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Abstract. The free energy of a closed 3-manifold is a 2-parameter formal power series
which encodes the perturbative Chern–Simons invariant (also known as the LMO invariant)
of a closed 3-manifold with gauge group U(N) for arbitrary N . We prove that the free energy
of an arbitrary closed 3-manifold is uniformly Gevrey-1. As a corollary, it follows that the
genus g part of the free energy is convergent in a neighborhood of zero, independent of the
genus. Our results follow from an estimate of the LMO invariant, in a particular gauge, and
from recent results of Bender–Gao–Richmond on the asymptotics of the number of rooted
maps for arbitrary genus. We illustrate our results with an explicit formula for the free
energy of a Lens space. In addition, using the Painlevé differential equation, we obtain an
asymptotic expansion for the number of cubic graphs to all orders, stengthening the results
of Bender–Gao–Richmond.
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1 Introduction

1.1 The free energy of a closed 3-manifold

The free energy FM (τ, ~) of a closed 3-manifold M (defined in equation (1.7)) is a 2-parameter
formal power series with rational coefficients in two variables τ and ~2

FM (τ, ~) =
∞∑

g=0

FM,g(τ)~2g−2 ∈ ~−2Q[[τ, ~2]]. (1.1)

The variable ~ plays the role of Planck’s constant, and the variable τ = N~ is the product
of Planck’s constant with N , the size of the gauge group U(N). The free energy encodes the
perturbative Chern–Simons invariant of M along the trivial flat connection (also known as the
LMO invariant of [41]) with gauge group U(N) for arbitrary N . FM,g(τ) (resp. FM,0(τ)) is often
called the genus g-contribution (resp. planar limit) to the free energy. Perturbative Quantum
Field Theory for a gauge group of fixed size N typically leads to factorially divergent formal
power series partly because there are factorially many Feynman diagrams, as was explained for
example in [20]. It is a fundamental question how to give rigorous analytic meaning to these
factorially divergent series and how to numerically evaluate them for example for QCD, and
compare with well-tested experimental data. With this in mind, ’t Hooft observed that when
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the size N of the gauge is arbitrary, the Feynman diagrams of perturbative gauge theory organize
themselves in ribbon graphs, i.e., abstract connected oriented surfaces of some genus g with some
nonzero number of boundary components; see [35]. Correspondingly, the free energy FM (τ, ~)
becomes a sum of power series FM,g(τ) of a single variable that carries the contribution of the
connected graphs of genus g. ’t Hooft suggested that

Conjecture 1.1. There exists a disk DM that contains zero such that for all g, FM,g(τ) is
a power series analytic in DM .

If the above conjecture holds, then FM,g(τ) can be evaluated near τ = 0 by a convergent series.
The above conjecture can be formulated for any gauge theory. ’t Hooft’s conjecture has been
verified in some simple quantum-field theoretical models with U(N) symmetry, such as matrix
models (QFT in zero dimensions) and matrix quantum mechanics (QFT in one dimension);
see [12, 10, 16, 17, 55]. Evidence for its validity in N = 4 super Yang–Mills theory has also
appeared recently; see [9, 8].

1.2 A free energy of a knot

In the world of Quantum Topology, the free energy of a 3-manifold is structurally similar to two
other invariants of knots: namely the HOMFLY polynomial HK(t, q) of a knot K and the Colored
Jones function JK(q, n), colored by the n-dimensional irreducible representation of SL(2, C); see
for instance [54]. The HOMFLY polynomial gives rise to an element of ~−2Q[[τ, ~2]] using the
substitution

t = eτ = eN~, q = e~. (1.2)

The same substitution works for the colored Jones function of a knot and is the content of the
so-called loop expansion of the colored Jones function

JK(q, n) =
∞∑

n=0

FK,n(τ)~n ∈ Q[[τ, ~]]. (1.3)

The above loop expansion is really perturbation theory of Chern–Simons theory along an Abelian
flat connection on the knot complement, see [51]. For a detailed discussion on the meaning of
the above expansion, see [51, 28, 22, 21]. Moreover, its planar limit FK,0(τ) can be identified
with the inverse Alexander polynomial ∆K

FK,0(τ) =
1

∆K(eτ )
. (1.4)

This is the content of the Melvin–Morton–Rozansky Conjecture, shown in [3]. In addition, for
every n ∈ N, we have

FK,n(τ) =
PK,n(eτ )

∆K(eτ )2n+1
,

where PK,n(t) ∈ Z[t±1] [51]. Since ∆K(1) = 1, it follows that the radius of convergence of FK,n(τ)
at τ = 0 is positive and independent of n.

1.3 Power series uniformly Gevrey-1

In order to state our results, we need to formalize the analytic properties of the free energy of
a 3-manifold. Recall that a formal power series

f(~) =
∞∑

n=0

an~n
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is Gevrey-s if there exists a positive constant C > 0 such that

|an| ≤ Cnn!s

for all n > 0.

Definition 1.1. Consider a formal power series

f(x, ε) =
∞∑

n=−1

Sn(x)εn ∈ ε−1C[[x, ε]] (1.5)

of two variables (x, ε). We say that f(x, ε) is Gevrey-1 with respect to ε, uniformly with respect
to x = 0 (in short, (x, ε) Gevrey-1) if there exists a constant C > 0 so that

|[xk]Sn(x)| ≤ Cn+kn! (1.6)

for all n, k ∈ N. Here, [xk]g(x) denotes the coefficient of xk in a power series g(x).

Examples of power series f(x, ε) (x, ε) Gevrey-1 are the WKB solutions of difference or
differential equations with a small parameter; see for example [1], where the authors call such
series uniformly pre-Borel summable. The loop expansion of a knot is (τ, ~) Gevrey-1; see [22].

Observe that if a power series f(x, ε) given in (1.5) is (x, ε) Gevrey-1, then for all n ∈ N, the
formal power series Sn(x) is analytic in a common neighborhood of x = 0, independent of n.

1.4 Statement of our results

For a closed 3-manifold M , let ZM denote the LMO invariant of M , [41], which is an infinite
power series of vertex-oriented trivalent graphs, and represents perturbation theory along the
trivial flat connection of a 3-manifold. Given a metrized Lie algebra g, one can replace graphs
by rational numbers, keeping track of their number of vertices, and thus create a power series
(Wg ◦ ZM )(~) ∈ Q[[~]]. Let ZM (N, ~) denote the LMO invariant of M , composed with the glN
weight system; see [41]. It is easy to see that ZM (N, ~) is a formal power series in N and ~ with
constant term 1, and its logarithm

FM (τ, ~) = log ZM (N, ~) (1.7)

which is by definition the free energy of M , can be written in the form (1.1), where τ = N~.

Theorem 1.1. For every closed 3-manifold M , the free energy FM (τ, ~) is (τ, ~2) Gevrey-1.

Theorem 1.1 follows from combining a presentation for the LMO invariant given in Theo-
rem 1.2 with the definition of the glN weight system, together with a crucial estimate on the
number of rooted maps in arbitrary genus obtained by Bender–Gao–Richmond following work
of Goulden–Jackson; see [7, 32] and Corollary 4.1 below.

Theorem 1.2. For every closed 3-manifold M , we can write its LMO invariant ZM in the form

ZM =
∑
Γ

cΓ · Γ, (1.8)

where we are summing over the set of trivalent graphs Γ and

|cΓ| ≤ Cn
M (1.9)

for all Γ of degree n, where CM > 0 is a constant that depends on M .
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Theorem 1.1 has the following corollary proving ’t Hooft’s conjecture.

Corollary 1.1. For every closed 3-manifold M , the power series FM,g(τ) are analytic in a com-
mon neighborhood of τ = 0, independent of g.

We now explain what happens when we specialize N to be a fixed natural number, e.g. N = 2.
In [20], the first two authors proved the following theorem for a fixed metrized Lie algebra g.
Let ZM denote the LMO invariant of M and let Wg denote the corresponding weight system.
Then, (Wg ◦ ZM )(~) ∈ Q[[~]].

Theorem 1.3 ([20], Theorem 3). For every metrized Lie algebra and every rational homology
sphere M , (Wg ◦ ZM )(~) is Gevrey-1.

Corollary 1.2. Theorem 1.1 implies Theorem 1.3 for g = glN for every fixed N .

1.5 Some calculations

As a concrete illustration of our results, we can compute the free energy of a Lens space. Let
L(d, b) denote the Lens space obtained by d/b ∈ Q surgery on the unknot in S3.

Recall the α-polylogarithm function

Liα(x) =
∞∑

n=1

xn

nα
(1.10)

for α ∈ R, defined by the absolutely convergent series for |x| < 1 and analytically continued in
C \ {0, 1}. For a detailed discussion, see [48] and also [14]. Let Bn denote the nth Bernoulli
number defined by the generating series

x

ex − 1
=

∞∑
n=0

Bn

n!
xn.

Theorem 1.4. Consider a Lens space M = L(d, b). Its free energy is given by

FM,g(τ) = (2g − 1)
B2g

(2g)!

(
d2−2gLi3−2g(eτ/d)− Li3−2g(eτ )

)
+ ag(τ), (1.11)

where

ag(τ) =


−τ2

2
log d− (d2 − 1)ζ(3) + λL(d,b)

τ3

2
if g = 0,

τ

24
(1− d−1) +

1
12

log d− λL(d,b)
τ

2
if g = 1,

0 if g ≥ 2.

(1.12)

It follows that for all g ≥ 2 (resp. g = 0, 1), FM,g has analytic continuation as a meromorphic
(resp. multivalued analytic) function on C \ 1

dZ∗(1) (resp. C \ 1
dZ(1)), where

Z(1) = 2πiZ, Z∗(1) = Z(1) \ {0}. (1.13)
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2 The LMO invariant and its `∞ Gromov norm

2.1 The `∞ Gromov norm

The purpose of this section is to prove Theorem 1.2 extending the Gromov norm techniques
from [20]. We will assume some familiarity with [20]. To begin with, the LMO invariant ZM

of a closed 3-manifold takes value in a completed graded vector space A(∅) of vertex-oriented
trivalent graphs, modulo some linear homogeneous AS and IHX relations, where the degree of
a graph is half the number of vertices. The LMO invariant gives a meaningful definition to
the Chern–Simons perturbation theory along a trivial flat connection, and the trivalent graphs
mentioned above as the Feynmann diagrams of a φ3 gauge theory with Chern–Simons action.
For a detailed discussion, see [39]. The linear AS and IHX relations are the diagrammatic version
of the antisymmetry and the Jacobi identity of the Lie algebra of the gauge theory.

Let An(∅) denote the subspace of A(∅) of degree n. Then, An(∅) is a finite dimensional
vector space spanned by the finite set of vertex-oriented trivalent graphs with 2n vertices. Of
course, this spanning set is not a basis, due to the linear AS and IHX relations. This motivates
the following concept of the `p Gromov norm, extending the one in [20, Definition 1.1].

Definition 2.1. Consider a vector space V and a spanning set b. Fix p ∈ [1,∞]. For v ∈ V ,
define the `p norm by:

|v|p =

{
inf
(∑

j |cj |p
)1/p if p ∈ [1,∞),

inf maxj |cj | if p = ∞,
(2.1)

where the infimum is taken over all presentations of the form v =
∑

j cjvj , vj ∈ b.

We now apply the above definition to each of An(∅) and combine them into a single power
series.

Definition 2.2.

(a) Fix p ∈ [1,∞] and n ∈ N and consider the vector space An(∅) spanned by the set b of
oriented trivalent graphs of degree n. For v ∈ An(∅), we denote by |v|p the norm of v.

(b) If v ∈ A(∅), we define

|v|p(~) =
∞∑

n=0

|πn(v)|p~n ∈ Q[[~]] (2.2)

where πn : A(∅) −→ An(∅) denotes the projection in An(∅).
(c) We say that v ∈ A(∅) has Gevrey-s p-norm if |v|p(~) is Gevrey-s.

2.2 A brief review of [20]

The main result of [20] was the following theorem.

Theorem 2.1 ([20], Theorem 2). For every integral homology sphere M , the power series
|ZM |1(~) ∈ Q[[~]] is Gevrey-1.

Theorem 2.1 is a convergence property of a universal finite type invariant of homology spheres,
and uses a well-known universal finite type invariant of links in S3, namely the Kontsevich
integral. For an introduction to the notion of finite type invariants of knots and 3-manifolds,
see [2, 50]. Since our proof of Theorem 1.2 will use some of the ideas of the proof of Theorem 2.1,
we begin by recalling the proof of Theorem 2.1, which goes as follows. First, we begin with the
following description of the LMO invariant from [5].
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• Fix a presentation of an integral homology sphere M as surgery on a unit-framed boundary
link L in S3.

• Choose a presentation of L as the closure of a framed string link T .

• Consider the normalized Kontsevich integral ŽT , which takes values in the completed Q-
vector space A(?X) of vertex-oriented Jacobi diagrams with legs colored by a set X in 1-1
correspondence with the components of T .

• Perform formal diagrammatic Gaussian integration∫
dX : A(?X) −→ A(∅)

to ŽT . I.e., separate out the strut part of ŽT (which is an exponential of Jacobi diagrams
with no trivalent vertices) and join the legs of the remaining diagrams using the inverse
linking matrix of the strut part.

• Finally, define

ZM =
∫

ŽLdX

(
∫

ŽU+dX)σ+(L)(
∫

ŽU−dX)σ−(L)
, (2.3)

where U± denotes the ±1 framed unknot in S3 and σ±(L) denotes the number of positive
(resp. negative) eigenvalues of the linking matrix of L.

Next, we extend our notion of `p norm to all intermediate spaces of Jacobi diagrams (with
or without skeleton, and with or without symmetrized legs).

Next, we show that the Kontsevich integral is Gevrey-0.

Theorem 2.2 ([20], Theorem 8). For every framed tangle T , |ZT |1(~) ∈ R[[~]] is Gevrey-0.

This follows from the definition of the Kontsevich integral using the KZ associator, together
with the following lemma.

Lemma 2.1 ([20], Proposition 2.6). If U denotes the zero-framed unknot, then |ZU |1(~) ∈
R[[~]] is Gevrey-0.

Finally we use the following key lemma.

Lemma 2.2 ([20], Lemma 2.10). For every boundary string link T with framing ±1,
|
∫

ŽT dX|1(~) ∈ R[[~]] is Gevrey-1.

The condition on the string link being a boundary one is to ensure that the strutless part
of ŽT contains no trees; see [33]. Lemma 2.2 takes care of the normalization of the LMO invariant
given by (2.3). Ignoring technicalities, the main point in the proof of Lemma 2.2 is the following.

If G is uni-trivalent graph of degree n + k (i.e., with 2n + 2k vertices) with 2k legs, then
there are (2k− 1)!! = 1 · 3 · 5 · · · · · (2k− 1) ways to pair the legs of G together. If G has no tree
components, then k ≤ n thus

(2k − 1)!! ≤ (2n− 1)!! ≤ Cnn!.

Remark 2.1. If we replace | · |1 by | · |p for p ∈ [1,∞), Theorems 2.1, 2.2 and Lemmas 2.1, 2.2
remain true.

In the next section we discuss what happens when we use the | · |∞ rather than the | · |1 norm.
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2.3 Proof of Theorem 1.2

We now show how to modify the statements of the previous section in order to show the following
reformulation of Theorem 1.2. In that theorem we need to fix a closed 3-manifold. When M
has positive Betti number, the LMO invariant simplifies a lot, and it is possible to give a direct
proof by an explicit formula. For example, when the first Betti number b1(M) is greater than 3,
then the LMO invariant vanishes and Theorem 1.2 obvious holds. When 1 < b1(M) ≤ 3, the
LMO invariant can be directly computed, see [34, 50]. When b1(M) = 1, the LMO invariant
is computed by [24] in terms of the Alexander polynomial of M , and Theorem 1.2 follows
immediately. Thus, it suffices to assume that M is a rational homology sphere, and further
(using the multiplicative behavior of the LMO with respect to connected sums), it suffices to
assume that M is obtained by surgery on a rationally framed boundary link in S3. In that case,
the LMO invariant can be computed via the Aarhus integral.

Theorem 2.3. For every rational homology sphere M , |ZM |∞(~) ∈ R[[~]] is Gevrey-0.

This theorem follows from the following.

Theorem 2.4. For every framed tangle T , |ZT |∞(~) ∈ R[[~]] is Gevrey-0.

This follows easily from Theorem 2.2 and the fact that |v|∞ ≤ |v|1 for all v ∈ An(∅).

Lemma 2.3. For every framed string link T with invertible linking matrix |
∫

ŽT dX|∞(~) ∈
R[[~]] is Gevrey-0.

The proof of this lemma is as follows. First we write ŽT as follows, using Theorem 2.4

ŽT = exp

1
2

∑
ij

lij |ji

∑
Γ

cΓ · Γ,

where (lij) is the linking matrix of T , |ji is a strut colored by the components i and j of T , the
summation is over the set of uni-trivalent graphs with no strut components and legs colored by
the components of T and

|cΓ| ≤ Cdeg(Γ)

for some constant C > 0. If G is a trivalent graph of degree n, it has 3n edges. If G comes from
pairing the legs of a uni-trivalent graph Γ, then Γ is obtained from G by cutting some (let’s say
k ≤ 3n) of the edges of G in half. Such a uni-trivalent graph Γ has degree n + k (i.e., 2n + 2k
vertices) and 2k legs and its coefficient in ŽT is bounded by Cn+k ≤ C4n. Since G has 3n edges,
there are at most 23n such graphs Γ. Thus, pairing the legs of the strutless part of ŽT , we obtain
that ∫

ŽT dX =
∑
G

cG ·G,

where

|cG| ≤ C ′deg(G)

for some C ′ > 0. This concludes the proof of Theorem 1.2.
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3 The glN weight system

The LMO invariant of a closed 3-manifold takes values in a completed vector space A(∅) spanned
by trivalent graphs. To get a numerical invariant with values in Q[[~]], we need to replace every
graph by a combinatorial weight. This is exactly, what a weight system does. More precisely,
given a Lie algebra g with an invariant inner product, there is a weight system Q-linear map:

Wg : A(∅) −→ Q[[~]]

discussed at great length in [2]. In [2], the following description of Wg is given.

WglN : A(∅) −→ Q[[N, ~]]

is defined by:

D −→
∑
M

(−1)sM N bD,M ~2gD,M−2+bD,M , (3.1)

where

• the sum is over all possible markings M of the trivalent vertices of D by 0 or 1,

• sM is the sum, over the set of trivalent vertices, of the values of M ,

• ΣD,M denotes the X-marked surface obtained by thickening the trivalent vertices of D as
follows:

10

and thickening the edges of D, and connecting up into to a surface. It turns out that ΣD,M

is well-defined, oriented and perhaps disconnected,

• gD,M and bD,M denote the genus (i.e., sum of the genera of its connected components) and
the number of boundary components of Σ(D,M),

• it turns out that the degree of D is 2gD,M − 2 + bD,M .

For example, we have

WglN (Θ) = 2(N3 −N)~,

where Θ is the obvious planar trivalent graph with counterclockwise cyclic order at each vertex.
The next lemma follows directly from the above definition of the WglN weight system.

Lemma 3.1. If Γ is a connected trivalent graph of degree n, then

WglN (Γ) = pΓ(N)~n, (3.2)

where pΓ(N) ∈ Z[N ] is a polynomial in N of degree at most n + 2 and `1-norm at most 2n.
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4 Asymptotics of the number of rooted maps of arbitrary genus

In a series of papers in various collaborations, Bender et al studied the exact and asymptotic
number of rooted maps on a surface; see [6, 7]. Recall that a map (G, S) is a graph G embedded
in a connected, oriented, closed topological surface S in such a way that each maximal connected
component of S \G is a topological disk. A map is rooted if an edge, a direction along the edge,
and a side of the edge are distinguished. Let Tg(n) denote the number of n-edged rooted maps on
a surface of genus g. In [6], Bender–Canfield, using generating functions, and the Darboux–Polya
enumeration method, give the following asymptotic expansion of Tg(n).

Theorem 4.1 ([6]). For g fixed and n −→∞ we have

Tg(n) ∼ tgn
5(g−1)/212n, (4.1)

where the constants tg are computable via computable non-linear recursions. In particular,

t0 =
2√
π

, t1 =
1
24

, t2 =
7

4320
√

π
.

Many interesting families of maps satisfy asymptotic formulas of the form

αtg(βn)5(g−1)/2γn.

This is discussed extensively for example in [55, Section 4]; see also [29, 30]. For over 20 years, the
constants tg remained hard to compute or estimate, partly due to the complexity of their non-
linear recursion. A breakthrough was achieved recently. Using work of Goulden–Jackson [32]
on the KP hierarchy, Bender–Gao–Richmond simplified the non-linear recursion relation for tg,
and obtained the following.

Theorem 4.2 ([7]). We have

tg ∼
40 sin(π/5)K√

2π

(
1440g

e

)−g/2

, (4.2)

where K = 0.10486898772254091800 . . . is a constant.

The numerical value of K was given incorrectly at [7]. An exact value of K is given in
equation (A.16) in Section A below. For our purposes, it suffices to note that a trivalent graph
of degree n has 3n edges. Taking into account the choice of a root, it follows that

Corollary 4.1. There are at most 12nTg(3n) connected trivalent graphs of genus g, where Tg(n)
satisfies (4.1) and (4.2).

Remark 4.1. Theorem 4.1 has an analogous statement (with a different constant pg instead
of tg) for rooted graphs in unoriented surfaces; see [6, Theorem 1]. Without doubt, there is an
asymptotic expansion for pg analogous to tg. In fact, one can write down explicitly a non-linear
recursion relation that pg ought to satisfy, and study its exact asymptotic behavior. This will
be discussed in a separate publication; see [27].

5 Proofs

5.1 Proof of Theorem 1.1

Let ZM (N, ~) denote the LMO invariant of M , composed with the weight system of glN . Then,
we can write

log ZM (N, ~) =
∑

2g−2+d>0,d>0

aM,g,dN
d~2g−2+d. (5.1)



10 S. Garoufalidis, T.T.Q. Lê and M. Mariño

Recall that the free energy of M is defined by (1.7)

FM (τ, ~) = log ZM (N, ~),

where τ = N~. It follows that the free energy has the form (1.1) where

FM,g(τ) =
∑

d:2g−2+d>0,d>0

aM,g,dτ
d ∈ Q[[τ ]]. (5.2)

On the other hand, Theorem 1.2 implies that we can write

log ZM =
∑
Γ

cΓ · Γ,

where the sum is over a set of connected trivalent graphs, where there exists a constant C such
that

|cΓ| ≤ Cn (5.3)

if Γ has degree n. Applying the WglN weight system, and using Lemma 3.1 it follows that

FM (τ, ~) =
∞∑

n=1

∑
Γ

cΓ · pΓ(N)~n,

where the Γ summation is over a set of connected trivalent graphs of degree n. Thus,

aM,g,d =
∑
Γ

cΓ · [Nd]pΓ(N), (5.4)

where the sum is over the set of connected trivalent graphs Γ of degree n = 2g − 2 + d that
embed on a surface of genus g. Lemma 3.1 estimates the coefficients [Nd]pΓ(N) and since
2g − 2 + d = n, it implies that

|aM,g,d| ≤ Cn
1

∑
Γ

|cΓ|

for some constant C1 > 0. Equation (5.3) together with 2g − 2 + d = n implies that

|aM,g,d| ≤ Cn
2

∑
Γ

1

for some constant C2 > 0. The above sum is over the set of trivalent graphs of degree n =
2g − 2 + d (and thus, 3n edges) that embed on a surface of genus g. Corollary 4.1 implies that∑

Γ

1 ≤ 8nTg(3n) ≤ Cn
1

(
(3n)5

g

)g/2

≤ Cn
2

(2g − 2 + d)5g/2

gg/2

= Cn
2

(2g − 2 + d)5g/2

(2g)5g/2

(2g)5g/2

gg/2
.

Since (1 + a/n)n ≤ ea, we have

(2g − 2 + d)5g/2

(2g)5g/2
≤ e5(d−2)/4.

Moreover,

(2g)5g/2

gg/2
≤ Cg

3 (2g)!

Since n = 2g − 2 + d, it follows that

|aM,g,d| ≤ Cg+d
3 (2g)!

and concludes the proof of Theorem 1.1.
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5.2 Proof of Corollary 1.2

Fix a natural number N ∈ N. It suffices to prove that (WglN ◦ log ZM )(~) ∈ Q[[~]] is Gevrey-1.
Equation (5.1) implies that

[~n](WglN ◦ log ZM )(~) =
∑

g,d:2g−2+d=n

aM,g,dN
d. (5.5)

The proof of Theorem 1.1 implies that there exists C > 0 so that

|aM,g,d| ≤ Cg+d(2g)!.

Since 2g − 2 + d = n, Cg+d ≤ C
3n/2
1 = Cn

2 and (2g)! ≤ Cn
3 n!. Thus,

|coeff(~n, (WglN ◦ log ZM )(~))| ≤ Cn
4 n!

∑
g,d:2g−2+d=n

Nd ≤ Cn
4 n!Nn+2(n + 2).

Since N is fixed, it follows that

|[~n](WglN ◦ log ZM )(~)| ≤ Cnn!

which concludes the proof of Corollary 1.2.

6 The free energy of a Lens space

In this section we will prove Theorem 1.4. The next proposition computes the image of the
LMO invariant of a Lens space L(d, b) under the weight system Wg.

Let g denote a metrized Lie algebra with inner product 〈·, ·〉 and let Φ+ denote the positive
roots of g, |Φ+| denote the cardinality of Φ+ and ρ denote half the sum of the positive roots
of g. Let cg denote the product of the quadratic Casimir of g with the dimension of g. Let λM

denote Casson invariant.

Proposition 6.1. With the above assumptions we have

(Wg ◦ ZL(d,b))(~) = exp
(

λL(d,b)

4
cg~
)

d|Φ+|
∏

α∈Φ+

sinh ((α, ρ)~/(2d))
sinh ((α, ρ)~/2)

∈ Q[[~]]. (6.1)

Proof. There are two proofs of this proposition. One proof uses

(a) The existence of the Ohtsuki series (which come from the Reshetikhin–Tuarev invariants
of 3-manifolds). This was shown by Ohtsuki in [49] for PSU(2), and by the second author
in [42] for PSU(N) and more generally in [43] for all simple Lie algebras.

(b) The computation of the Ohtsuki series for Lens spaces, done by Takata in [52].

(c) The identification of the left hand side of (6.1) with the Ohtsuki series. This was the
result of the unpublished fourth part of [5] and independently an unpublished work of the
second author that was recently completed by Kuriya [40], see also [50].

An alternative proof uses the computation of the LMO invariant for Lens spaces by Bar-Natan
and Lawrence [4]. Let us give the details of this proof. We will use the notation from [4]. In [4,
Proposition 5.1] it is shown that the LMO invariant of L(d, b) is given by:

ZL(d,b) = exp
(
−S(b/d)

48
Θ
) 〈Ωx,Ωx/d〉x

〈Ωx,Ωx〉x
.
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Moreover, −S(b/d) = 12λL(b,d). Now, we apply the weight system Wg. We have

Wg(Θ)(~) = cg~,

Wg(〈Ωx,Ωx〉x)(~) =
∏

α∈Φ+

sinh ((α, ρ)~/2)
(α, ρ)~/2

and

Wg(〈Ωx,Ωx/d〉x)(~) = Wg(〈Ωx,Ωx〉x)(~/d).

The result follows. �

6.1 Some special functions

Let us introduce some auxiliary functions which have already appeared in the LMO invariant of
the Lens spaces and which are important ingredients of the proof of Theorem 1.4. Consider the
functions f and f̃ defined by

f̃(x) :=
sinh(x/2)

x/2
, and f(x) := log f̃(x).

It is known that

f(x) =
∞∑

k=1

b2kx
2k =

x2

24
− x4

2880
+

x6

181440
+ · · · ,

where b2k’s are the modified Bernoulli numbers and are related to the ordinary Bernoulli num-
bers Bk as follows:

b2k =
B2k

2k(2k)!
.

The first polylogarithm is given by

Li1(x) = − log(1− x). (6.2)

The relation between f(x) and Li1 is the following

f(x) = −Li1(ex)− x

2
− log(−x). (6.3)

The left hand side is an analytic function in the unit disk |x| < 1 with an analytic continuation
as a multivalued analytic function in C \ 2πi(Z \ {0}). The right hand side is well-defined in the
unit disk minus [0, 1), and extends as a continuous function over the cut [0, 1). Then, both sides
agree on the unit disk |x| < 1. Equation (6.3) follows from the following easy computation

f(x) = log

(
ex/2 − e−x/2

x

)
= log

(
e−x/2

−x
(1− ex)

)
and equation (6.2).

From the power series definition of the polylogarithm, it is easy to see that for all α ∈ R we
have

d

dx
Liα(ex) = Liα−1(ex). (6.4)

Moreover, when α is a negative integer, then

Liα(x) =
Pα(x)

(1− x)−α+1
, (6.5)

where Pα(x) ∈ Z[x] is a palindromic polynomial of degree −α. It follows that for α a negative
integer, the function Liα(eτ ) is an even meromorphic function on C with poles at Z(1), where
the latter set is defined in (1.13).
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6.2 Proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4. Let us observe that the glN and the
slN weight system agree on all nonempty trivalent graphs (since the structure constants of an
Abelian Lie algebra vanish, and are placed at the trivalent vertices of a trivalent graph), and
that the logarithm of the LMO invariant of a closed 3-manifold is a series of nonempty connected
trivalent graphs. Therefore, to compute the free energy, we can work with the slN weight system.
Recall that the set Φ+ of positive roots of slN has N(N − 1)/2 elements. From Proposition 6.1
one has

(WslN ◦ ZL(d,b))(~) = e
λL(d,b)

12
cslN

~
∏

α∈Φ+

f̃((α, ρ)~/d)
f̃((α, ρ)~)

.

Taking the logarithm, we get

FM (τ, ~) = ~
λL(d,b)

12
cslN +

∑
α∈Φ+

(f((α, ρ)~/d)− f((α, ρ)~)) .

Note that

~
λL(d,b)

4
cslN =

λL(d,b)

2
~(N3 −N) =

λL(d,b)

2

(
τ3

~2
− τ

)
.

When α runs through the set Φ+, (α, ρ) takes the value j the total of N − j times, for every
j = 1, . . . , N − 1. Hence

FM (τ, ~) = ~
λL(d,b)

12
cg +

N−1∑
j=1

((N − j)f(j~/d)− (N − j)f(j~)) . (6.6)

Now we have

N−1∑
j=1

(N − j)f(j~) =
N−1∑
j=1

(N − j)
∞∑

k=1

b2kj
2k~2k =

∞∑
k=1

b2k~2k
N−1∑
j=1

(N − j) j2k

Using the well-known identity expressing the sum of powers by a Bernoulli polynomial

N−1∑
j=1

jk =
1

k + 1

k∑
s=0

(
k + 1

s

)
BsN

k+1−s,

it follows that

N−1∑
j=1

(N − j) j2k =
k∑

g=0

(2k)! (1− 2g)
(2g)!(2k + 2− 2g)!

B2gN
2k+2−2g.

Therefore, using N = τ/~, we get

N−1∑
j=1

(N − j)f(j~) =
∞∑

k=1

b2k~2k


k∑

g=0

(2k)! (1− 2g)
(2g)!(2k + 2− 2g)!

B2gN
2k+2−2g


=

∞∑
g=0

(1− 2g) B2g~2−2g

(2g)!

∞∑
k=max{g,1}

(2k)!
(2k + 2− 2g)!

b2kτ
2k+2−2g



14 S. Garoufalidis, T.T.Q. Lê and M. Mariño

=
∞∑

g=0

(1− 2g) B2g~2−2g

(2g)!

∞∑
l=0

(2l + 2g)!
(2l + 2)!

b2g+2lτ
2l+2 (6.7)

with a minor variation when g = 0. Let us define the auxiliary functions Fg by

Fg(τ) :=
∞∑
l=0

(2l + 2g)!
(2l + 2)!

b2g+2lτ
2l+2. (6.8)

Then, equations (6.6), (6.7) and (6.8) and the replacement of (~, τ) by (~/d, τ/d) imply that

FM,g(τ) = (1− 2g)
B2g

(2g)!
(
d2−2gFg(τ/d)− Fg(τ)

)
+

λL(d,b)

2
(τ3δg,0 − τδg,1). (6.9)

We claim that the functions Fg are given by

Fg(τ) = −Li3−2g(eτ ) +


−τ2

2
log(−τ)− τ3

12
+

3τ2

4
− π2τ

6
+ ζ(3) if g = 0,

−τ

2
− log(−τ) if g = 1,

(2g − 3)!τ2−2g − B2g−2

2g − 2
if g ≥ 2.

(6.10)

Theorem 1.4 follows easily from equations (6.9) and (6.10).
It remains to prove (6.10). Equation (6.8) and (6.3) implies that for g = 1 we have

F1(τ) = f(τ) = −Li1(eτ )− τ

2
− log(−τ). (6.11)

From equation (6.8), it is easy to see that for g ≥ 1 we have

Fg(τ) = ∂2g−2
τ F1(τ)− (2g − 2)! b2g−2. (6.12)

Since for all α ∈ R we have

∂τLiα(eτ ) = Liα−1(eτ ).

Equations (6.11) and (6.12) imply that for g ≥ 2 we have:

Fg(τ) = −Li3−2g(eτ ) + (2g − 3)!τ2−2g − B2g−2

2g − 2
, (6.13)

where we have used the fact that (2g − 2)!b2g = B2g/(2g − 2).
When g = 0, equation (6.8) implies that

F0(τ) = ∂−2
τ f(τ)

up to a linear function of τ , where ∂−1
τ denotes integration with respect to τ . Integrating (6.13)

twice using (6.4), and matching the first three coefficients of the Taylor series of both sides at
τ = 0 implies (6.10) for g = 0. This concludes the proof of Theorem 1.4.

An alternative proof of equation (6.10) follows from Gopakumar–Vafa [31, Appendix]. See
also [45, 46].

Yet another proof of equation (6.10) follows from [13, Proposition 1]. �

Remark 6.1. The reader may compare Theorem 1.4 with the BPS formulation of [31] and [46].
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7 Future directions

7.1 Analyticity of the free energy of a matrix model

The notion of free energy exists for U(N) gauge theories where N is arbitrary. Toy models of
those theories are the so-called matrix models studied by the French school [12, 10]. In a future
publication [26], we will study the analytic properties of the free energy of a matrix/multi-
matrix model with arbitrary potential. On the other hand, it was shown in [25] that given
a closed 3-manifold M presented by surgery on a framed link L in S3, there exists a multi-trace
potential VL whose free energy coincides with the free energy of M . This observation gives
geometric examples of different potentials with equal free energies. Combined with the future
work of [26], this may give another proof of our main Theorem 1.1.

7.2 Analytic continuation of the free energy in the complex plane

This section is motivated by the questions that were raised in [23]. Fix a closed 3-manifold M ,
and let ρM,g denote the radius of convergence of the power series FM,g(τ) at τ = 0. Theorem 1.1
implies that inf{ρM,g | g ≥ 0} > 0.

Question 7.1. Fix a closed 3-manifold M . Is it true that the radius of convergence of FM,g(τ)
at τ = 0 is independent of g? Do the power series FM,g(τ) admit analytic continuation as
multivalued analytic functions in the complex plane minus a set of singularities, independent
of g?

Notice that if we replace the closed 3-manifold M by a knot K, and consider its free energy
from the loop expansion of K, then the answer to this question is positive. This was discussed
in Section 1.2. In that case, FK,n(τ) are rational functions of eτ and have analytic continuation
in the complex plane minus the logarithms of the roots of the Alexander polynomial of K.

Question 7.2. Can you compute the free energy (or even its planar limit) for any closed hy-
perbolic manifold?

7.3 The double scaling limit

In the physics literature, it is customary to expect that Fg(τ) has an expansion around a g-
independent singularity τ0 as follows:

Fg(τ) = (τ − τ0)γg+δcg(2g)! + O((τ − τ0)γg+1).

In that case, one considers the single-variable power series

f(x) =
∞∑

g=0

cg(2g)!xg,

which is called the double scaling limit of F . In the case of matrix models, 2-dimensional gravity
and random matrices, it turns out that f(x) satisfies non-linear differential equations which
are a specialization of the KP hierarchy. For a lengthy discussion, see [16], [55, Section 4] and
references therein.

Question 7.3. Does the double scaling limit of the free energy of a closed 3-manifold satisfy
a specialization of the KP hierarchy?
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7.4 The O(N) and Sp(N) theories

In the present paper, we defined the free energy of a closed 3-manifold using the U(N) gauge
theory. We could have used the O(N) or the Sp(N) gauge theory. In that case, the weight
systems WoN and WspN

lead to trivalent graphs that embed to unoriented surfaces, see [2].
Theorem 1.1 holds in that case, assuming an asymptotic formula for the number of rooted
unoriented maps; see Remark 4.1. A precise asymptotic expansion for the constants pg of
Remark 4.1 will be discussed in a separate publication [27].

A Asymptotics of tg and Painlevé I

In this Appendix we show that the recursion relation for tg found in [7] is closely related to
an asymptotic, formal solution to the Painlevé I differential equation. This makes possible to
refine the asymptotic behavior obtained in [7].

We first recall some results from [7]. The asymptotics of tg is obtained from the asymptotics
of two auxiliary sequences. The first one is fg, which is defined by the recursion

fg =
√

6
96

(5g − 4)(5g − 6)fg−1 + 6
√

6
g−1∑
h=1

fhfg−h, (A.1)

and the initial condition

f0 = −
√

6
72

. (A.2)

The sequence tg is related to fg by

fg = 24−3/26g/2Γ
(

5g − 1
2

)
tg. (A.3)

Moreover, [7] introduces another sequence ug, defined by

ug = fg

(
25
√

6
96

)−g
6
√

6
[1/5]g[4/5]g−1

. (A.4)

Using (A.1), it is shown that ug approaches a constant K as g → ∞, and this leads to the
main result of [7] concerning the asymptotics of tg. The constant K is in principle only known
numerically.

To start our analysis, we define yet another sequence ag by the relation

fg = f0C
gag, C =

√
6

2
, (A.5)

so that the recursion (A.1) becomes

ag =
25(g − 1)2 − 1

48
ag−1 −

1
2

g−1∑
`=1

a`ag−`, a0 = 1. (A.6)

We now consider the formal power series

φ0(z) = z
1
2

∞∑
g=0

ag z−5g/2. (A.7)
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It is then easy to see that the recursion (A.6) implies that φ0(z) satisfies the following differential
equation

f2 − 1
6
f ′′ = z, (A.8)

which is the well-known Painlevé I equation. Therefore, the differential equation presented at
the end of [7] is Painlevé I in disguise.

We can now use properties of Painlevé I to give a precise description of the asymptotics
of ag, and in turn of fg and tg. This follows from the general results of [15] together with the
computations of [18] for Painlevé I; see also [38, Section 3]. We will then content ourselves with
a statement of the asymptotic behavior of ag and a sketch of the main ideas.

The coefficient ag has the following asymptotic behavior as g →∞:

ag ∼
A−2g+ 1

2

π
Γ
(

2g − 1
2

)
S

{
1 +

∞∑
l=1

µlA
l∏l

k=1(2g − 1/2− k)

}
. (A.9)

In this expression,

A =
8
√

3
5

, S = − 3
1
4

2
√

π
, (A.10)

and the µl are defined by the recursion relation

µl =
5

16
√

3l

{
192
25

l−1∑
k=0

µka(l−k+1)/2 −
(

l − 9
10

)(
l − 1

10

)
µl−1

}
, µ0 = 1. (A.11)

It is understood here that an/2 = 0 if n is not an even integer, otherwise the coefficient an/2 is
given by the recursion (A.6). The quantities S and µl have a very clear interpretation in terms
of the differential equation (A.8). It is known (see for example [18]) that the Painlevé I equation
exhibits a non-linear version of the Stokes phenomenon across the line Arg z = 0. S turns out
to be the corresponding Stokes parameter. The exact value of S was first obtained in [37] using
the Riemann–Hilbert approach, further justified by [19]. A calculation of the Stokes parameter
using a Borel summation approach and WKB was given by [53]. The coefficients µl arise as
follows. The Painlevé I equation admits a so-called formal trans-series solution of the form

φ(z) = φ0(z) + z
1
2

∞∑
`=1

ξ`φ`(z), ξ = Cz−5/8e−Az5/4
, (A.12)

where φ0(z) is the formal power series (A.7), C is a constant and φ`(z) are formal power series
of the form

φ`(z) =
∞∑

k=0

φ`,kz
−5k/4. (A.13)

normalized by φ1(0) = 1. The Painlevé I equation gives a series of recursion relations for the
coefficients φ`,k in terms of an and φ`′,k′ with `′ < `. The coefficients of the first series in the
trans-series, φ1,k, satisfy precisely the recursion (A.11), therefore µl = φ1,l. One finds, for the
very first terms,

φ1(z) = 1− 5
64
√

3
z−

5
4 +

75
8192

z−
5
2 − 341329

23592960
√

3
z−

15
4 + · · · . (A.14)



18 S. Garoufalidis, T.T.Q. Lê and M. Mariño

The fact that the value of the Stokes parameter S together with the coefficients of the first
trans-series correction φ1(z) lead to an asymptotic behavior of the form (A.9) has been known
for a long time in the physics literature on large-order behavior in perturbation theory; see for
example [44]. A rigorous proof for the case of Painlevé I was given in [38, Section 3]. For a
general approach to this problem for a class of generic non-linear ODEs, see [15]. Using these
results we can now revisit the asymptotics of the sequences ug and tg. One finds indeed that

ug → K, (A.15)

as g → ∞. The constant K can now be determined exactly from the asymptotics of ag. Its
value is,

K =

√
3
5

Γ(1/5)Γ(4/5)
4π2

= 0.10486898772254091800 . . . . (A.16)

In fact, the numerical approximation to the value of K presented in [7] is not very precise, and
can be substantially improved by using standard techniques like Richardson transforms. Of
course, the results above give all the subleading corrections to the asymptotics of ug (and tg) in
powers of 1/g.

Let us use the Painlevé equation to answer a question posed by [7] concerning the sequence tg.
The question asks whether the sequence (tg) is holonomic, i.e., satisfies a linear recursion in g
with coefficients polynomials in g. It is easy to show that if tg is holonomic, then the generating
series φ0(z) satisfies a linear ODE with coefficients polynomials in z. It follows that φ0(z) (or
more precisely, its Borel transform in a suitable ray) has analytic continuation as a multivalued
analytic function in C minus a finite set of singularities. On the other hand, it is known that
any (truncated) solution of Painlevé I is meromorphic (see for example [11, 36]), with infinitely
many singularities that are asymptotic to one of the rays arg(z) = 2πk/5 for k = 1, . . . , 5 (see
for example, [11, 19]).

Corollary A.1. The sequence (tg) is not holonomic.

We end this Appendix by pointing out some connections between the results of [7, 32] and
the physics literature on matrix models and two-dimensional gravity. It has been known since
the pioneering work of [12, 10] that matrix models are a useful tool to count maps of genus g and
with n vertices. The resulting generating functions at fixed genus g are all analytic functions in
the vertex-counting parameter, and they have a finite radius of convergence which is common to
all of them. The sequence fg in [7] is given indeed by the coefficients of the leading singularities
for one of these generating functions. It is known however from the physics literature on the
so-called “double scaling limit” that these coefficients are governed by the Painlevé I equation
(see [16]), and in fact, as we have seen, this is the differential equation governing the sequence fg.
A study of the asymptotics of various generating functions appearing in matrix models, including
the Painlevé I equation, can be found in [47].
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