using the condition (5.3) we get from (6.21) that

∑
n∈Z0

∣∣g(m)
n

∣∣2 ≤ 1
c cos δ

Re
∑
n∈Z0

σnf
(m)
n g(m)

n ≤ 1
c cos δ

∣∣∣∣∣∣
∑
n∈Z0

σnf
(m)
n g(m)

n

∣∣∣∣∣∣
≤ 1
c cos δ

∑
n∈Z0

∣∣f (m)
n g(m)

n

∣∣ ≤ 1
c cos δ

∑
n∈Z0

∣∣f (m)
n

∣∣2
1/2∑

n∈Z0

∣∣g(m)
n

∣∣2
1/2

.
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Hence∑
n∈Z0

∣∣g(m)
n

∣∣2
1/2

≤ 1
c cos δ

∑
n∈Z0

∣∣f (m)
n

∣∣2
1/2

,

that is,∥∥g(m)
∥∥ ≤ 1

c cos δ

∥∥f (m)
∥∥. (6.22)

Writing (6.18), (6.19) for m = m1 and m = m2, and subtracting the obtained equations
side-by-side, we get

−∆2
[
g
(m1)
n−1 − g

(m2)
n−1

]
+ qn

[
g(m1)
n − g(m2)

n

]
= f (m1)

n − f (m2)
n , n ∈ Z0,

g
(m1)
−1 − g

(m2)
−1 = g

(m1)
1 − g

(m2)
1 , ∆

[
g
(m1)
−1 − g

(m2)
−1

]
= e2iδ∆

[
g
(m1)
1 − g

(m2)
1

]
.

Hence, repeating the same reasonings as above, we get∥∥g(m1) − g(m2)
∥∥ ≤ 1

c cos δ

∥∥f (m1) − f (m2)
∥∥.

It follows that g(m) converges in l20 to an element g̃ as m → ∞. On the other hand, it can be
seen from (6.11), (6.17) taking into account (6.15), (6.16) that

g(m)
n → gn as m→∞,

for each n. Consequently, g̃ = g and hence g ∈ l20. Passing in (6.22) to the limit as m→∞, we
get (6.14).

Next, from (6.12) we have

qngn = fn + gn−1 − 2gn + gn+1, n ∈ Z0.

Hence (qngn)n∈Z0 ∈ l20. Therefore g ∈ D, where D is the domain of the operator L. If we define
an operator B : l20 → l20 by the formula Bf = g, where f = (fn)n∈Z0 ∈ l20 and g = (gn)n∈Z0

with gn defined by (6.11), then we get by (6.12), (6.13) that LBf = f. Therefore B is the
inverse of the operator L : B = L−1, so that g = L−1f and from (6.11) and (6.14) we get (6.6)
and (6.7), respectively. �

7 Completely continuity of the operator L−1

In this section we will show that the operator L−1 is completely continuous, that is, it is con-
tinuous and maps bounded sets into relatively compact sets.

Theorem 10. Let

qn ≥ c > 0 for n ∈ Z0, (7.1)

and

lim
|n|→∞

qn = ∞. (7.2)

Then the operator L−1 is completely continuous.
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Proof. The operator L−1 is continuous in virtue of (6.7) that holds under the condition (7.1).
In order to show that L−1 maps bounded sets into relatively compact sets consider any bounded
set X in l20,

X =
{
f ∈ l20 : ‖f‖ ≤ d

}
,

and prove that L−1(X) = Y is relatively compact in l20. To this end, we use the following known
(see [17]) criterion for the relative compactness in l20 : A set Y ⊂ l20 is relatively compact if and
only if Y is bounded and for every ε > 0 there exists a positive integer n0 (depending only on ε)
such that∑

|n|>n0

|yn|2 ≤ ε for all y ∈ Y.

Take an arbitrary f ∈ X and set

L−1f = y.

Then Ly = f or explicitly

−∆2yn−1 + qnyn = fn, n ∈ Z0, (7.3)

where y0 and y1 are defined from the equations

y−1 = y1, ∆y−1 = e2iδ∆y1. (7.4)

Note that y0 and y1 are needed when we write out equation (7.3) for n = −1 and n = 2,
respectively.

Applying Lemma 2 to (7.3), (7.4), we get that for any integers a ≤ −1 and b ≥ 2,

(cos δ)

( −1∑
n=a

+
b∑

n=2

)(
|∆yn|2 + qn |yn|2

)
= Re

{
σn(∆yn)yn+1

∣∣b
a−1

+

( −1∑
n=a

+
b∑

n=2

)
σnfnyn

}
, (7.5)

where σn is defined by (6.1).
Since f, y ∈ l20 and |σn| = 1, the sums on the right-hand side of (7.5) are convergent as

a→ −∞, b→∞. Also from y ∈ l20 it follows that yn → 0 as |n| → ∞ so that

σn(∆yn)yn+1

∣∣b
a−1

→ 0 as a→ −∞, b→∞.

Consequently, we arrive at the equality

(cos δ)
∑
n∈Z0

(
|∆yn|2 + qn |yn|2

)
= Re

∑
n∈Z0

σnfnyn.

Hence

(cos δ)
∑
n∈Z0

qn |yn|2 ≤ Re
∑
n∈Z0

σnfnyn (7.6)

and therefore using (7.1) and ‖f‖ ≤ d, we get

‖y‖ ≤ d

c cos δ
for all y ∈ Y. (7.7)

This means that the set Y = L−1(X) is bounded.
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From (7.6) we also have, using (7.7),∑
n∈Z0

qn |yn|2 ≤
d2

c cos2 δ
for all y ∈ Y. (7.8)

Take now an arbitrary ε > 0. By condition (7.2) we can choose a positive integer n0 such
that

qn ≥
d2

εc cos2 δ
for |n| > n0.

Then we get from (7.8) that∑
|n|>n0

|yn|2 ≤ ε for all y ∈ Y.

Thus the completely continuity of the operator L−1 is proved. �

Corollary 2. The operator A = M−1L is invertible and its inverse A−1 = L−1M is a completely
continuous operator to be a product of completely continuous operator with bounded operator.
Therefore the spectrum of the operator A is discrete.

8 Conclusions

In this paper we have explored a new class of discrete non-Hermitian quantum systems. The
concept of the spectrum for the considered discrete system is introduced and discreteness of the
spectrum is proved under some simple conditions.

As a tool for the investigation we have established main statements for second order linear
difference equations with impulse conditions (transition conditions). We have chosen a suitable
(infinite-dimensional) Hilbert space and defined the main linear operator A so that the spectrum
of the problem in question coincides with the spectrum of A. Next, we have constructed the
inverse A−1 of the operator A by using an appropriate discrete Green function. Finally, we
have shown that the inverse operator A−1 is completely continuous. This implies, in particular,
discreteness of the spectrum of A.
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