|  | SIGMA 3 (2007), 051, 12 pages      math.SG/0703665     
doi:10.3842/SIGMA.2007.051Contribution to the Proceedings of the Coimbra Workshop on
Geometric Aspects of Integrable Systems
 Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic
System
Francesco Fassò and Andrea Giacobbe
Dipartimento di Matematica Pura e Applicata, Università di Padova,
Via Trieste 63, 35131 Padova, Italy
 Received November 20, 2006, in final form March
15, 2007; Published online March 22, 2007 Abstract
Bifibrations, in symplectic geometry called also dual
pairs, play a relevant role in the theory of superintegrable
Hamiltonian systems. We prove the existence of an analogous
bifibrated geometry in dynamical systems with a symmetry group
such that the reduced dynamics is periodic. The integrability of
such systems has been proven by M. Field and J. Hermans with a
reconstruction technique. We apply the result to the nonholonomic
system of a ball rolling on a surface of revolution.
 Key words:
systems with symmetry; reconstruction; integrable
systems; nonholonomic systems. 
pdf (400 kb)  
ps (322 kb)  
tex (276 kb)
 
 References
 
Blaom A.D.,
A geometric setting for Hamiltonian perturbation theory, Mem.
Amer. Math. Soc. 153 (2001), 1-112.Bogoyavlenskij O.I., Extended integrability and bi-Hamiltonian systems, Comm. Math. Phys.
196 (1998), 19-51.Bröcker T., tom Dieck T.,
Representations of compact Lie groups, Graduate Texts in
Mathematics, Vol. 98, Springer-Verlag, New York, 1995.Cushman R., Duistermaat J.J.,
Non-Hamiltonian monodromy, J. Differential Equations 
172 (2001), 42-58.Cushman R., Duistermaat H., Snyaticky J., Non-holonomic
systems, in preparation.Duistermaat J.J.,
On global action-angle coordinates, Comm. Pure Appl. Math.
33 (1980), 687-706.Fassò F., Superintegrable Hamiltonian systems: geometry and
perturbations,  Acta Appl. Math. 87  (2005), 93-121.Fassò F., Giacobbe A., Sansonetto N., Periodic flow,
    rank-two Poisson structures, and nonholonomic mechanics,  Regular
  Chaotic Mech. 19  (2005), 267-284.Fedorov Yu.N., Systems with an invariant measure on Lie groups,
in  Hamiltonian Systems with Three or More Degrees of Freedom
(1995, S'Agarò), NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci., Vol. 533, Kluwer, Dordrecht, 1999, 350-356.Field M., Local structure of equivariant
dynamics, in Singularity Theory and Its Applications, Part II
(1988/1989, Coventry), Lecture Notes in Math., Vol. 1463,
Springer, Berlin, 1991, 142-166.Fomenko A.T.,  Trofimov V.V., Integrable systems on Lie algebras and
symmetric spaces, Advanced Studies in Contemporary
Mathematics, Vol. 2, Gordon and Breach Science Publishers, New
York, 1988.Hermans J., Rolling rigid bodies with and without symmetries, PhD Thesis,
 University of Utrecht,  1995.Hermans J.,  A symmetric sphere rolling on a
surface, Nonlinearity 8 (1995), 493-515.Karasev M.V., Maslov V.P.,
Nonlinear Poisson brackets. Geometry and quantization, 
Translations of the AMS, Vol. 119, AMS, Providence, R.I., 1993.Marsden J.E., Montgomery R., Ratiu T., Reduction,
symmetry, and phases in mechanics, Mem.  Amer. Math. Soc.
88 (1990), no. 436.Meigniez G., Submersion, fibrations and bundles, Trans. Amer.
Math. Soc. 354 (2002), 3771-3787.Mischenko A.S., Fomenko A.T., Generalized Liouville
method of integration of Hamiltonian systems, Funct. Anal.
Appl. 12 (1978), 113-121.Routh E.J.,
Treatise on the dynamics of a system of rigid bodies (advanced
part), Dover, New York, 1955.Zenkov D.V.,
The geometry of the Routh problem, J. Nonlinear Sci. 5
(1995), 503-519.Zung N.T., Torus action and integrable systems,
in Topological Methods in the Theory of Integrable Systems,
Editors A.V. Bolsinov, A.T. Fomenko and A.A. Oshemkov, Cambridge
Scientific Publications,  2006, 289-328,
math.DS/0407455. |  |