| 
 SIGMA 4 (2008), 010, 23 pages      arXiv:0711.0041     
doi:10.3842/SIGMA.2008.010 
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics 
Global Attraction to Solitary Waves in Models Based on the Klein-Gordon Equation
Alexander I. Komech a, c  and Andrew A. Komech b, c
 a) Faculty of Mathematics, University of Vienna, Wien A-1090, Austria
 b) Mathematics Department, Texas A&M University, College Station, TX 77843, USA
 c) Institute for Information Transmission Problems, B. Karetny 19, Moscow 101447, Russia
 
 
Received November 01, 2007, in final form January
22, 2008; Published online January 31, 2008
 
Abstract
 
We review recent results
on global attractors of U(1)-invariant
dispersive Hamiltonian systems.
We study several models
based on the Klein-Gordon equation
and sketch the proof that in these models,
under certain generic assumptions,
the weak global attractor is represented
by the set of all solitary waves.
In general,
the attractors may also contain multifrequency solitary waves;
we give examples of systems
which contain such solutions.
  
 Key words:
global attractors; solitary waves;
solitary asymptotics;
nonlinear Klein-Gordon equation; dispersive Hamiltonian systems;
unitary invariance. 
pdf (449 kb)  
ps (319 kb)  
tex (171 kb)
 
 
References
 
- Babin A.V., Vishik M.I., Attractors of evolution equations,  of
Studies in Mathematics and its Applications, Vol. 25, North-Holland Publishing
  Co., Amsterdam, 1992 (translated and revised from the 1989 Russian original
  by Babin).
 
- Berestycki H., Lions P.-L., Nonlinear scalar field equations.
I. Existence of a ground state, Arch. Ration. Mech. Anal. 82
  (1983), 313-345.
 
- Berestycki H., Lions P.-L., Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal.
  82 (1983), 347-375.
 
- Bohr N., On the constitution of atoms and molecules, Phil. Mag. 
  26 (1913), 1-25.
 
- Brezis H., Lieb E.H., Minimum action solutions of some vector field
  equations, Comm. Math. Phys. 96 (1984), 97-113.
 
- Broglie L.D., Recherches sur la théorie des Quanta, Thèses, Paris, 1924.
 
- Buslaev V.S., Perel'man G.S., Scattering for the nonlinear
  Schrödinger equation: states that are close to a soliton, St.
  Petersburg Math. J. 4 (1993), 1111-1142.
 
- Buslaev V.S., Perel'man G.S., On the stability of solitary waves
  for nonlinear Schrödinger equations, in Nonlinear Evolution Equations,
Amer. Math. Soc. Transl. Ser. 2, Vol. 164, Amer. Math.
  Soc., Providence, RI, 1995, 75-98.
 
- Buslaev V.S., Sulem C., On asymptotic stability of solitary waves for
  nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non
  Linéaire 20 (2003), 419-475.
 
- Cazenave T., Vázquez L., Existence of localized solutions for a
  classical nonlinear Dirac field, Comm. Math. Phys. 105
  (1986), 35-47.
 
- Comech A.A., Numerical simulations of the Klein-Gordon field with
  nonlinear interaction  (2007), scripts for GNU Octave, http://www.math.tamu.edu/~comech/tools/kg-string.
 
- Cuccagna S., Asymptotic stability of the ground states of the nonlinear
  Schrödinger equation, Rend. Istit. Mat. Univ. Trieste 32
  (2001), 105-118.
 
- Cuccagna S., Stabilization of solutions to nonlinear Schrödinger
  equations, Comm. Pure Appl. Math. 54 (2001), 1110-1145.
 
- Cuccagna S., On asymptotic stability of ground states of NLS, Rev.
  Math. Phys. 15 (2003), 877-903.
 
- Derrick G.H., Comments on nonlinear wave equations as models for elementary
  particles, J. Math. Phys. 5 (1964), 1252-1254.
 
- Esteban M.J., Georgiev V., Séré E., Stationary solutions of the
  Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var.
  Partial Differential Equations 4 (1996), 265-281.
 
- Esteban M.J., Séré É., Stationary states of the nonlinear
  Dirac equation: a variational approach, Comm. Math. Phys. 171
  (1995), 323-350.
 
- Gell-Mann M., Ne'eman Y., The eightfold way, W.A. Benjamin, Inc., New
  York, NY, 1964.
 
- Ginibre J., Velo G., Time decay of finite energy solutions of the
  nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H.
  Poincaré Phys. Théor. 43 (1985), 399-442.
 
- Glassey R.T., Strauss W.A., Decay of a Yang-Mills field coupled to a
  scalar field, Comm. Math. Phys. 67 (1979), 51-67.
 
- Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves
  in the presence of symmetry. I, J. Funct. Anal. 74 (1987),
  160-197.
 
- Guo Y., Nakamitsu K., Strauss W., Global finite-energy solutions of the
  Maxwell-Schrödinger system, Comm. Math. Phys. 170 (1995),
  181-196.
 
- Henry D., Geometric theory of semilinear parabolic equations, Springer, 1981.
 
- Hörmander L., The analysis of linear partial differential operators. I, 2nd ed.,
  Springer Study Edition, Springer-Verlag, Berlin, 1990.
 
- Hörmander L., On the fully nonlinear Cauchy problem with small data. II, in Microlocal Analysis and Nonlinear Waves (Minneapolis, MN,
  1988-1989), IMA Vol. Math. Appl.,  Vol. 30, Springer,
  New York, 1991, 51-81.
 
- Jörgens K., Das Anfangswertproblem im Grossen für eine Klasse
  nichtlinearer Wellengleichungen, Math. Z. 77 (1961),
  295-308.
 
- Klainerman S., Long-time behavior of solutions to nonlinear evolution
  equations, Arch. Ration. Mech. Anal. 78 (1982), 73-98.
 
- Komech A., On transitions to stationary states in one-dimensional nonlinear
  wave equations, Arch. Ration. Mech. Anal. 149 (1999), 213-228.
 
- Komech A., Spohn H., Long-time asymptotics for the coupled
  Maxwell-Lorentz equations, Comm. Partial Differential Equations
  25 (2000), 559-584.
 
- Komech A., Spohn H., Kunze M., Long-time asymptotics for a classical
  particle interacting with a scalar wave field, Comm. Partial
  Differential Equations 22 (1997), 307-335.
 
- Komech A., Vainberg B., On asymptotic stability of stationary solutions to
  nonlinear wave and Klein-Gordon equations, Arch. Ration. Mech.
  Anal. 134 (1996), 227-248.
 
- Komech A.I., Stabilization of the interaction of a string with a nonlinear
  oscillator, Mosc. Univ. Math. Bull. 46 (1991), 34-39.
 
- Komech A.I., On stabilization of string-nonlinear oscillator interaction,
  J. Math. Anal. Appl. 196 (1995), 384-409.
 
- Komech A.I., On attractor of a singular nonlinear U(1)-invariant
  Klein-Gordon equation, in Progress in analysis, Vol. I, II (2001, Berlin), World Sci. Publishing, River Edge, NJ, 2003, 599-611.
 
- Komech A.I., Komech A.A., Global attractor for a nonlinear oscillator
  coupled to the Klein-Gordon field, Arch. Ration. Mech. Anal. 
  185 (2007), 105-142, math.AP/0609013.
 
- Komech A.I., Komech A.A., On global attraction to quantum stationary
  states II. Several nonlinear oscillators coupled to massive scalar field,
  MPI Preprint Series 17/2007 (2007), available at http://www.mis.mpg.de/preprints/2007/prepr2007_17.html.
 
- Komech A.I., Komech A.A., On global attraction to quantum stationary
  states III. Klein-Gordon equation with mean field interaction, MPI
  Preprint Series 66/2007 (2007), available at http://www.mis.mpg.de/preprints/2007/prepr2007_66.html.
 
- Levin B.Y., Lectures on entire functions, Translations of
  Mathematical Monographs, Vol. 150, American Mathematical Society, Providence, RI,
  1996 (in collaboration with and with a preface by Yu. Lyubarskii, M. Sodin
  and V. Tkachenko, translated from the Russian manuscript by Tkachenko).
 
- Morawetz C.S., Strauss W.A., Decay and scattering of solutions of a
  nonlinear relativistic wave equation, Comm. Pure Appl. Math. 25
  (1972), 1-31.
 
- Pillet C.-A., Wayne C.E., Invariant manifolds for a class of dispersive,
  Hamiltonian, partial differential equations, J. Differential
  Equations 141 (1997), 310-326.
 
- Schiff L.I., Nonlinear meson theory of nuclear forces. I. Neutral scalar
  mesons with point-contact repulsion, Phys. Rev. 84 (1951),
  1-9.
 
- Schiff L.I., Nonlinear meson theory of nuclear forces. II. Nonlinearity
  in the meson-nucleon coupling, Phys. Rev. 84 (1951), 10-11.
 
- Schrödinger E., Quantisierung als eigenwertproblem, Ann. Phys.
  81 (1926), 109-139.
 
- Segal I.E., The global Cauchy problem for a relativistic scalar field with
  power interaction, Bull. Soc. Math. France 91 (1963), 129-135.
 
- Segal I.E., Non-linear semi-groups, Ann. of Math. (2) 78
  (1963), 339-364.
 
- Segal I.E., Quantization and dispersion for nonlinear relativistic equations,
  in Proc. Conf. "Mathematical Theory of Elementary Particles" (1965, Dedham, Mass.), M.I.T. Press, Cambridge, Mass., 1966, 79-108.
 
- Shatah J., Stable standing waves of nonlinear Klein-Gordon equations, 
  Comm. Math. Phys. 91 (1983), 313-327.
 
- Shatah J., Unstable ground state of nonlinear Klein-Gordon equations, 
  Trans. Amer. Math. Soc. 290 (1985), 701-710.
 
- Shatah J., Strauss W., Instability of nonlinear bound states, Comm.
  Math. Phys. 100 (1985), 173-190.
 
- Soffer A., Weinstein M.I., Multichannel nonlinear scattering for
  nonintegrable equations, Comm. Math. Phys. 133 (1990),
  119-146.
 
- Soffer A., Weinstein M.I., Multichannel nonlinear scattering for
  nonintegrable equations. II. The case of anisotropic potentials and data,
  J. Differential Equations 98 (1992), 376-390.
 
- Soffer A., Weinstein M.I., Resonances, radiation damping and instability
  in Hamiltonian nonlinear wave equations, Invent. Math. 136
  (1999), 9-74, chao-dyn/9807003.
 
- Strauss W.A., Decay and asymptotics for u = f(u), J.
  Funct. Anal. 2 (1968), 409-457.
 
- Strauss W.A., Existence of solitary waves in higher dimensions, Comm.
  Math. Phys. 55 (1977), 149-162.
 
- Tao T., A (concentration-)compact attractor for high-dimensional non-linear
  Schrödinger equations, Dyn. Partial Differ. Equ. 4 (2007),
  1-53, math.AP/0611402.
 
- Temam R., Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed.,
Applied Mathematical Sciences,  Vol. 68, Springer-Verlag, New York,
  1997.
 
- Titchmarsh E., The zeros of certain integral functions, Proc.
  London Math. Soc. 25 (1926), 283-302.
 
- Vakhitov M.G., Kolokolov A.A., Stationary solutions of the wave equation
  in the medium with nonlinearity saturation, Radiophys. Quantum
  Electron. 16 (1973), 783-789.
 
 
 | 
 |