| 
 SIGMA 2 (2006), 049, 20 pages      math.CA/0605204     
doi:10.3842/SIGMA.2006.049 
On One Approach to Investigation of Mechanical Systems
Valentin D. Irtegov and  Tatyana N. Titorenko
 Institute for Systems Dynamics and Control Theory, SB RAS, Irkutsk, Russia 
 
Received November 18, 2005, in final form April 11, 2006; Published online May 08, 2006 
Abstract
 
The paper presents some results of qualitative analysis
of Kirchhoff's
 differential equations describing motion of a rigid body in ideal
 fluid in Sokolov's case.  The research methods are based on
 Lyapunov's  classical results. Methods of computer
 algebra implemented in the computer algebra system (CAS) "Mathematica" were
 also used. Combination of these methods  allowed us to obtain rather
 detailed information on qualitative properties for some classes of solutions
 of the equations.
  
Key words:
rigid body mechanics; completely integrable systems; qualitative analysis; invariant manifolds; stability;
bifurcations; computer algebra. 
pdf (246 kb)  
ps (205 kb)  
tex (22 kb)
 
 
References
 
- Borisov A.V., Mamaev I.S., Sokolov V.V., A new integrable case on
so(4), Dokl. Akad. Nauk, 2001, V.381, N 5, 614-615
(English transl.: Dokl. Phys., 2001, V.46, N 12, 888-889).
 
- Cox D., Little J.,  O'Shea D., Ideals, varieties, and algorithms,
New York, Springer-Verlag, 1997.
 
- Harlamov P.V., On motion in a fluid of a body bounded by a multiply connected
surface, Prikl. Mekh. Tekhn. Fiz., 1963, N 4, 17-29 (in Russian).
 
- Kirchhoff G., Vorlesungen über Mathematische Physik.
Mechanik, Leipzig, B. Teubner, Bd. 1, 1897.
 
- Kovalev Yu.M., On the stability of steady helical motions in a
fluid of a body bounded by a multiply connected surface, J.
Appl. Math. Mech.,
 1968, V.32, N 2, 272-275.
 
- Kozlov V.V., Onishchenko D.A., The motion in a perfect fluid of
a body containing a moving point mass, J. Appl. Math. Mech.,
2003, V.67, N 4, 553-564.
 
- Lamb H., Hydrodynamics, New York, Dover Publ., 1945.
 
-  Lyapunov A.M., On permanent helical motions of a rigid body in
fluid, Moscow-Leningrad, USSR Acad. Sci., Collected Works,
Vol. 1, 1954 (in Russian).
 
- Lyapunov A.M., Stability of motion, New York, Academic Press,
 1966.
 
- Oparina E.I., Troshkin O.V., Stability of Kolmogorov flow in a
channel with rigid walls, Dokl. Akad. Nauk, 2004, V.398,
N 4, 487-491 (English transl.: Dokl. Phys., 2004, V.49,
N 10, 583-587).
 
- Sokolov V.V., A new integrable case for the Kirchhoff equation,
Teoret. Mat. Fiz., 2001, V.129, N 1, 31-37  (English
transl.: Theoret. and Math. Phys., 2001, V.129, N 1,
1335-1340).
 
-  Rumyantsev V.V., A comparison of three methods of constructing Lyapunov
 functions, J. Appl. Math. Mech.,
1995, V.59, N 6, 873-877.
 
- Ryabov P.E., Bifurcations of first integrals in the Sokolov
case, Teoret. Mat. Fiz., 2003, V.134, N 2, 207-226
(English transl.: Theoret. and Math. Phys., 2003, V.34, N 2,
181-197).
 
 
 | 
 |