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Abstract. Qualitative features of the Manakov top are discussed for the classical and
quantum versions of the problem. Energy-momentum diagram for this integrable classical
problem and quantum joint spectrum of two commuting observables for associated quantum
problem are analyzed. It is demonstrated that the evolution of the specially chosen quantum
cell through the joint quantum spectrum can be defined for paths which cross singular strata.
The corresponding quantum monodromy transformation is introduced.
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1 Personal introduction

It was about six years ago that I (B.Z.) met for the first time Vadim Kuznetsov during one
of the ‘Geometric Mechanics’ conferences in Warwick University, U.K. I cannot say that we
have found immediately mutual interest in our research works in spite of the fact that our
problems were rather related. At that time I tried to understand better the manifestation of
classical Hamiltonian monodromy in corresponding quantum problems and looked for different
simple classical integrable models with monodromy which could be of interest for physical,
mainly molecular, applications. Vadim worked on much more formal mathematical aspects of
integrable models related to almost unknown for me special functions. I tried to convince him
that from the point of view of physical applications the most important task is to understand
qualitative features of integrable models using some simple geometric tools like classification of
defects of regular lattices formed by joint spectrum of several commuting observables. Vadim
insisted on special functions, complex analysis, Lie algebras etc. Nevertheless, we have found
many points of common interest. Soon after, Vadim visited Dunkerque and we have tried to
find some concrete problem, where we could demonstrate clearly what each of us means by
understanding the solution. In fact, such problem was found quickly. It was the Manakov top.
Vadim was interested in Manakov top because of its relation with XYZ Gaudin magnet. He
published a short paper together with I. Komarov on this subject in 1991 [16]. For me the model
problem like Manakov top represented certain interest because it is naturally related to molecular
models constructed, for example, by coupled angular momenta or by angular momentum and
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Runge-Lenz vectors for hydrogen atom. In spite of many different applications and possible
generalizations the initial idea was just to study one concrete simple example which nevertheless
keeps all the important qualitative features in classical and quantum cases and to show what
qualitative aspects of solution seem to be of primary importance from physical or chemical point
of view. Unfortunately, this paper is written when Vadim is gone away and we will not hear
his criticism and reflections about molecular physicist point of view on the integrable quantum
Manakov top.

2 The model

In this article we will study one concrete example of the Euler—-Manakov top having a complete
set of quadratic integrals of motion. We analyze both classical and quantum versions and
make below no difference in notation between quantum operators of angular momenta and their
classical counterparts. The integrable Manakov top [18] and its various generalizations were
studied on different occasions but mainly within classical mechanics [1, 2, 3, 9, 10, 24, 25].

We define the Manakov top in accordance with [15, 16] as a system of two commuting
quadratic functions on the o(4) generators (a and b being arbitrary real constants)

X=ot+ 20y el
= S111 1—a—b822 1—a—b333’
b—a—1
Y = b(1 — a)(s2 + t2) + 2b(1 — a)#ﬂ_bsm +a(l - b)(s? +£2)
a—b—1
2a(1 — b) —————ssts. 2.1
+2a(1 = b)—— s3ts (2.1)

Here the generators s;, t;, (1 = 1,2, 3) obey the standard commutation relations (0(4) ~ sus(2) ®
sw(2)):

[Si, Sj] = iEijkska [ti, tj] = 'igijktk; [Si, tj] =0.

Two commuting integrals of motion X,Y ([X,Y] = 0) and two fixed values of S = Y, s?
and T? = Y, t? (or equivalently of two Casimir operators of o(4)) fix the system. For further
simplicity we will always choose the normalization S? = T2 = 1 in classical model and make the
necessary scaling of quantum angular momentum operators in order to increase the density of
quantum eigenvalues in the case of quantum calculations. We use as usual in quantum mechanics
of angular momentum the quantum numbers S and 7" which are related to eigenvalues of the
S% = 52 + 53+ s3 and T? = t2 + t3 + t3 operators as S(S + 1) and T(T + 1).

The global idea of the present analysis is to compare the qualitative features of classical
energy-momentum (EM) diagram with the qualitative features of associated joint spectrum of
two commuting quantum observables and to stimulate the discussion about possible generaliza-
tion of the monodromy concept to problems which have several connected components in the
inverse image of the energy-momentum map and admit the presence of certain codimension one
singularities associated with the fusion of different components.

In the main text below we only discuss the most essential qualitative aspects of the classical
EM diagram and of the quantum joint spectrum and formulate several questions about quali-
tative features which still remain unclear, at least for the authors, and probably require more
sophisticated qualitative mathematical arguments to answer. In appendices, we briefly explain
some simple tools which were used to recover the qualitative description of the studied problem.
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EM Map (a=4,b=3,5=T=15)

Figure 1. Classical energy-momentum diagram and joint spectrum of two integrals of motion for the
Manakov top model (2.1) with a =4,b=3, 5 =T = 15.

3 General overview of the energy-momentum diagram

For integrable problems the extremely useful geometrical representation consists in constructing
the image of the energy momentum map, which in classical problems is often named as energy-
momentum diagram, or bifurcation diagram, while in quantum mechanics it is the geometrical
representation of the joint spectrum of commuting quantum observables.

For Manakov top problem (2.1) with one concrete choice of parameters (a = 4, b = 3,
S =T = 15) the classical energy-momentum diagram is represented in Fig. 1 together with the
joint spectrum of two commuting quantum operators. We have chosen the values of parameters
to produce the most symmetric form of the image of EM map and to have a sufficient number
of quantum states to see the characteristic pattern in each qualitatively different part of the
diagram.

We know that in general for completely integrable problems with two degrees of freedom the
image of the EM map defines the foliation of the classical phase space (which is the S? x S? for
the Manakov top for the given choice of the Casimir values) into common levels of two integrals
of motion X, Y which are in involution by construction. All possible values of the EM map fill in
the X, Y plane (see Fig. 1) the ‘curved triangular region” which consists of regular and singular
values. Singular values belong to special lines and points. Regular values fill 2-D-regions. Any
regular value of the EM map for problem with two degrees of freedom has as its inverse image
one or several two-dimensional tori. Singular values can have different types of fibers as inverse
images. All these fibers can be generally described as singular tori. Due to that we characterize
qualitatively the whole foliation as ‘singular fibration’.

Before starting to discuss qualitative features of the concrete problem we need to verify that
the chosen problem is generic or structurally stable. In other words we need to verify that any
admissible small modification of parameters does not change qualitative features of classical
energy momentum diagram and of joint quantum spectrum.

The first initial simplest qualitative characterization of both the EM map image and the
foliation is the splitting of the whole image of the EM map into connected regions of regular
values. Each region is characterized by the number of connected components (tori) in the inverse
image of each regular value.

Fig. 2 shows what happens when we change slightly parameters a, b of the model (2.1).
We keep, naturally, under such deformation the integrability of the problem and the S = T
condition. The image of the EM map becomes less symmetric but it keeps the presence of four
regions of regular values and the numbers of connected components in regular inverse images.
There are two connected components in regions labeled by I, III, and IV, and four connected
components in region II.
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Figure 2. Base of integrable fibration of Manakov top (bifurcation diagram).

Y Y’

0 0

Figure 3. Left: Base of integrable fibration of Manakov top for a special limiting case (a =2, b = 1).
Right: Unfolded bifurcation diagram for (a = 2, b = 1) Manakov top with Y’ = /=Y.

As soon as small variation of parameter values a, b does not modify the number of regions
on the bifurcation diagram the chosen values can be considered as generic. At the same time
large variation of the same parameters can lead to qualitatively different bifurcation diagrams.
Various possibility are discussed in the appendix. We mention here only one important limiting
case corresponding to (a = 2, b = 1). This limiting case is extremely simple because of particular
form of two commuting operators X, Y:

(82 + t2)2

X = s1tq + ssts, Y =— 1

(3.1)
The corresponding bifurcation diagram is shown in Fig. 3, left. It follows from generic bifurcation
diagram (Fig. 2) by shrinking regions II, III, and IV to zero. In this limiting case we have only
one region with each internal point corresponding to two connected components (regular tori)
in the inverse image.

By going to Y’ = /=Y we easily recover the integrable fibration with one connected com-
ponent in the inverse images of any point and the singularity at Y’ = X = 0 corresponding in
the classical case to doubly pinched torus. The transformation from {X,Y} to {X,Y’ = /=Y}
can be described as ‘square root unfolding’. It was analyzed in classical mechanics recently [9].
The corresponding transformation of the bifurcation diagram is shown in Fig. 3.

We make accent in the present paper on the analysis of the quantum problem. But in order
to recover the qualitative features of the quantum joint spectrum we need to study it together
with the classical bifurcation diagram.

The joint spectrum of quantum operators is shown in the same Fig. 1 by different symbols
depending on the symmetry of the state. Taking into account the finite symmetry of the problem
(see appendix for details) there are quantum states of eight different symmetry types. It is



Qualitative Analysis of the Classical and Quantum Manakov Top 5

~0.46 ¢ o ® s a
0484 _ ° . : Ao o
) o +3+ PY ®
y -05° ® o, 0 o By
I B,o o
< £
054 ° . R . 4 B3o o
01 005 0 0.05 0.1
X

Figure 4. Central part of the joint spectrum of the Manakov top shown in Fig. 1.

practically impossible to distinguish different symbols on this Fig. 1 because of the overlapping
of different symbols due to quasi-degeneracy of eigenvalues. All representations of the symmetry
group are one-dimensional, but the quasi-degeneracy is almost perfect in the most part of the
region (except neighborhoods of internal singular lines). Thus it is clear that the most prominent
qualitative feature of the joint spectrum is its cluster structure. The rearrangement of clusters
near singular lines is more clearly seen in Fig. 4 which shows in more details the joint quantum
spectrum in the most complicated central part of the energy momentum diagram.

We can neglect in the first approximation the internal structure of clusters and try to cha-
racterize clusters and to understand their global arrangement. It is quite easy to see that in
regions of EM diagram with K connected components for each inverse image, the K-fold clusters
of quantum eigenvalues should be present. Thus in regions I, III, IV of the EM diagram the
2-fold clusters are present, whereas the region II is filled with the 4-fold clusters. Highly regular
pattern formed by the common eigenvalues is clearly seen in Fig. 1. The most part of each of
the four regular regions can be regarded as covered with almost regular lattice of 2-fold or 4-fold
clusters. By a slight deformation each such lattice can be deformed to a part of an ideal square
lattice. Rearrangement of clusters takes place near the lines of singular values of classical EM
map and an apparent non-regularity is concentrated near the singular lines (see Fig. 4).

In order to understand the origin of regularity and non-regularity we remind first that the
classical phase space of the Manakov top problem is compact and the total number of quantum
eigenstates is finite and is determined by quantum numbers S = T'. The example shown in Fig. 1
corresponds to the choice S = T = 15. This means that the total number of quantum eigenvalues
is 31 x 31 = 961. If we denote eight different irreducible representations by As, As, Bis, Bia,
with ¢ = 1,2,3, the numbers of eigenvalues of each type of symmetry are: 14 x 15/2 = 105
for A,, 15 x 16/2 = 120 for By, Big, @ = 1,2,3, and 16 x 17/2 = 136 for As. If now we
plot eigenvalues of only one type of the symmetry on the classical energy-momentum diagram
the pattern of quantum states turns out to be almost regular in the whole region. Fig. 5
demonstrates this fact for all eight symmetry types. The observation of the regularity of joint
spectrum for one symmetry type is based on numerical results and requires further independent
explanation.

At the same time if we analyze the total joint spectrum (see Fig. 1) it is clear that in
regions I, III, IV (two triangle regions and rhomb region, see appendix) the joint spectrum
can be qualitatively described as a regular doubly degenerate lattice of common eigenvalues.
Region II (parabola region in the notation of appendix) of the joint spectrum in a similar way
can be qualitatively characterized as formed by four-fold degenerate regular lattice of common
eigenvalues.

Moreover, pairs of quasi-degenerate eigenvalues form different reducible representations in
different regions. In region I the degenerate pairs form A; + Bog, Ay + Bay, Bis + Bss, and
By, + B3, representations. Degenerate pairs in region III are A;+ B3y, B1s+ Bog, Bos+ Big, and
Bss + A,. In region IV we have Ag + Bss, Bis + Bog, Aq + Bsg, and By, + Bo,. The quadruples
of eigenvalues in region Il are Ag + A, + Bss + B3, and Bis + Big + Bas + Bag.



6 E. Sinitsyn and B. Zhilinskii

sA : aA
. - 7 " - 4
= F g
0.5 N ' ol i 0.5 i %
It =4 . 14 - k- - |
-1 05 0 0.5 1 -1 0.5 0 0.5 1
O e 0=
sB1 = aB1
— ot s -
0.5 = .5 =
4 3 p -
o
=1 0.5 0 0.5 1 =1 0.5 0 0.5 1
0 0
sB2 aB2
- < B i
0.5 .é_“ 0.5 .
L | S . -4
-] L - - 1 - o -]
1 0.5 0 0.5 1 1 0.5 0 0.5 1
0= 0,
| sB3 =7 % aB3
ey < i i ‘.\""-._ -
0.5 0.5 S
-1 = - = : ! - :
-1 0.5 0 0.5 1 -1 0.5 0 0.5

Figure 5. Joint spectrum of Manakov top. Only eigenvalues of one symmetry type are shown on each
sub-figure.

It is clear that the lattices defined in different regions cannot fit together along the singular
lines because of different organization of the joint spectrum in different regions and because
of different numbers of states of various symmetry types. At the same time the regularity of
the joint spectrum for each symmetry type indicates the possibility of the global regular la-
beling of states of each particular symmetry type. Using such labeling we can try to define
the continuous evolution of the properly chosen quantum cell through the quantum joint spec-
trum along the path which crosses singular lines. This is exactly what is needed in order to
define quantum monodromy using approach based on the propagation of the elementary quan-
tum cell. Before doing that we remind shortly in the next section the description of quantum
monodromy and its generalizations [14, 23, 27, 28, 35, 36] in terms of the ‘quantum cell” evolu-
tion.

4 Relation to monodromy and its generalizations

Qualitative description of joint spectra of quantum problems associated to some integrable
classical models is based on the simultaneous description of defects of regular lattices and on
affine structure of classical models.
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Presence of singular fibers for classical integrable fibrations leads to the appearance of de-
fects of the lattice of joint eigenvalues in corresponding quantum problem. For an integrable
Hamiltonian system with two degrees of freedom the simplest codimension two singularity which
generically appears in the bifurcation diagram is the so-called focus-focus singularity. The asso-
ciated singular fiber is a pinched torus. Several times pinched tori are typically possible under
the presence of symmetry. Recent rigorous mathematical description of dynamical problems with
such singularities can be found in [17, 30, 32, 33]. More physically based intuitive construction
was suggested in [14, 27, 35, 36].

Classical monodromy which is due to the presence of a focus-focus singularity (pinched torus)
manifests itself in the corresponding quantum problem in the most clear and transparent way
as a transformation of the elementary cell of the lattice formed by the joint eigenvalues of
commuting quantum observables after its propagation along a closed path surrounding the
singularity. The evolution of an elementary quantum cell is based on the existence of local
action-angle variables, whereas the nontrivial monodromy demonstrates the absence of global
action-angle variables.

Although the relation between Hamiltonian monodromy and the absence of global action-
angle variables [7] was formulated in the well-known papers by Nekhoroshev [21] and Duister-
maat [11] about 30 years ago the significant physical applications of hamiltonian monodromy in
such simple physical systems as atoms and molecules were found only in the last ten years. With-
out going into details of physical applications we just cite here several recent papers where impor-
tant physical applications and citations to other publications can be found [4, 5, 8, 23, 28, 29, 31].
From the mathematical point of view the generalization of monodromy can go in two different
directions. One can try to define the evolution of a quantum cell or of bases of homology
groups for classical integrable fibrations when the closed path crosses some special singular
strata. On this way the notions of fractional monodromy [12, 22, 23] and of bidromy [28, 29]
were introduced. Completely another possibility is to study higher obstructions to the exis-
tence of the action-angle variables, which are related to the codimension-K singularities with
K > 3 [11]. We does not touch this aspect here. Instead we suggest on the example of the
Manakov top the generalization of the monodromy notion to a larger class of dynamical sys-
tems (integrable fibrations) which admits the presence of new passable singular strata, asso-
ciated with fusion or splitting of several connected components of the inverse EM image into
one.

5 Quantum monodromy for Manakov top

In this section we formulate new result about propagation of quantum cells along noncontractible
paths in the base of integrable singular fibration defined by the Manakov top problem. In order
to do that we need first to define the path itself. The main problem here is due to:

i) the presence of two or four connected components of the inverse EM image in different
regular regions of bifurcation diagram:;

ii) the continuation of the path when crossing singular strata.

We start with a simple limiting case a = 2, b = 1 of the Manakov top problem. Cor-
responding classical integrable fibration is represented by its bifurcation diagram in {X,Y’}
variables in Figs. 3, left and 6, left. This fibration has two components of the inverse EM
image for all regular values. At the same time the inverse image of each of singular values on
(CF) and (F'B) intervals is one regular torus. Such structure gives possibility to unfold the
picture by going from {X,Y} to {X,Y’ = /=Y} variables [9]. The closed path in the un-
folded variables {X,Y"'} (see Fig. 6, right) encircles the isolated singular value (point F') whose
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Figure 6. Choice of the closed path on the base space for the limiting case a = 2, b = 1 of the Manakov
top. Left: Representation in {X, Y} variables with two components of the inverse image for each regular
point. Solid and dashed lines represent parts of the path which belong to different leafs of the unfolded
diagram. Right: Representation in {X,Y”’ = \/=Y} variables with one component of the inverse image
for any regular point.

Figure 7. Choice of the generalized closed path on the base space for the generic Manakov top problem.

inverse image is a doubly pinched torus. Continuous evolution of classical fibers and of corre-
sponding quantum cell along such contour should necessarily lead to nontrivial monodromy [9].
We demonstrate this below on the joint spectrum of this particular example. For a moment
we just stress the representation of the closed path in the original variables {X,Y} in Fig. 6,
left.

When constructing the closed path on the base of the classical foliation of the generic Manakov
top (see Fig. 7) we need to remind that in the internal points of regions AFDE, CDF', and AFB
(regions I, ITI, IV, in Fig. 2 respectively) the inverse image of the EM map has two connected
components, whereas in the internal points of region K LF' (region II in Fig. 2) there are four
components. At intervals DF and F A each point has one connected component in its inverse
image. At the same time at the boundary LBAEDCK there are two components except for
points A and D. Intervals KF and FL are associated with singular fibers corresponding to
splitting of each connected component presented for internal points in regions AF'B and CDF
into two regular components in region K LF'.

We start the path at point a in the ‘rhomb’ region AFDE (region I), see Fig. 7. As soon as
there are two connected components in the inverse image, we need to distinguish them and to
precise that the point a belongs to one of these components, say to leaf I;. Alternatively, we
can choose starting point a’ at another leaf Is. Two different paths associated with different
components are represented in Fig. 7 by solid and dash lines.

When going through the point b € (DF') two components fuse together and split again
into two components of the region III, which we denote as III;, and Ills. Crossing singular
stratum DF' needs further analysis. We suppose for a moment that at point b we can follow the
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path continuously from I; to III; and in a similar way from Is to IIls. The intuitive arguments
for such continuation will be given below on the basis of the analysis of the evolution of quantum
joint spectrum in the neighborhood of singular stratum DF'.

Next essential step is the crossing the singular stratum KF. When crossing this stratum
one component splits into two connected components and one regular torus transforms into
two regular tori. Similar situation was studied recently by Sadovskii and Zhilinskii [29], who
introduced the notion of ‘bidromy’ and the associated notion of ‘bipath’ when crossing the
singular stratum corresponding to splitting of one regular component into two components.
In a similar way the path which is defined in the region III and follows the component III;
splits into two-component-path when entering region IV by crossing singular stratum K F'. This
transformation is represented in Fig. 7 by going from single solid line to double solid line after
crossing K F. Analogous but independent transformation takes place for the path defined in
region III for the component III; (dash line in Fig. 7).

Further continuation through singular strata F'L and AF enables us to define the closed
path starting at point a on component I; and ending at the same point. Again the intuitive
justification of the construction of such generalized closed path is given below on the basis of
the evolution of ‘quantum cells’ through the joint spectrum of mutually commuting quantum
operators for Manakov top problem.

Obvious difficulty in proper definition of the corresponding classical (quantum) construction
for such generalized closed path is related to the definition of the connection between bases
of the homology groups (or appropriate subgroups) of regular fibers when the path crosses
singular strata. In this article we do not want to discuss this delicate question and leave the
description of the classical problem open for further study. In contrast, we concentrate on the
quantum problem and demonstrate below how quantum mechanical results allow to introduce
the continuous evolution of the quantum cell through singular strata and to define the quantum
monodromy for the Manakov top.

We hope that the quantum aspect can stimulate further analysis of corresponding classical
problem which will probably lead to another generalization of the classical Hamiltonian mon-
odromy concept in a way similar to appearance of classical fractional Hamiltonian monodromy
stimulated by initial quantum conjectures.

The key point in the construction of the evolution of the quantum cell through the joint
spectrum is the regularity of the pattern of common eigenvalues of two commuting operators
formed by eigenvalues with one chosen symmetry type. It is useful to remind here that in almost
all standard problems with Hamiltonian monodromy one of the integrals is related to continuous
symmetry and is a good global action variable by construction. In such a case splitting the total
set of common eigenvalues into subsets with different symmetry types leads from 2D-pattern
for the total problem to a family of 1D-patterns for different symmetry types. In order to see
monodromy we are obliged to compare common eigenvalues with different continuous symme-
try (different values of angular momentum, for example). Fractional monodromy also follows
naturally this kind of reasoning. Looking at two sub-lattices separately (for problems possess-
ing half-integer monodromy) does not allow to see the phenomenon (see detailed discussion
n [23]). In order to observe the half-integer monodromy we are obliged to analyze two (index
two) sub-lattices simultaneously.

The Manakov top problem possesses finite symmetry group which allows classification of the
common eigenvalues of operators X and Y by eight different irreducible representations. This
allows us to make a choice of elementary quantum cell in the region I as formed by four different
eigenvalues.

Before going to the analysis of the evolution of quantum cell for generic Manakov top problem
we study first one particular limiting case a = 2, b = 1 (see equations (3.1) and Figs. 3, 6) of
the Manakov top problem.
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Figure 8. Joint spectrum of commuting quantum operators X,Y’ = 1/—Y for the limiting case a = 2,
b =1 of the Manakov top together with the evolution of the elementary quantum cell along a closed path
encircling critical value X =Y’ = 0.

5.1 Quantum cell evolution for particular limiting case

The particular case a = 2, b = 1 of the Manakov top problem is especially simple because of
a possibility of a ‘square root unfolding’ [9] by going to new commuting variables X = st +s3t3,
Y = \/j = <82 —l—tg)/?.

The evolution of the elementary quantum cell through the joint spectrum of X, Y’ becomes
simple because Y is the generator of a global continuous symmetry, the projection of the total
momentum on axis 2. In classical mechanics Y’ can be used as a global action. Second global
action does not exist for this problem due to presence of an isolated critical value X =Y’ = 0.
Fig. 8 clearly shows that the monodromy matrix corresponding to the transformation of the
elementary cell along a closed path encircling the critical value in the chosen basis of the joint

spectrum lattice has the form <; ?)

It is useful to go back to original {X,Y} variables and to represent the evolution of the
quantum cell along the same closed path but in X, Y variables as in Fig. 6, left.

The symmetry of the a = 2, b = 1 case is higher than the symmetry of a generic Manakov
top problem. Thus we can still use eight irreducible representations of the initially chosen
symmetry group to label the common eigenvalues even when they belong to doubly degenerate
representations of higher symmetry group. We split eight irreducible representations of the
initial symmetry group into two different groups and associate each group with its own leaf on
the EM diagram. In such a case we start at Fig. 9 (upper sub-figure) with an elementary cell
formed by four different representations and associated with one leaf. We move the cell towards
Y = 0 stratum and cross it (using Y’ unfolded coordinates) changing at the same time the
irreducible representations associated with the vertices of the cell. Further evolution (Fig. 9,
middle) is done on the second leaf. Then passing again through the ¥ = 0 stratum we return
back to the first leaf and can compare final cell with the initial one.

Naturally, the transformation of the cell along the closed path depends on the choice of the
basis. Two alternative choices of the lattice basis are used in Fig. 10 to illustrate the monodromy
transformation. It is well known that the matrix representation of the monodromy transforma-
tion depends on the lattice basis and is defined up to similarity transformation with a matrix
from SL(2, Z) corresponding to basis transformation of regular lattice. For two examples shown
in Fig. 10 the matrix of the monodromy transformation can be easily written in an algebraic
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o

Figure 9. ‘Parallel transport’ of an elementary quantum cell along the closed path surrounding central
singularity for the special limiting case of Manakov top (2.1) with a = 2, b = 1.

Figure 10. Transformation of the cell after parallel transport along closed path represented in Fig. 6.
Two different choices of an elementary cell are shown. Initial cells are shown by solid line. Final cells
are shown by dash line.

form. For one case (lower in Fig. 10) we have

ad — ad, ab — ab + 2ad,

: .. (1 . . .
and the corresponding matrix is <2 [1)) Alternative choice of the basis shown on the same

figure gives

ad — —2ab — ad; ab — 3ab + 2ad,

2
and the corresponding matrix is <_32 B 1).

5.2 Evolution of quantum cell for generic Manakov top problem

For the generic Manakov top problem in order to realize the evolution of the quantum cell along
the closed path shown in Fig. 7 we need to study crossing two different singular strata.
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Figure 11. Transformation of quantum cell under crossing singular strata DF and AF (see Fig. 6).
Elementary cells are shown by different hatching. Two alternative choices of big ‘quadruple’ cell are
shown. Left: Cell is formed by Ag vertices. Right: Cell is formed by B, vertices.

Let us start with crossing DF (or AF) stratum. We make the choice of an elementary
quantum cells in region I as formed by four eigenvalues of different symmetry (As, Aq, Bis, Bia),
associated with leaf 1. Four other symmetry types (Bas, B2a, B3s, Bs,) are associated with
another leaf.

The splitting of eight different representations into two groups of four is unique because
we impose the requirement that after the evolution of all vertices of the cell into region III
or region IV the elementary cell should remain elementary, i.e. vertices should not belong, for
example, to the pair of degenerate eigenvalues. The evolution of eigenvalues of each symmetry
type is realized using the correspondence between the joint spectrum lattice formed by states of
one symmetry type and the part of the regular square lattice having the form of an equilateral
rectangular triangle. Such correspondence is global and it enables us to go through the singular
stratum DF or AF (point b or e in Fig. 7).

Fig. 11 shows that different elementary cells transforms after crossing singular stratum in
different way. Saying in another way, this singular stratum is not passable by an elementary cell.
Nevertheless, one can choose bigger cells which pass through singular stratum unambiguously.
The situation here is similar to the fractional 1/2 monodromy, where elementary cell cannot
pass but the double cell passes. At the same time, the case of Manakov top is slightly different.
In order to pass through DF' stratum the cell should be doubled in the direction parallel to DF',
whereas to pass through AF' stratum the cell should be doubled in the direction parallel to AF
which is orthogonal to D F' from the point of view of regular lattice in the region I. The conclusion:
In order to pass through both DF and AF the cell should be quadruple in such a way that all its
vertices correspond to the same irreducible representation. Fig. 11 shows evolution of two such
quadruple cells (with vertices of As and of Bj, symmetry respectively). Similar modifications
take place for all other cells which can be defined on both leafs in the region I.

The situation with crossing singular strata K F' and F'L is quite different from crossing DF
or F'A strata. Entering region II is associated with splitting of one connected component of
the classical fibration into two. The associated transformation of quantum cell is the splitting
of one cell into two. The natural physical requirement imposed on such transformation is the
conservation of the reduced volume [29], i.e. the volume of the cell in the local action variables.
This means that in order to pass through the K F' line from region III to region II, for example,
the initial cell should be at least double. After crossing K F' line it splits in this case into two
single cells associated with two different leafs in region II. These two different cells can be moved
through region II along two-component path represented in Fig. 7.

Fig. 12 shows transformation of quantum cells when they cross the singular stratum KF
and F'L. The first important observation is that two double cells (formed each by two elementary
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Figure 12. Transformation of quantum cells under crossing singular strata DF and AF (see Fig. 6).
Minimal (double elementary) cells are shown by different hatching. Big ‘quadruple’ cell consists of two
minimal cells. It splits into two cells which belong to different leafs in region II.

Figure 13. Transformation of quantum cell along a closed path (see Fig. 7). Quadruple cell chosen in
region I remains quadruple in region III, splits into two double cells entering into region II, fuses again
into quadruple cell returning back to region IV and to region I.

cells in region IIT and shown by different hatching) leads to different pairs of single cells in
region II. This means that the minimal cell should be doubled once more in order to define
an unambiguous transformation of the quantum cell after crossing singular K F' stratum. The
quadruple cell chosen in regions III as having vertices of the same symmetry splits into two
double cells in region II in a unique way. The situation is completely similar with crossing F'L
stratum.

Reverse transformation from region II to region III or IV through singular K F or FL strata
leads to fusion of two double cells into one quadruple cell.

Now, we can realize the evolution of the quantum cell along the closed path represented in
Fig. 7. We present in Fig. 13 such evolution using the essential part of the joint spectrum of
the Manakov problem for a =4, b =3, S =T = 15 (compare with total joint spectrum shown
in Fig. 1). It should be noted that we need to follow the evolution of two initial cells. In the
region I one of these cells belongs to leaf I, while another belongs to leaf Io. But as soon as
evolution of both cells is completely similar except for the fact that the cells follow different
leafs, we can discuss only the case of the cell located on the leaf I;. The initial cell consists
of four elementary cells in the region I. It has all its vertices labeled by the same irreducible
representation and it is associated with the leaf I;. We follow further the path represented in
Fig. 7 by solid line. The cell can cross the singular stratum DF' and to move further through
leaf ITI; till singular stratum KF.

When crossing K F' stratum the quadruple cell transforms into two double cells located at
two different leafs in region II. We denote these leafs as II;, and II;; and remind that there are
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four different leafs in the region II. The notation we use is based on the fact that the leaf I11;,
(1 = 1,2) splits under crossing KF' into two leafs II;, and II;. In a similar way the leaf IV,
splits under crossing F'L into two leafs I1;, and I1.

Thus in the region II instead of one quadruple cell we have two double cells which are shown
superimposed in Fig. 13. These two double cells can be moved through the region II with each
cell following its proper leaf. When crossing F'L singular stratum the two cells fuse together and
form one quadruple cell located at the leaf IV;. This cell moves further towards the singular
stratum F A, crosses it and returns back on the leaf I; to the initial position.

Exactly the same transformation takes place for the initial quadruple cell chosen in region I
at leaf Is. In both cases the transformation between initial and final cell is trivial, i.e. the
monodromy matrix is identity. The non-triviality of such transformation is due to the fact
that only quadruple cells are passable and the path along which the cell is propagated has
two branching points where the path bifurcates into two-component path and fuse from two-
component path back into one-component path.

It is quite interesting to compare the present situation with the analysis of the 1 : 2 [6] and
1:(—2) [23] resonant nonlinear oscillators. Both these problems have one-dimensional singular
stratum in the image of the momentum map which is formed by points with inverse image being
‘curled torus’ [6, 23]. This stratum is not passable in quantum version by an ‘elementary cell’
but it is passable by ‘double cell’. 1 : 2 resonance problem has no nontrivial monodromy because
there is no non-contractible circular paths due to the fact that the line of critical values ends
at the boundary and the end point cannot be encircled. In contrast the 1 : (—2) problem [23]
has singular stratum with the end point and the nontrivial fractional monodromy could be
introduced with that example. Probably the present discussion of the quantum Manakov top
will stimulate looking for further examples of integrable systems with still less trivial but generic
behavior in classical and quantum systems.

6 Conclusions

The analysis of the possible propagation of the quantum cell through the joint quantum spectrum
of two commuting observables for the Manakov top model is studied in this paper for the first
time. The presentation of the material here is done on completely heuristic physical ground.
Nevertheless, the authors hope that our result about quantum monodromy will find more serious
description in classical as well as in quantum mechanics. We believe that further analysis will
lead to the formulation of new important qualitative features of classical and quantum problems
and allow to make further important steps in formulating general qualitative theory of highly
excited quantum systems which is the ultimate goal of the authors.

A Symmetry group action on the phase space

The first step in the qualitative analysis of any given model problem is the analysis of the
symmetry group action on the dynamical variables. Below we follow general ideas of the group
theoretical and topological analysis of molecular models outlined in [20, 34].

Fixing Casimirs S =T > 0 we obtain direct product of two Ss spheres as a phase space of
the classical Manakov top.

Now we want to find the stratification of this space under the symmetry group action. For
model in question the symmetry group G consists of two subgroups. One, which we denote Doy,
using standard Schonflies notation, acts in natural diagonal way on two S and 7' spheres.
Another subgroup is the permutation of appropriate points on S and T spheres, Ps:, which
acts as s; « t;. The total group is Doy A Ps;. The diagonal action of Dy, on two spheres S
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Figure 14. Diagonal action of Dyp group on S and T spheres.

and T is shown on Fig. 14. On every sphere we have three one dimensional invariant manifolds

(bold circles) with Cs(ij ) stabilizers (C{glj ) is an order two group generated by the reflection
in the plane passing through axes ¢ and j). Three pairs of diametrically opposite points of
intersections of circles form three zero dimensional strata with Cg)) stabilizers (C’g)) is an order
four group generated by two reflections in planes ij and jk). All the remaining points on the
spheres have a trivial stabilizer 1 and so belong to principal type of orbits (orbits that consist
of regular points). The isolated points of the group action, i.e. points with local symmetry
(stabilizer) different from local symmetries of all other neighboring points, form critical orbits.
By the theorem of Michel [19, 20] the gradient of every G-invariant function vanishes on critical
orbits. As a consequence, certain stationary points of invariant functions can be found using
only symmetry group action rather than the concrete form of functions.

To determine the nontrivial invariant subspaces of Dy, group in full four dimensional space
we need to look for products of subspaces on S and T spheres which have nontrivial intersections
of their stabilizers. For example let’s take the point with local symmetry C’é},) on S sphere, then
on 1" sphere we must take the point with the same stabilizer in order to obtain an orbit of critical
points in four dimensional space. Different combinations of points on S and 1" spheres give us
a family of two critical orbits (each formed of two points) in the full space. All resulting zero
dimensional strata of the Manakov top phase space are listed in Table 1. Points of the same
orbit are denoted by one letter. They are further distinguished by indices.

Taking now invariant circles on S and T spheres with the same stabilizer we can form in the
4-dimensional space their products. This gives invariant tori Tj(s1, s2, 83,11, t2,t3)! in S? ® S?
(their stabilizers are given in the right column):

T1(07 52733707t2at3)a GTl = {E7023}7
T2(81707 537t1;05t3)a GT2 — {E70-13}7
T3(81782707t15t270)5 GTg - {E)OJQ}'

As soon as each basic circle of each torus has four points of higher symmetry each torus
itself contains eight isolated (by local symmetry) points. All twelve isolated points are listed in
Table 1. The number of G-invariant tori is three and on each of them there are eight points
whereas in Table 1 we have only twelve points. This means that every point belongs to two tori,
or, in other words, every isolated point on a torus is a common point with another torus.

Finally, acting by Dy, group on Manakov top phase space we obtain three invariant subspaces.
They are tori which have isolated points on them in such a way that each torus has four common
points with each of two other tori.

1This is two dimensional tori T2, but we will omit the index 2 and denote them as T;.
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Table 1. Isolated points and their stabilizers.

Point S1 S92 S3 tl tQ t3 Stabilizer
Bs 1 0 0 1 0 0 | APy,
By -1 0 0| -1 0 0
Cy 1 0 0| -1 0 0 | o)A Puo2
Cy ~1 0 0 1 0 0
B 0 1 0 0 1 0| ¢ APy,
By 0 | -1 0 0| -1 0
2! 0 1 0 0| -1 0 | CP APyt
) 0 | -1 0 0 1 0
A 0 0 1 0 0 1| ¥ apy,
Ay 0 0| -1 0 0| -1
Dy 0 0 1 0 0| =1 | ¢ AP0t
Dy 0 0| -1 0 0 1

To complete the analysis of the symmetry group action on the classical phase space we need
to consider the action of the permutations of s and ¢ components on the full space and on
the G-invariant tori in particular. In full space the action of operations Psg (g € Dap) gives
eight invariant subspaces S;(s1, s2, S3,t1, t2, t3) (for further convenience we call them G-invariant
spheres):

Si(a, a, 3,7), Ggs, ={FE, Py}, dynamically invariant,

Sz(a,ﬁ,%a ﬁ, ), Gs, = {E, Puc'?},

S, B, L Y)s Gs, = {E, Pyo'},

Sa(a, B,7, —a 75 7); Gs, = {E, Pyo™},

Ss(a, B, 7y, o, — 3, —7), Gs, ={F, PstCél)}, dynamically invariant,

Se(a, 8,7, —a, B, =), Gs, = {E, PStCéQ)}, dynamically invariant,

S7(« ,B —a, —f3,7), Gs, ={FE, PStC’és)}, dynamically invariant,

Ss(a, 8,7, —a,=B,=7),  Gsy ={E, Pyl}. (A1)

In order to describe the group action we introduce on each torus angle variables:

T;: s; =0, 8j = COS Qg, S = sin ¢,
t; =0, tj = cos ¢, tr = sin ¢. (A.2)

The action of Pyg on ¢4 and ¢y is shown for Th(sy, s3,t1,t3) in Table 2. Fourth column indi-
cates four different relations between angle coordinates on torus resulting in points with higher
symmetry. This symmetry group is given in the last column. The indicated lines pass throw
the isolated points on the torus.

By comparing the stabilizers of lines (Table 2) and that of isolated points (Table 1) it is
easy to conclude what line contains what points. Moreover, the intersections of line stabilizers
with stabilizers of G-invariant spheres (A.1) are also nontrivial. This means that all points of
the line ¢s = ¢, for example, at the same time belong to S1 (Gs, N G(y,—¢,) # 1E}) and S3
(Gsy NGp,—g,) # {F}) invariant subspaces, the line ¢s = —¢; belongs to Sz and S; invariant
subspaces and so on. The construction of tables equivalent to Table 2 for T} and T3 shows that
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Table 2. Action of Pgg, (g € Dap,) on Ts.

Operator Action on {s;,t;} Line Equation Stabilizer of Line
Py 51 =11 s3 =13 Ps = Ot {E,0'3, Py, Pyo'3}
Pyo!3 s1 =1 s3 = t3 s = Pt
1
Pyol? s1 =1 53 = —t3 Ps = —P¢ {E,0'3, Pyo'?, Pstcé )}
1
Pstcé ) 51 =11 53 = —t3 Ps = —P¢
3
Pst023 s1=—t 83 = t3 Ps =T — Py {Ea 013’ Pst0237 Pstcé )}
3
Pstcé ) 51 =—1 s3 =13 Qs =T — Py
2 2
P.CyY si=—ty | ss=—ts | ds=mtd | {E 0% PO, Pyl}
Pyl 51 =—1 s3 = —t3 Gs =T+ Py
Ps
| EL F1 El B2 c2 B2 B2 c2 B2
D A D A F2 E
E2
nt KF2 F2 Kc1 % a [K& o C
A D A D E F1
°T E1 F1 El B2 c2 B2 B2 c2 B2
0 ‘n o ‘n L " Snoy

Figure 15. Stratification of invariant tori. Representation of Ty, Tp and T3 (from left to right). Zero-
dimensional strata together with their stabilizers are given in Table 1. One-dimensional strata are listed
in Table 2 for one of the torus, T5. The construction is similar for two other tori.

the line equations are the same:

qbs = ¢ta ¢S = _¢ta ¢5 =T ¢t7 ¢s =m+ ¢t7 (A3)

but the stabilizers are different. Subsequently, every line (A.3) on a torus is an intersection line
of this torus with two spheres (one of these spheres is dynamically invariant) and every torus
has lines of intersections with all G-invariant spheres.

Thus the stratification of the Manakov-top phase space under the action of Doy A Py group
is constructed. In particular, the system of isolated critical orbits which is due to the symmetry
group action is given. All points forming these orbits are stationary points of any invariant
function [19, 20]. This result is in fact independent on the concrete form of integrals of motion
and relies only on symmetry arguments. Such preliminary symmetry analysis is quite important
in the qualitative study of molecular models as it is formulated in our previous works [26, 20,
34, 13].

B Ceritical points of energy-momentum map

In this section we find critical points of the energy momentum map defined on the classical
phase space of the Manakov top by two integrals of motion X, Y given in equation (2.1). By
definition, the point is critical, if the differentials of two integrals of motion, dX and dY are
linearly dependent, or equivalently the corresponding matrix of derivatives has non-maximal
rank. We can greatly simplify the problem of searching critical points by restricting differentials
on the symmetry invariant sub-manifolds.
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Figure 16. Affine charts of tori 2 and 3 with level lines of X and Y (a =4, b
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2). Critical curves (B.2)

For G-invariant tori with coordinates (A.2) the condition of non-maximal rank is

0X 09X
8¢8 a¢t _

det oy oy =0. (B.1)
6(]55 8¢t

The solution of equation (B.1) has for every torus (71,75, or T3) six roots. Four of them are,
naturally, the lines (A.3)

1 1
s = ta_tafa_f )
t t

which have the same form for 71, T5, T3. These lines are shown in Fig. 15. They are completely
defined by the symmetry group action and do not depend nor on values of a and b parameters
nor on the choice of invariant functions defined on S? ® S?. Two others roots are curves which
depend on the concrete form of functions X and Y specified by parameters a, b. Their analytic
form varies slightly with invariant torus as follows:

(a—b—1)t++/a(l —b)(t* — 1) +2(2b — a(1 + b))t

Tli S =

at?+b—1 ’
o (a+b-DtE\/(a—b)(t*+ 1) +2(b(a — 1) + a(b— 1))¢?
T : s= e E— ,
T, s (1—a—b)tj:\/(b—a)(t24+1)+2(b(a—1)+a(b—1))t2. (B.2)
t“+a—>b

Here s = tan(¢s/2) and t = tan(¢;/2). The form and position of curves (B.2) on tori T; depend
on a and b. For the parameters values a > b > 1 only two curves from (B.2), namely curves
defined for 75 and T3 tori, have a real range of values, they are shown on Fig. 16.

Similar construction of matrix for dX and dY for G-invariant spheres gives us the matrix
with determinant identically equal to zero (rank of the matrix is less then two). The rank of
this matrix equals identically zero in all points which belong to critical orbits listed in Table 1.
In all other points of the G-invariant spheres the rank of the matrix equals one. This means
that there are no other critical points on spheres except those isolated points found earlier from
the symmetry considerations.

C Classical energy momentum map

The set of two integrals F = {X,Y} (2.1) defines the mapping F : S? ® S? — R%. Possible
values f € R? of the map form the image of the map, or the base of the corresponding integrable
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Figure 17. Images of T}, T» and T3 tori under the EM map. Images of zero rank points on tori are
denoted by Latin letters.

fibration. We distinguish regular and critical values of the map. The set of critical values forms
what is often called the bifurcation diagram. Below, we call the set of all, regular and critical
values of EM map an energy-momentum diagram. In this section we discuss the form of the
energy-momentum diagram for one particular choice of parameters a, b and its variation along
the modification of parameters.

Let us first take parameters a, b in (2.1) as

a>b>1, (C.1)

and find images of critical points of rank zero (Table 1). Substitution of their coordinates into
equation (2.1) confirms that every point from one symmetry group orbit naturally gives the
same value of functions X and Y, so we have six critical values of EM map specified below by
their coordinates in R? plane of (X,Y) values:

B(170)7 C(—l,O),
> a—b—1 —4ab(1l —a) 7 a—b—1 4b(1 —a)(1-0)
l—a—-b" 1—a-b )’ 1l—a—-10’ l—a—0» ’

b—a—1 —4ab(1l—b) b—a—1 4a(l —a)(1—0)
A , , D( - , .
l—a—-b" 1—a-—5> l—a-10 l—a-0

Points B, C' do not depend on a, b parameters. For the choice of parameters as in equation (C.1),
the & component for all other points always lie in the [—1, 1] region and y component is always
negative.

Next we construct the images under the EM map of G-invariant tori (for 7; we have s; =
t; = 0). In Fig. 17 the colored regions correspond to images of regular points on tori, the bold
lines are the images of critical lines on tori. As it was mentioned earlier, for the given choice
of a, b parameters the curves (B.2) exist only for two tori. On the EM diagram the image of
these curves is represented as a part of parabola. We will call the neighboring area having the
form of a small curved triangle the parabola area. Images of lines of critical points on tori (A.3)
associated with linear dependence between dX and dY can be written explicitly as

Y =2ab(X — 1), Y =2a(1—-a)(X +1),
Y=2(1-a)(1-0b)(X-1), Y =2b(1 -0b)(X +1).

Explicit form for the boundary of the parabola region is simple only for a certain choices of a
and b, for example for a —b = 1 when the EM diagram has a symmetric form like that on Fig. 17.
The images of four G-invariant spheres belong to critical lines (A.3), they are shown on the
most left sub-figure of Fig. 18. Each of these lines is denoted by L; with its index corresponding
to a dynamical sphere S;, 7 € {1,5,6,7}. All other S; i € {2, 3,4, 8} are mapped to 2-D triangular
regions in EM diagram formed by regular values and bounded by lines of critical values.
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Figure 18. Images of the G-invariant spheres. First figure on the left represent four dynamically
G-invariant spheres having 1D-images (straight lines).

a=

b=1

Figure 19. ‘Critical’ values of a and b parameters (left). Right figures are the limiting cases correspon-
dingtoa —ococandto:i)b=a—1,ii)a—1>b>1,iii) 1 >b>0,iiii) 0 >b> —a+ 1.

So the boundaries of the image of EM map of Manakov top for some particular choice of
parameters a, b are formed by four straight lines and one parabola. There are four areas:
area of parabola (II), two triangles (III, IV) and a rhomb (I) (Fig. 2). Two lines always pass
through the fixed point (—1,0) (Lg and L7) and two other lines always pass through point (1, 0)
(L1 and Ls). When both parameters are of the same sign, ¥ function is negative and takes the
zero values only in mentioned points.

Now we will summarize briefly the dependence of the bifurcation diagram on the values of a
and b parameters. In the space of a, b parameters there are regular values corresponding to
qualitatively the same generic diagram formed by four straight lines and one parabola. Critical
values of a, b parameters correspond to some degenerate situations when the image of the EM
map qualitatively changes, i.e. some regions shrink to zero and some lines coincide. Moreover,
there is some symmetry in the space of a, b parameters which enables one to study only part of
the whole plane to recover all the qualitatively different cases of bifurcation diagrams. Fig. 19
which can be named with some abuse of the language as a ‘bifurcation diagram of the Manakov-
top-bifurcation-diagram’ illustrates the symmetry in the parameter space.

The critical values of parameters are the following lines in R? plane of (a,b) values: a =
0,1,+00; b = 0,1,+£00; a = b and a + b = 1. The last line (dashed on Fig. 19) is the most
degenerate one (all boundary lines are parallel or coincide: Lg = L7, L1 = L5 and Lg||L1). Two
lines a = b and a+b = 1 are the symmetry lines: operations of reflection in the parameter space
(a,b) — (b,a), and (a,b) — (—a+1,—b+ 1) do not modify equations defining boundaries of
regular regions on the image of EM map for Manakov top. The last two lines b = a+1 on Fig. 19
specify the values of parameters corresponding to the situation when the bifurcation diagram is
symmetric with respect to Y axis.



Qualitative Analysis of the Classical and Quantum Manakov Top 21

0.5

C=E |
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Figure 21. Bifurcation diagrams for Manakov top corresponding to fixed value of a and to three different
values of b = 0.5,0, —0.5.

Some modifications of bifurcation diagram under the variation of a,b parameters are shown
in Fig. 20 and in Fig. 21.

Different limiting cases of the bifurcation diagram are represented in Figs. 22 and 23.

It is quite interesting to see the correspondence between images of EM maps for different
limiting cases of Manakov top and EM diagrams for geodesic flow on three-dimensional ellipsoids
with partially coinciding semi-axes [9, 10].
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