| 
 SIGMA 3 (2007), 033, 6 pages      nlin.SI/0701006     
doi:10.3842/SIGMA.2007.033 
Contribution to the Proceedings of the Coimbra Workshop on
Geometric Aspects of Integrable Systems 
Continuous and Discrete (Classical) Heisenberg Spin Chain Revised
Orlando Ragnisco and Federico Zullo
 Dipartimento di Fisica,   Università di Roma Tre and
Istituto Nazionale di Fisica Nucleare Sezione di Roma Tre,  Via
Vasca Navale 84, I-00146 Roma, Italy
 
 
Received December 29, 2006; Published online February 26, 2007 
Abstract
 
Most of the work done in the past on the integrability
structure of the Classical Heisenberg Spin Chain (CHSC) has been
devoted  to studying the su(2) case, both at the continuous and
at the discrete level. In this paper we address the problem of
constructing integrable  generalized ''Spin Chains'' models, where
the relevant field variable is represented by  a N × N
matrix whose eigenvalues are the Nth roots of unity. To
the best of our knowledge, such an extension has never been
systematically pursued. In this paper, at first we  obtain  the
continuous N × N generalization of the CHSC  through the
reduction technique for Poisson-Nijenhuis manifolds, and exhibit
some explicit, and hopefully interesting, examples for 3 × 3
and 4 × 4 matrices;  then, we discuss the much more
difficult discrete case, where  a few partial new results are
derived and a  conjecture is made for the general case.
  
 Key words:
integrable systems; Heisenberg chain; Poisson-Nijenhuis
manifolds; geometric reduction; R-matrix; modified
Yang-Baxter. 
pdf (186 kb)  
ps (140 kb)  
tex (10 kb)
 
 
References
 
- Takhtajan L.A., Integration of the continuous Heisenberg spin chain through
the inverse scattering method, Phys. Lett. A 64
(1977), 235-237.
 
- Faddeev L.D., Takhtajan L.A.,  Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Berlin, 1987.
 
- Orphanidis S.J., SU(N) Heisenberg spin chain, Phys. Lett. A 75 (1980),  304-306.
 
- Kulish P.P., Sklyanin E.K., Quantum spectral transform method,
recent developments, in Integrable Quantum Field Theories, 
Lecture Notes in Physics, Vol. 151, Editors J. Hietarinta and
C. Montonen,  1982, 61-119.
 
- Sklyanin E.K.,  Quantum inverse scattering method. Selected topics, in Quantum Groups and Quantum Integrable Systems, Editor M.L. Ge, Nankai Lectures in Mathematical Physics, World Scientific, Singapore, 1992, 63-97,
    hep-th/9211111.
 
- Bethe H.A., Zur Theorie der Metalle I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Z. Phys. 71 (1931), 205-226.
 
- Magri F., Morosi C., A geometrical characterization of
  integrable Hamiltonian systems through the theory of Poisson-Nijenhuis
  manifolds,  Quaderno di matematica S19, Dipartimento di matematica,
  Università di Milano, 1984.
 
- Magri F., Morosi C., Ragnisco O., Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications,
Comm. Math. Phys. 99 (1985), 115-140.
 
- Kosmann-Schwarzbach Y., Magri F.,
Poisson-Nijenhuis structures, Ann. Inst. H. Poincaré, Phys. Theor. 53 (1990), 35-81.
 
- Potts R., Some generalized order-disorder transformations, Proc. Camb. Phil. Soc. 48 (1952), 106-109.
 
- Wu F.Y., The Potts model, Rev. Modern Phys. 54 (1982), 235-268.
 
- Hartmann A.K., Calculation  of partition functions by measuring component distributions, Phys. Rev. Lett. 94 (2005), 050601, 4 pages, cond-mat/0410583.
 
- Ragnisco O., Santini P.M., A unified algebraic approach to
  integral and discrete evolution equations, Inverse Problems 6 (1990),
  441-452.
 
- Nijenhuis A., Connection-free differential geometry, in Proc. Conf. Differential Geometry and
  Applications, (August 28 - September 1, 1995, Masaryk
  University, Brno, Czech Republic), Editors J. Janyska, I. Kolar and J. Slovak, Masaryk University Brno,  1996, 171-190.
 
- Kreyszig E., Introductory functional analysis with
  applications, Wiley Classic Library, 1989.
 
- Morosi C.,
The R-matrix theory and the reduction of Poisson manifolds 
J. Math. Phys. 33 (1992), 941-952.
 
- Morosi C., Tondo G.,
Yang-Baxter equations and intermediate long wave hierarchies,
Comm.  Math. Phys 122 (1989), 91-103.
 
- Morosi C., Tondo G.,
Some remarks on the bi-Hamiltonian structure of integral and
discrete evolution equations, Inverse Problems 6
(1990),  557-566.
 
 
 | 
 |