|  | SIGMA 4 (2008), 054, 12 pages      arXiv:0807.1966     
doi:10.3842/SIGMA.2008.054 Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics
Dieter Schuch a  and Marcos Moshinsky b
a) Institut für
Theoretische Physik, Goethe-Universität Frankfurt am Main,
Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
 b) Instituto de Física, Universidad Nacional Autónoma de
  México, Apartado Postal  20-364, 01000 México D.F., México
 Received February 06, 2008, in final form June 08,
2008; Published online July 14, 2008 Abstract
For classical canonical
transformations, one can, using the Wigner transformation, pass
from their representation in Hilbert space to a kernel in phase
space. In this paper it will be discussed how the time-dependence of the
uncertainties of the corresponding time-dependent quantum problems can
be incorporated into this formalism.
 Key words:
canonical transformations; Wigner function; time-dependent quantum
  mechanics; quantum uncertainties. 
pdf (232 kb)  
ps (157 kb)  
tex (17 kb)
 
 References
 
Moshinsky M., Smirnov Y.F., The harmonic oscillator in modern
physics, Harwood Academic Publishers, Amsterdam, 1996.Osborne T.A., Molzahn F.H., Moyal quantum mechanics: the
  semiclassical Heisenberg dynamics,  Ann. Physics 241 (1995), 79-127.Dias N.C., Prata J.N., Features of Moyal trajectories, 
    J. Math. Phys. 48 (2007), 012109, 23 pages.Krivoruchenko M.I., Fuchs C., Faessler A., Semiclassical
  expansion of quantum characteristics for many-body potential scattering
  problem, Ann. Phys. (8) 16 (2007), 587-614, nucl-th/0605015.Krivoruchenko M.I., Faessler A., Weyl's symbols of
  Heisenberg operators of canonical coordinates and momenta as quantum
  characteristics, J. Math. Phys. 48 (2007), 052107, 22 pages, quant-ph/0604075.Schuch D., Moshinsky M., Transition from quantum to classical
  behavior for some simple model systems, Rev. Mex. Fis. 51
  (2005), 516-524.García-Calderón G., Moshinsky M., Wigner distribution
  function and the representation of canonical transformations in quantum
  mechanics, J. Phys. A: Math. Gen. 13 (1990), L185-L188.Moshinsky M., Quesne C., Linear canonical transformations and
  their unitary representations, J. Math. Phys. 12 (1971), 1772-1780.Mello P.A., Moshinsky M., Nonlinear canonical transformations
  and their representations in quantum mechanics, J. Math. Phys. 16 (1975), 2017-2028. Wigner E.P., On the quantum correction for thermodynamic
  equilibrium, Phys. Rev. 40 (1932), 749-759.Schuch D., Moshinsky M., Connection between quantum-mechanical
  and classical time-evolution via a dynamical invariant, Phys. Rev. A
  73 (2006), 062111, 10 pages.Feynman R.P., Hibbs A.R., Quantum mechanics and path
    integrals, McGraw-Hill, New York, 1965.Schuch D., On the complex relations between equations describing
  the dynamics of wave and particle aspects, Internat. J. Quantum Chem. 42 (1992), 663-683.Ermakov V.P., Second-order differential equations, conditions of
  complete integrability, Univ. Izv. Kiev 20 (1880), no. 9, 1-25.Lewis H.R., Classical and quantum systems with time-dependent
harmonic-oscillator-type Hamiltonians, Phys. Rev. Lett. 18 (1967), 510-512.Schuch D., On the relation between the Wigner function and an
  exact dynamical invariant, Phys. Lett. A 338 (2005), 225-231.Kim Y.S., Wigner E.P., Canonical transformation in quantum
  mechanics, Am. J. Phys. 58 (1990), 439-448.Kim Y.S., Noz M.E., Phase space picture of quantum mechanics;
  group theoretical approach, Lecture Notes in Physics, Vol. 40, World
    Scientific, Singapore, Chapter 3.3, 1991.O'Connell R.F., The Wigner distribution function - 50th birthday,
  Found. Phys. 13 (1983), 83-92.Schuch D., Riccati and Ermakov equations in time-dependent and
  time-independent quantum systems, SIGMA 4 (2008), 043, 16 pages, arXiv:0805.1687.Dias N.C., Classicality criteria, J. Math. Phys. 43
  (2002), 5882-5901, quant-ph/9912034.Dodonov V.V., Universal integrals of motion and universal
  invariants of quantum systems, J. Phys. A: Math. Gen. 33 (2000), 7721-7738.Atakishiyev N.M., Chumakov S.M., Rivera A.L., Wolf K.B., On
  the phase space description of quantum nonlinear dynamics, 
    Phys. Lett. A 215 (1996), 128-134.Rivera A.L., Atakishiyev N.M., Chumakov S.M., Wolf K.B.,
  Evolution under polynomial Hamiltonians in quantum and optical phase space,
  Phys. Rev. A 55 (1997), 876-889.Sarlet W., Class of Hamiltonians with one degree-of-freedom allowing
applications of Kruskal's asymptotic theory in closed form. II, Ann. Physics 92 (1975), 248-261. |  |