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Abstract. We characterize the subclass of quasianti-Hermitian quaternionic Hamiltonian
dynamics such that their complex projections are one-parameter semigroup dynamics in the
space of complex quasi-Hermitian density matrices. As an example, the complex projection
of a spin- 1

2 system in a constant quasianti-Hermitian quaternionic potential is considered.
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1 Introduction

Many years ago, it was shown, by using some lattice theoretic arguments, that it is possible
to consider the set of states of a quantum system as a vector space over the real, complex
or quaternionic fields [1]. However, the research on quaternionic quantum mechanics (QQM)
began much later [2] and pursued up to now. A systematic study of QQM is given in [3]. In
this context, some recent studies have been developed along two seemingly uncorrelated lines.

On one hand, after a seminal idea by Kossakowski [4], the complex projection of dyna-
mics generated by (time independent) quaternionic anti-Hermitian Hamiltonians was studied
by showing that they represent one-parameter semigroup dynamics in the space of complex
(Hermitian) density matrices [5, 6, 7, 8]. This peculiarity can be useful, for instance, in the
case of two qubits compound system, the complex projection of quaternionic unitary dynamics
between pure states permits description of interesting phenomena as decoherence and optimal
entanglement generation [8].

On the other hand, motivated by the recent studies on non-Hermitian Hamiltonians [9],
pseudoanti-Hermitian quaternionic Hamiltonians were introduced in order to generalize stan-
dard anti-Hermitian Hamiltonians in quaternionic Hilbert space [10]. The dynamics generated
by such (time independent) Hamiltonians preserves an alternative (in general) indefinite inner
product in the Hilbert space. In this context, it was proven that if (and only if) the pseudoanti-
Hermitian quaternionic Hamiltonians belong to the subclass of quasianti-Hermitian ones, then,
an alternative positive definite quaternionic inner product preserved by the corresponding dy-
namics can be introduced [11].

Moreover, it was shown that the complex quasi-Hermitian systems can be described as open
quantum systems. Indeed, a master equation of Lindblad–Kossakowski type can be derived
for such systems, obtaining one-parameter semigroup dynamics in the space of complex quasi-
Hermitian density matrices [12].
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Motivated by these three apparently separated topics, we intend to study, in this paper,
the complex projection of quasianti-Hermitian quaternionic Hamiltonian dynamics. We will
show that if (and only if) the Hamiltonian is η-quasianti-Hermitian with respect a (Hermitian
positive definite) complex η, then the corresponding complex projection dynamics generates one-
parameter semigroup dynamics in the space of complex quasi-Hermitian density matrices. This
result, allows us to produce systematically, via the complex projection operation, one-parameter
semigroup dynamics in the space of complex quasi-Hermitian density matrices. Moreover, we
will obtain the complex projection of quaternionic anti-Hermitian Hamiltonian dynamics as
a very particular case of this more general setting.

The plan of the paper is the following: In Section 2 we will introduce the density matrix
formalism for quaternionic spaces and discuss the complex projection of anti-Hermitian quater-
nionic Hamiltonian dynamics. In Section 3 the notion of quaternionic pseudo-Hermitian density
matrix is introduced and a corresponding Liouville-von Neumann type equation is derived.
Moreover, the complex projection of quasianti-Hermitian quaternionic dynamics is considered
in Section 4, where the subclass of quasianti-Hermitian quaternionic Hamiltonian dynamics such
that their complex projections are one-parameter semigroup dynamics in the space of complex
quasi-Hermitian density matrices is characterized. In order to illustrate these results, the com-
plex projection of a spin-1

2 system in a constant quasianti-Hermitian quaternionic potential is
studied in the last section.

2 Complex projection of anti-Hermitian quaternionic
Hamiltonian dynamics

We will discuss, in this section, some results about the complex projection of anti-Hermitian
quaternionic Hamiltonian dynamics.

A (real) quaternion is usually expressed as

q = q0 + q1i+ q2j + q3k,

where ql ∈ R (l = 0, 1, 2, 3), i2 = j2 = k2 = −1, ij = −ji = k.
The quaternion skew-field Q is an algebra of rank 4 over R, non commutative and endowed

with an involutive anti-automorphism (conjugation) such that

q → q̄ = q0 − q1i− q2j − q3k.

The density matrix ρψ associated with a pure state |ψ〉 belonging to a quaternionic n-di-
mensional right Hilbert space Qn is defined by [3]

ρψ = |ψ〉〈ψ|

and is the same for all normalized ray representatives. By definition, density matrices ρψ
associated with pure states, are represented by rank one, positive definite quaternionic Hermi-
tian operators on Qn with unit trace. In analogy with standard quantum mechanics (CQM),
quaternionic mixed states are described by positive quaternionic Hermitian operators (density
matrices) ρ on Qn with unit trace and rank greater than one.

The expectation value of a quaternionic Hermitian operator O on a state |ψ〉 can be expressed
in terms of ρψ as [3]

〈O〉ψ = 〈ψ|O|ψ〉 = Re Tr(O|ψ〉〈ψ|) = Re Tr(Oρψ).
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Expanding O = Oα+jOβ and ρ = ρα+jρβ in terms of complex matrices Oα, Oβ , ρα and ρβ,
it follows that the expectation value 〈O〉ψ may depend on Oβ or ρβ only if both Oβ and ρβ are
different from zero. Indeed,

〈O〉 = Re Tr(Oρ) = Re Tr(Oαρα −O∗
βρβ),

where ∗ denotes complex conjugation.
Thus, the expectation value of an Hermitian operator O on the state ρ depends on the

quaternionic parts of O and ρ, only if both the observable and the state are represented by
genuine quaternionic matrices.

However, if an observable Oα is described by a pure complex Hermitian matrix, its expectation
value does not depend on the quaternionic part jρβ of the state ρ = ρα + jρβ.

Now, let us denote by M(Q) and M(C) the space of n×m quaternionic and complex matrices
respectively and let M = Mα + jMβ ∈M(Q). We define the complex projection

P : M(Q) →M(C)

by the relation

P [M ] = 1
2 [M − iMi] = Mα. (1)

By recalling that the complex projection of a quaternionic density matrix is a complex density
matrix [6], we can conclude that the expectation value predicted in the standard CQM for the
state ρα coincides with the one predicted in QQM for the state ρ, since

Tr(Oαρα) = Re Tr(Oαρα) = Re Tr(Oαρ).

This simple observation is actually very important in our approach, in that it enables us to merge
CQM in the (more general) framework of QQM, without modifying any theoretical prediction
(as long as complex observables are taken into account).

Moreover, when we consider quaternionic unitary dynamics,

ρ(t) = U(t)ρ(0)U †(t), (2)

where

U(t) = e−Ht = Uα + jUβ

with H = Hα + jHβ = −H†, the differential equation associated with the time evolution for ρ
reads

d

dt
ρ(t) = −[H, ρ(t)]. (3)

In addition, equations (2) and (3) reduce to

ρα(t) = Uαρα(0)U †
α + U∗

βρ
∗
α(0)UTβ + Uαρ

∗
β(0)UTβ − U∗

βρβ(0)U †
α

and

d

dt
ρα = −[Hα, ρα] +H∗

βρβ − ρ∗βHβ, (4)

respectively, for the complex projection of the density matrix [6].
It was proven that the dynamics ruled by equation (4) is a one-parameter semigroup dynamics

in the space of complex density matrices [6].
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3 Pseudo-Hermitian quaternionic density matrices
and their dynamics

In this section, we will introduce the notion of quaternionic pseudo-Hermitian density matrix
and a corresponding Liouville–von Neumann type equation will be derived.

Denoting by Q‡ the adjoint of an operator Q with respect to the pseudo-inner product

(·, ·)η = (·, η·) (5)

(where (·, ·) represent the standard quaternionic inner product in the space Qn), we have

Q‡ = η−1Q†η (6)

so that for any η-pseudo-Hermitian operator, i.e., satisfying the relation,

ηQη−1 = Q†, (7)

one has, Q = Q‡. These operators constitute the physical observables of the system [13].
If Q is η-pseudo-Hermitian, equation (7) immediately implies that ηQ is Hermitian, so that

the expectation value of Q in the state |ψ〉 with respect to the pseudo-inner product (5) can be
obtained,

〈ψ| ηQ |ψ〉 = Re Tr(|ψ〉〈ψ|ηQ) = Re Tr(ρ̃Q), (8)

where ρ̃ = |ψ〉〈ψ|η.
More generally, if ρ denotes a generic quaternionic (Hermitian, positive definite) density

matrix, we can associate it with a generalized density matrix ρ̃ by means of a one-to-one mapping
in the following way:

ρ̃ = ρη (9)

and obtain 〈Q〉η = Re Tr(ρ̃Q).
Note that ρ̃ is η-pseudo-Hermitian:

ρ̃† = ηρ = ηρ̃η−1.

As in the Hermitian case discussed in the previous section, equation (8) immediately implies
that the expectation value of an η-pseudo-Hermitian operator Q on the generalized state ρ̃
depends on the quaternionic parts of Q and ρ̃, only if both the operator and the generalized state
are represented by genuine quaternionic matrices. Hence, if a η-pseudo-Hermitian operator Q
is described by a complex matrix, its expectation value does not depend on the quaternionic
part jρ̃β of the generalized state ρ̃ = ρ̃α + jρ̃β .

It was shown that whenever the quaternionic Hamiltonian H of a quantum system is η-
pseudoanti-Hermitian, i.e.,

ηHη−1 = −H†,

where η = η†, the pseudo-inner product (5), is invariant under the time translation generated
by H [10] (we recall that on complex spaces this peculiarity holds also if the Hamiltonian is time
dependent but quasi-stationary [14]).

Let a Hermitian nonsingular quaternionic operator η be given. Then, the more general η-
pseudoanti-Hermitian quaternionic Hamiltonian H can be written in the following way:

H = Aη, (10)

where A† = −A.
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In fact, let H be given. Then, from the invertibility of η the solution of equation (10) can be
immediately computed:

A = Hη−1.

Now, from the η-pseudoanti-Hermiticity of H we get

A† = η−1H† = −η−1ηHη−1 = −Hη−1 = −A.

Let us consider now the time evolution of a pure state. Whenever the Hamiltonian H is
η-pseudoanti-Hermitian, the evolution operator V (t) = e−Ht:

|ψ(t)〉 = V (t)|ψ(0)〉 (11)

is no longer unitary, but η-unitary, i.e., it satisfies

V †ηV = η. (12)

From equations (11) and (12), by easy calculations, we obtain

|ψ(t)〉〈ψ(t)|η = V (t)|ψ(0)〉〈ψ(0)|V †(t)η = V (t)|ψ(0)〉〈ψ(0)|ηV −1(t),

or, equivalently,

ρ (t) η = ρ̃ (t) = V (t)ρ̃(0)V (t)−1, (13)

from which the conservation of the η-pseudo-norm immediately follows:

Re Trρ̃(t) = Re Tr ρ̃(0).

More generally, the time evolution of ρ(t) is described by the equation

d

dt
ρ (t) = −(Hρ− ρH†),

(} = 1), whereas the time evolution of a generalized density matrix (if η is time independent) is
described by the usual Liouville–von Neumann equation:

d

dt
ρ̃ (t) = −[H, ρ̃].

4 Complex projection of quasianti-Hermitian quaternionic
Hamiltonian dynamics

In this section, we restrict ourselves to consider the space of quasi-Hermitian density matrices,
that is the subclass of η-pseudo-Hermitian density matrices where η = B†B for some nonsingular
bounded operator B.

An important property of such generalized density matrices is that they are positive definite;
indeed, putting η = B†B into equation (9), from the positivity of ρ we immediately obtain
Bρ̃B−1 = BρB† ≥ 0 [15].

Then, in this case a new positive definite inner product can be introduced in the Hilbert
space where all the usual requirements for a proper quantum mechanical interpretation can be
maintained [11, 16, 17, 18].

In order to discuss the complex projection of η-quasi-Hermitian quaternionic density matrices,
we preliminarily recall the following two lemmas [11]:
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Lemma 1. For any Hermitian positive definite η, the (right) quaternionic Hilbert space Qn

endowed with the scalar product (·, ·)η = (·, η·) is a Hilbert space Qn
η .

As a consequence of Lemma 1 we can state that any η-quasi-Hermitian operator in Qn, is
Hermitian in Qn

η . Moreover, as a particular case of the lemma in [11], the following statement
holds:

Lemma 2. Let {ρ̃} be an irreducible set of η-quasi-Hermitian quaternionic operators on the
(right) quaternionic Hilbert space Qn

η endowed with the scalar product (·, ·)η = (·, η·). Suppose
that {ρ̃} cannot be represented in any basis by complex or real operators. Then, the commutant
of {ρ̃} is composed of the operators T = h1 (where, h ∈ R and 1 is the identity operator).

Now, we are able to prove the following proposition, which characterizes the subclass of
quaternionic η-quasi-Hermitian density matrices, ρ̃ = ρη = ρ̃α+jρ̃β, admitting η-quasi-Hermitian
complex projection density matrices ρ̃α.

Proposition 1. The complex projection ρ̃α of a η-quasi-Hermitian quaternionic matrix ρ̃ =
ρ̃α + jρ̃β is η-quasi-Hermitian if and only if the entries of η are complex.

Proof. By imposing the η-quasi-Hermiticity of the complex projection of ρ̃, from equation (1)
we get:

ηP [ρ̃]η−1 = 1
2(ρ̃† − ηiη−1ρ̃†ηiη−1) = P †[ρ̃] = P [ρ̃†] = 1

2(ρ̃† − iρ̃†i),

hence,

(η−1iηi)ρ̃ = ρ̃(η−1iηi). (14)

Now, equation (14) must hold for any quaternionic η-quasi-Hermitian density matrix ρ̃, and the
set {ρ̃} is obviously a quaternionic irreducible set of η-quasi-Hermitian matrices which cannot
be represented in any basis by real or complex operators. Then, Lemma 2 implies

iηi = hη (h ∈ R). (15)

By using the cyclic property of the real part of the trace and equation (15) we get

Re Tr(iηi) = Re Tr(i2η) = −Re Tr(η) = Re Tr(hη) = hRe Tr(η).

Now, the positivity of η implies, Re Tr(η) > 0, hence h = −1 and equation (15) becomes

ηi = iη. �

An important consequence of Proposition 1 is that, if the complex projection ρ̃α of ρ̃ is η-quasi-
Hermitian, then, ρ̃α is positive definite; indeed, ρ̃α = ραη where η = B†B, from the positivity
of ρα we immediately get Bρ̃αB−1 = BραB

† ≥ 0. Hence, from equation (8) we can conclude
that if complex η-quasi-Hermitian operators Q are taken into account, the expectation value
of Q on ρ̃ = ρ̃α + jρ̃β or on its complex projection ρ̃α are the same. This observation enables
us to merge quasi-Hermitian complex quantum mechanics in the more general framework of
quasi-Hermitian quaternionic quantum mechanics, without modifying any theoretical prediction
as long as complex observables are taken into account.

Now, we are able to discuss the complex projection of the η-quasianti-Hermitian quaternionic
Hamiltonian dynamics in the space of η-quasi-Hermitian quaternionic density matrices. Let be
given the complex positive definite operator η. Then, the most general η-quasianti-Hermitian
quaternionic Hamiltonians H reads (see equation (10))

H = Hα + jHβ = (Aα + jAβ)η, (16)
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where A†
α = −Aα and ATβ = Aβ . In other words, any H is obtained by adding to a complex

η-quasianti-Hermitian Hamiltonian Aαη a purely quaternionic η-quasianti-Hermitian potential
term jAβη.

Moreover, putting η = B†B into equation (16) we get

H ′ = BHB−1 = −(BHB−1)† = −H ′†,

i.e., if we perform in the Hilbert space Qn the linear transformation induced by B, the Hamil-
tonian H ′ is anti-Hermitian.

In particular, as said in Section 2, a standard master equation will hold for the complex
projection (see equation (4)) of the dynamics generated by H ′

d

dt
ρ′α = L[ρ′α] = −[H ′

α, ρ
′
α] +H ′∗

β ρ
′
β − ρ′∗βH

′
β , (17)

where ρ′α and ρ′β are the complex projection and the purely quaternionic terms, respectively, of
the quaternionic (Hermitian) density matrix ρ′ = ρ′α + jρ′β = BρηB−1 = BρB†.

The dynamics ruled by equation (17) is a one-parameter semigroup dynamics in the space of
complex (Hermitian) density matrices [6], and we can identify [19, 20]

L[ρ′α] = −[H ′
α, ρ

′
α] +

n2−1∑
r,s=1

Crs

(
F ′
rρ

′
αF

′†
s − 1

2{F
′†
r F

′
s, ρ

′
α}
)
,

where F ′
r are n2 − 1 traceless square matrices, which form with the normalized identity F ′

0 =
In/

√
n an orthonormal set, i.e., Tr(F ′†

r F ′
s) = δrs, while [Crs] is a Hermitian matrix.

Then, coming back by means of B−1: |ψ′〉 → B −1 |ψ′〉, we obtain an equation of the
Lindblad–Kossakowski type which describes the most general time evolution of the generalized
complex projection density matrix ρ̃α = ραη. In order to write down it explicitly, let us recall
that a density matrix transforms as follows: ρ′α → B−1ρ′α(B−1)† = ρα, so that ρ̃α = ραη =
B−1ρ′α(B−1)†

(
B†B

)
= B−1ρ′αB. Moreover, B−1F ′

rB = Fr and B−1F ′†
s B = B−1(BFsB−1)†B =

F ‡
s according to (6), so that, finally [12]:

d

dt
ρ̃α = L[ρ̃α] = −[Hα, ρ̃α] +

n2−1∑
r,s=1

Crs

(
Frρ̃αF

‡
s − 1

2{F
‡
rFs, ρ̃α}

)
. (18)

Note that trivially Tr(F ‡
rFs) = δrs and the dissipative term

D[ρ̃α] =
n2−1∑
r,s=1

Crs

(
Frρ̃αF

‡
s − 1

2{F
‡
rFs, ρ̃α}

)
= H∗

β ρ̃β − ρ̃∗βHβ, (19)

is quasi-Hermitian:

ηD[ρ̃α]η−1 = D[ρ̃α]†.

Finally, the complex projection of quaternionic anti-Hermitian Hamiltonian dynamics can be
immediately obtained as a very particular case of this more general setting, putting η = 1 into
equations (18), (19).
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5 A spin-1
2 system in a constant quasianti-Hermitian

quaternionic potential

We will now consider a two-level quantum system with a quasianti-Hermitian quaternionic H =
Hα + jHβ.

We denote by Hα the free complex anti-Hermitian Hamiltonian describing a spin half particle
in a constant magnetic field,

Hα =
ω

2

(
i 0
0 −i

)
,

and by jHβ a purely quasianti-Hermitian quaternionic constant potential,

jHβ =
(

0 j vx
jvx 0

)
(v, x ∈ R\{0}). (20)

Note that Hα and jHβ are η-quasianti-Hermitian, where

η =
(
x2 0
0 1

)
.

The eigenvalues and the corresponding biorthonormal eigenbasis of the quaternionic Hamil-
tonian H are given by [10]

iE± = i
(ω

2
± v
)

and

|ψ±〉 =
(
± i
x
j

)
1√
2
, |φ±〉 =

(
±xi
j

)
1√
2
.

The η-unitary evolution operator reads

V (t) = e−Ht = |ψ+〉e−iE+t〈φ+|+ |ψ−〉e−iE−t〈φ−|

=
1
2

(
e−iE+t + e−iE−t 1

x(e−iE−t − e−iE+t)k
x(eiE+t − eiE−t)k eiE+t + eiE−t

)
.

Let us consider a η-quasi-Hermitian complex pure initial state:

ρ̃(0) =
(

0 0
0 1

)
,

then, (see equations (13) and (12))

ρ̃(t) = V (t)ρ̃(0)V (t)−1 = V (t)ρ̃(0)η−1V †(t)η =
1
2

(
1− cos(2vt) − j

x sin(2vt)
jx sin(2vt) 1 + cos(2vt)

)
. (21)

The complex projection ρ̃α(t) of ρ̃(t) assumes the diagonal form,

ρ̃α(t) =
1
2

(
1− cos(2vt) 0

0 1 + cos(2vt)

)
.
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The one-parameter semigroup generator associated with the complex projection of the quater-
nionic η-unitary dynamics given in equation (21) can be immediately computed (see equations
(18), (19)):

L[ρ̃α(t)] = −[Hα, ρ̃α] +H∗
β ρ̃β − ρ̃∗βHβ =

(
v sin(2vt) 0

0 −v sin(2vt)

)
.

Let us consider the spin observable, which is associated in QQM with a triple of complex
operators. The expectation value of the z-component:

sz =
1
2

(
1 0
0 −1

)
,

when the system is in the quasi-Hermitian quaternionic pure state (21), is given by (note that
sz is η-quasi-Hermitian contrarily to sx and sy)

〈sz〉 = Re Tr (szρ̃(t)) = Tr (szρ̃α(t)) =
cos(2vt)

2
. (22)

By a simple calculation the (positive definite) energy η-quasi-Hermitian observable |H| reads

|H| = |ψ+〉E+〈φ+|+ |ψ−〉E−〈φ−| =

(
ω
2 −k vx
kxv ω

2

)
,

and its expectation value is given by

〈|H|〉 = Re Tr (|H|ρ̃(t)) = Tr (|Hα|ρ̃α(t)) =
ω

2
= Re Tr (|H|ρ̃(0)) . (23)

This example may have interesting physical applications because the quaternionic poten-
tial jHβ in equation (20) strongly affects the spin values (see equation (22)) while the system
energy is unchanged (see equation (23)).
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