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Abstract. — In this note, we compute the adiabatic limit of Chern forms for holomor-
phic fibrations over complex curves. We assume that the projection of the fibration
has only isolated critical points.

Résumé(Points critiques isolés et limites adiabatiques des formes de Chern). — Dans
cet article, nous calculons la limite adiabatique des formes de Chern pour les fibra-
tions holomorphes sur des coubes complexes. Nous supposons que le projection de la
fibration n’a que des points critiques isolés.

1. Introduction

Let X be a complex manifold of dimension n + 1 and S a Riemann surface. Let

f : X → S be a proper surjective holomorphic map. The critical locus of f is the

analytic subset of X defined by

Σf = {p ∈ X ; dfp = 0}.

In this note, we always assume that Σf is discrete.

Let gTX be a Hermitian metric on the holomorphic tangent bundle TX . Let gTS

be a Hermitian metric on TS. Define the family of Hermitian metrics on TX by

gTX
ε = gTX +

1

ε2
f∗gTS (ε > 0).

Let ∇TX,gT X
ε be the holomorphic Hermitian connection of (TX, gTX

ε ), whose cur-

vature form is denoted by RTX,gT X
ε . Then RTX,gT X

ε is a (1, 1)-form on X with values

in End(TX). Let ci(TX, g
TX
ε ) be the i-th Chern form of (TX, gTX

ε ).
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Let P (c) = P (c1, . . . , cn+1) ∈ C[c1, . . . , cn+1] be a polynomial in the variables

c1, . . . , cn+1. The purpose of this note is to study the family of differential forms

P (TX, gTX
ε ) := P (c(TX, gTX

ε )) as ε → 0, called the adiabatic limit, under certain

assumptions on the metrics gTX , gTS (see Assumption 2.1).

The study of this problem was initiated by Bismut and Bost in [3, Sect. 6 (a)]; they

treated the case where dimX = 2, the map f has only non-degenerate critical points,

and P (c) is the Todd polynomial. They applied their formula for the adiabatic limit

to compute the holonomy of the determinant line bundles on S ([3, Sect. 6 (b), (c)]).

Then Bismut treated in [2, Sect. 1 (e)] the case where dimX is arbitrary, the critical

locus of the map f is locally defined by the equation f(z0, z1, z
′) = z0z1, and P (c) is

arbitrary; he used his result to study the boundary behavior of Quillen metrics.

The goal of this note is to establish the convergence of the adiabatic limit

limε→0 P (TX, gTX
ε ) in the sense of currents on X and to compute the explicit

formula for it. In particular, we extend [3, Sect. 6 (a)] to the case where f has only

isolated critical points. Our result (Theorem 2.2) is compatible with [15].

2. Statement of the Result

Let f : X → S be a proper surjective holomorphic map between complex manifolds.

Throughout this note, we assume the following:

(i) The critical locus Σf is a discrete subset of X .

(ii) dimX = n+ 1 and dimS = 1.

Let gTX and gTS be Hermitian metrics on TX and TS, respectively. We define

the family of Hermitian metrics {gTX
ε }ε>0 by

gTX
ε := gTX + ε−2f∗gTS.

The unit disc {s ∈ C; |s| < 1} and the unit punctured disc {s ∈ C; 0 < |s| < 1} are

denoted by ∆ and ∆∗ = ∆ r {0}, respectively.

2.1. Assumptions on metrics. — Let Γf ⊂ X × S be the graph of f :

Γf = {(x, t) ∈ X × S; f(x) = t}.

Let pr1 : Γf → X and pr2 : Γf → S be the natural projections. Let (Up, (z0, . . . , zn))

be a coordinate neighborhood of p ∈ Σf in X centered at p. Let (Df(p), t) be a

coordinate neighborhood of f(p) in S centered at f(p). Assume that

(i) Up ∩ Uq = ∅ for p, q ∈ Σf with p 6= q;

(ii) (Up, p) ∼= (∆n+1, 0);

(iii) (f(Up), f(p)) ⊂ (Df(p), 0).
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Then Γf |Up
is a submanifold of Up × Df(p). Let ι : Γf |Up

↪→ Up × Df(p) be the

inclusion. We have the commutative diagram:

(Γf |Up
, (p, f(p)))

ι
//

pr1
��

(Up ×Df(p), (0, 0))

pr2
��

(Up, p)
f

// (Df(p), 0).

Assumption 2.1. — Let δ > 0 be a constant. Assume that the Hermitian metrics gTX

and gTS are expressed as follows on each Up (p ∈ Σf ):

pr∗1g
TX |(Γf |Up ) =

{
∑

i

dzi ⊗ dzi + δ · dt⊗ dt

}∣∣∣∣∣
(Γf |Up )

,(1)

gTS|Df(p)
= dt⊗ dt.(2)

We are mainly interested in the case δ = 0 because gTX |Up
is the restriction of the

Euclidean metric on Cn+1 in this case.

2.2. Chern forms. — Let Mn+1(C) be the set of all complex (n + 1) × (n + 1)

matrices. For A ∈ Mn+1(C), set c(A) = det(In+1 +A) = 1 + c1(A) + · · · + cn+1(A),

where ci(A) is homogeneous of degree i. For a polynomial P (c) = P (c1, . . . , cn+1) ∈

C[c1, . . . , cn+1], set P (A) = P (c1(A), . . . , cn+1(A)).

Denote by Ap,q
X (resp. Ar

X) the vector space of smooth (p, q)-forms (resp. r-forms)

on X . For a complex vector bundle F on X , the set of smooth (p, q)-forms on X

with values in F is denoted by Ap,q
X (F ). For Φ ∈ A∗

X , Φtop denotes the bidegree

(dimX, dimX)-part of Φ. Hence Φtop ∈ An+1,n+1
X .

Let (E, hE) be a holomorphic Hermitian vector bundle on X . Let ∇E,hE

be the

holomorphic Hermitian connection. Namely, the (0, 1)-part of ∇E,hE

is given by the

∂-operator and ∇E,hE

is compatible with the metric hE (cf. [10, Chap. 1, Sect. 4]).

Let RE,hE

= (∇E,hE

)2 ∈ A1,1
X (End(E)) be the curvature form of ∇E,hE

. Set

c(E, hE) =

rank(E)∑

i=0

ci(E, h
E) := c

(
i

2π
RE,hE

)
∈
⊕

p>0

Ap,p
X .

2.3. The convergence of adiabatic limits. — Let

Tf := ker{f∗ : TX |XrΣf
−→ f∗TS}

be the relative holomorphic tangent bundle of the map f : X → S. Then Tf is a

holomorphic subbundle of TX |XrΣf
.

Let gTf = gTX |Tf = (gTX
ε )|Tf be the Hermitian metric on Tf induced from gTX

ε .

Then gTf is independent of ε > 0. Let RTf,gT f

be the curvature of (Tf, gTf). The

i-th Chern form ci(Tf, g
Tf) lies in Ai,i

XrΣf
for i = 1, . . . , n.
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For p ∈ Σf , let µ(f, p) ∈ N be the Milnor number of f at p, i.e.,

µ(f, p) := dimC C{z0, . . . , zn}
/( ∂f

∂z0
(z), . . . ,

∂f

∂zn
(z)

)
,

where ( ∂f
∂z0

, . . . , ∂f
∂zn

) ⊂ C{z0, . . . , zn} is the ideal generated by the germs ∂f
∂z0

, . . . , ∂f
∂zn

.

The Dirac δ-current supported at p ∈ Σf is the (n + 1, n + 1)-current δp on X

defined by ∫

X

ϕ δp := ϕ(p), ∀ ϕ ∈ C∞
0 (X).

For a formal power series of one variable ϕ(t) ∈ C[[t]], let ϕ(t)|tm be the coefficient

of the term tm in ϕ(t), i.e., ϕ(t)|tm = 1
m!

(
d
dt

)m
|t=0 ϕ(t).

Main Theorem 2.2. — With the same notation as above, assume that Σf is a discrete

subset of X and that the metrics gTX , gTS verify Assumption 2.1. Then the following

hold:

(1) The differential form P (Tf⊕f∗TS, gTf ⊕f∗gTS)top ∈ An+1,n+1
XrΣf

extends trivially

to a smooth (n+ 1, n+ 1)-form on X.

(2) The adiabatic limit limε→0 P (TX, gTX
ε )top converges to a (n + 1, n + 1)-current

on X. Moreover, the following identity holds:

lim
ε→0

P (TX, gTX
ε )top = P (Tf ⊕ f∗TS, gTf ⊕ f∗gTS)top(2.1)

+P (−t, . . . , (−t)n+1)|tn+1 ·
∑

p∈Σf

µ(f, p) δp,

In particular, the following equation of currents on Up holds:

(2.2) lim
ε→0

P (TX, gTX
ε )top|Up

= P (−t, . . . , (−t)n+1)|tn+1 · µ(f, p) δp.

Corollary 2.3([8], [4, Example 14.1.5], [7, Chap. VI, 3], [9, Cor. 2.4])
Let X be a compact complex manifold of dimension n+1 and S a compact Riemann

surface. Let f : X → S be a proper surjective holomorphic map with general fiber F .

Let χEP(X), χEP(F ), χEP(S) be the topological Euler-Poincaré numbers of X, F , S,

respectively. If Σf is a finite set, then the following identity holds:

χEP(X) = χEP(F )χEP(S) + (−1)n+1
∑

p∈Σf

µ(f, p).

Proof of Corollary 2.3. — Consider the polynomial P (A) = cn+1(A) = det(A). Then

the corresponding genus is the Euler characteristic. Since

cn+1(Tf ⊕ f∗TS, gTf ⊕ f∗gTS) = cn(Tf, gTf) ∧ f∗c1(TS, g
TS) ∈ An+1,n+1

X

by Theorem 2.2 (1), the result follows from (2.1) and the projection formula:
∫

X

cn+1(Tf ⊕ f∗TS, gTf ⊕ f∗gTS) =

∫

F

cn(Tf, gTf)|F

∫

S

c1(TS, g
TS)

= χEP(F )χEP(S).
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Example 2.4. — Let A be an Abelian variety of dimension g and E an elliptic curve.

Let X ⊂ A× E be a smooth hypersurface such that the restriction of the projection

pr2|X : X → E has only isolated critical points. Set f = pr2|X .

Let gTA and gTE be the flat Kähler metrics on TA and TE, respectively. For

ε > 0, set

gTX
ε = gTA ⊕

(
1 +

1

ε2

)
gTE

∣∣∣∣
X

.

Then, for all x ∈ X , there is a neighborhood Ux in A × E such that the metrics

gTX := gTX
∞ and gTE verify Assumption 2.1 on Ux. The first term of the R.H.S. of

(2.1) vanishes identically on X by Propositions 4.1 and 4.2 below. Hence it follows

from (2.1) that

(2.3) lim
ε→0

P (TX, gTX
ε )top = P (−t, . . . , (−t)g)|tg ·

∑

p∈Σf

µ(f, p) δp.

In particular, the support of the adiabatic limit limε→0 P (TX, gTX
ε )top concentrates

on the critical locus Σf in this example.

Remark 2.5. — We can verify (2.3) as an identity of cohomology classes as follows.

Let N be the normal bundle of X in A × E. Then we have the exact sequence of

holomorphic vector bundles on X :

0 −→ TX −→ T (A× E)|X = Cg+1 −→ N −→ 0,

from which we obtain c(X) = c(N)−1 = (1+ c1(N))−1. Hence ci(X) = (−c1(N))i for

i = 1, . . . , g and

P (c(X)) = P (−t, . . . , (−t)g)|tg · c1(N)g = (−1)gP (−t, . . . , (−t)g)|tg · cg(X).

Since χEP(E) = 0, this yields that
∫

X

P (c(X)) = (−1)gP (−t, . . . , (−t)g)|tg · χEP(X)

= (−1)gP (−t, . . . , (−t)g)|tg ·

{
χEP(F )χEP(E) + (−1)g

∑

p∈Σf

µ(f, p)

}

= P (−t, . . . , (−t)g)|tg ·
∑

p∈Σf

µ(f, p).

3. An analytic characterization of the Milnor number

Set U := ∆n+1. We denote by z = (z0, . . . , zn) the system of coordinates of U . Let

f : (U, 0) → (C, 0) be a holomorphic function on U such that

Σf = {0}.
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The Milnor number µ(f, 0) is denoted by µ(f), for short. Set ‖df‖2 =
∑n

i=0 |
∂f
∂zi

|2.

We prove the following result in this section, which shall be used in the proof of the

Main Theorem 2.2 in Section 5.

Theorem 3.1. — The following equation of currents on U holds:

lim
ε→0

{
i

2π
∂∂ log(‖df‖2 + ε2)

}n+1

= µ(f) δ0.

Following [2, Sect. 1 (c)], we regard ε as a complex parameter and replace ε2 by

|ε|2 in what follows. Hence ε ∈ ∆.

3.1. Proof of Theorem 3.1. — Define the holomorphic map ν : (U × ∆) r

{(0, 0)} → Pn+1 by

ν(z, ε) =

(
∂f

∂z0
(z) : · · · :

∂f

∂zn
(z) : ε

)
.

Then ν extends to a meromorphic map from U×∆ into Pn+1 with indeterminacy locus

{(0, 0)}. Let π : (Ũ × ∆, E) → (U × ∆, (0, 0)) be the resolution of the indeterminacy

of ν. Hence E = π−1(0, 0). Then there exists a holomorphic map ν̃ : Ũ × ∆ → Pn+1

such that ν̃|
(Ũ×∆)rE

= ν ◦ π. Let ˜U × {0} ⊂ Ũ × ∆ be the proper transform of the

divisor U × {0} ⊂ U × ∆.

Set

H = {(z : ε) ∈ Pn+1; ε = 0} ⊂ Pn+1,

where (z : ε) = (z0 : · · · : zn : ε) are the homogeneous coordinates of Pn+1. Then

H ∼= Pn. Since ν(U × {0} r {(0, 0)}) ⊂ H and hence ν̃( ˜U × {0} r E) ⊂ H , we get

(3.1) ν̃( ˜U × {0}) ⊂ H.

Let p : U ×∆ → ∆ be the natural projection. Set p̃ = p ◦ π. Then p̃ : Ũ × ∆ → ∆

is a holomorphic map such that

(3.2) p̃−1(ε) =

{
U × {ε} (ε 6= 0)

˜U × {0} + Ẽ (ε = 0).

Here Ẽ is a (possibly non-reduced) divisor on Ũ × ∆ such that Supp(Ẽ) ⊂ E.

Let

ωPn+1 =
i

2π
∂∂ log(‖z‖2 + |ε|2)

be the Fubini-Study form on Pn+1. Then we have the identity on U × ∆ r {(0, 0)}:

ν∗ωPn+1 =
i

2π
∂∂ log(‖df‖2 + |ε|2).
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Proposition 3.2. — The following equation of currents on U holds:

lim
ε→0

{
i

2π
∂∂ log(‖df‖2 + |ε|2)

}n+1

=

(∫

eE

ν̃∗ωn+1
Pn+1

)
δ0.

Proof. — Let ϕ ∈ C∞
0 (U). Since π : Ũ × ∆ r p̃−1(0) → U × ∆ r p−1(0) is an

isomorphism and since ν̃ = ν ◦π on Ũ × ∆r p̃−1(0), we have for all ε ∈ ∆∗ = ∆r{0}:
∫

U×{ε}

ϕ · ν∗ωn+1
Pn+1 =

∫

ep−1(ε)

π∗ϕ · π∗ν∗ωn+1
Pn+1 =

∫

ep−1(ε)

π∗ϕ · ν̃∗ωn+1
Pn+1.

Since π∗ϕ · ν̃∗ωn+1
Pn+1 ∈ An+1,n+1

Ũ×∆
, we obtain from [1, Th.1] that

lim
ε→0

∫

ep−1(ε)

π∗ϕ · ν̃∗ωn+1
Pn+1 =

∫

ep−1(0)

π∗ϕ · ν̃∗ωn+1
Pn+1 ,

which, together with (3.2), yields that

lim
ε→0

∫

U×{ε}

ϕ · ν∗ωn+1
Pn+1 =

∫

Ũ×{0}

π∗ϕ · ν̃∗ωn+1
Pn+1 + ϕ(0)

∫

eE

ν̃∗ωn+1
Pn+1

= ϕ(0)

∫

eE

ν̃∗ωn+1
Pn+1 .

Here the second term of the R.H.S. of the first equality follows from (π∗ϕ)|E = ϕ(0)

and the second equality from (3.1) because (ωPn+1 |H)n+1 ≡ 0.

To prove that
∫

eE
ν̃∗ωn+1

Pn+1 = µ(f), we need the following:

Proposition 3.3. — Let χ(z) ∈ C∞
0 (U) and assume that χ(z) = 1 when ‖z‖ 6 3

4 . For

ε ∈ ∆∗ = ∆ r {0}, set

a(ε) :=

∫

U×{ε}

χ(z) log

(
|ε|2

‖df(z)‖2 + |ε|2

)
ν∗ωn+1

Pn+1 ,

b(ε) :=

∫

U×{ε}

χ(z) log(‖df(z)‖2 + |ε|2) ν∗ωn+1
Pn+1.

Then there exist ψ1(ε), ψ2(ε) ∈ C0(∆) such that for all ε ∈ ∆∗ = ∆ r {0},

a(ε) = ψ1(ε), b(ε) = µ(f) log |ε|2 + ψ2(ε).

The proof of Proposition 3.3 is technical and shall be given in Section 3.2. However,

it is easy to verify the proposition when f has a non-degenerate critical point at 0

(see Lemma 3.11 below).

Proof of Theorem 3.1. — By Proposition 3.3, we have

log |ε|2
∫

U×{ε}

χ(z) ν∗ωn+1
Pn+1 = a(ε) + b(ε) = µ(f) log |ε|2 + ψ1(ε) + ψ2(ε).

Hence, as ε→ 0,
∫

U×{ε}

χ(z) ν∗ωn+1
Pn+1 = µ(f) +O

(
1

log |ε|

)
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



450 A.Y. YOSHIKAWA & K. YOSHIKAWA

Comparing this with Proposition 3.2 and using χ(0) = 1, we get

µ(f) = lim
ε→0

∫

U×{ε}

χ(z) ν∗ωn+1
Pn+1 = χ(0)

∫

eE

ν̃∗ωn+1
Pn+1 =

∫

eE

ν̃∗ωn+1
Pn+1,

which, together with Proposition 3.2, yields the theorem.

3.2. Proof of Proposition 3.3 via the Picard-Lefschetz principle. — In the

rest of Section 3, we prove Proposition 3.3. Our approach is as follows:

(I) We take a morsification F (z, w) of f(z) and extend the meromorphic map ν to

a meromorphic map N from U × ∆2 into Pn+1.

(II) Replacing df by dzF and ν by N in the definitions of a(ε) and b(ε), we obtain

their extensionsA(ε, w), B(ε, w) ∈ C∞(∆∗×∆) such thatA(ε, 0) = a(ε) andB(ε, 0) =

b(ε).

(III) Proposition 3.3 is deduced from the regularities of A(ε, w) and B(ε, w); we

prove that A(ε, w) ∈ C1(∆2) and B(ε, w) − µ(f) log |ε|2 ∈ C∞(∆2).

To distinguish between the target C of f(z) and the parameter space ∆2, we denote

by (ε, w) the coordinates of ∆2.

3.2.1. Preliminaries

a) A holomorphic function F (z, w) ∈ O(U ×∆) satisfying the following properties

(i) and (ii) is called a morsification of f(z):

(i) F (z, 0) = f(z);

(ii) F |U×{w} ∈ O(U) has only non-degenerate critical points when w 6= 0.

There always exists a morsification of f(z) if we replace U by a smaller open subset

of 0 ∈ Cn+1 (cf. [13, Loo, Cor. 4.10 and 4.11 and Prop. 4.12]).

Let F (z, w) be a morsification of f(z). Assume that for every w ∈ ∆,

(3.3) ΣF (·,w) ⊂

{
z ∈ U ; ‖z‖ 6

1

2

}
.

This can be satisfied if we replace the disc ∆ = {w ∈ C; |w| < 1} by a smaller one.

Associated to the morsification F (z, w), we deform the meromorphic map ν as

follows: Define the meromorphic map N : U × ∆2 → Pn+1 by

N (z, ε, w) =

(
∂F

∂z0
(z, w) : · · · :

∂F

∂zn
(z, w) : ε

)
.

Then we have N|U×∆∗×{0} = ν|U×∆∗ . Outside the indeterminacy locus of N ,

N ∗ωPn+1(z, ε, w) =
i

2π
∂∂ log(‖dzF (z, w)‖2 + |ε|2),

where dzF = ( ∂F
∂z0

, . . . , ∂F
∂zn

). The indeterminacy locus of N is given by the set

{(z, 0, w) ∈ U × ∆2; dzF (z, w) = 0} =
⋃

w∈∆
(ΣF (·,w), 0, w).

Lemma 3.4. — Set V := {z ∈ U ; ‖z‖ > 3
4}. Then dzF (z, w) is nowhere vanishing on

V × ∆2. Moreover, N ∗ωn+1
Pn+1 ∧

dε
ε ∈ An+2,n+1

V ×∆2 and N ∗ωn+1
Pn+1 ∧

dε
ε ∈ An+1,n+2

V ×∆2 .
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Proof. — For i = 0, . . . , n, set Vi = {(z, ε, w) ∈ V ×∆2; ∂F
∂zi

(z, w) 6= 0} and fi = ∂F
∂zi

.

Then every Vi is an open subset of V × ∆2. On V0, the differential forms

ω0 := f−1
0 d

(
f1
f0

)
∧ · · · ∧ d

(
fn

f0

)
, ω1 := f−n−1

0 df1 ∧ · · · ∧ dfn ∧ df0

are holomorphic. Let (ζ1, . . . , ζn+1) be the inhomogeneous coordinates of Pn+1, where

ζi = zi/z0 for i = 1, . . . , n and ζn+1 = ε/z0. Then one can verify that

N ∗(dζ1 ∧ · · · ∧ dζn+1)|V0 = ω0 ∧ dε− ε ω1.

Hence there exists a smooth function g(z, ε, w) on V0 such that

N ∗ωn+1
Pn+1 |V0×∆ = g (ω0 ∧ dε− ε ω1) ∧ (ω0 ∧ dε− ε ω1)

= g {(−1)nω0 ∧ ω0 ∧ dε ∧ dε− ω1 ∧ ω0 ∧ ε dε

−(−1)nω0 ∧ ω1 ∧ ε dε+ |ε|2ω1 ∧ ω1}.

By this formula, we get N ∗ωn+1
Pn+1 ∧ dε

ε ∈ An+2,n+1
V0

and N ∗ωn+1
Pn+1 ∧ dε

ε ∈ An+1,n+2
V0

.

Similarly, we can verify that N ∗ωn+1
Pn+1∧

dε
ε ∈ An+2,n+1

Vi
and N ∗ωn+1

Pn+1 ∧
dε
ε ∈ An+1,n+2

Vi

for i = 1, . . . , n. Since V × ∆2 =
⋃n

i=0 Vi by (3.3), this implies the result.

b) Let Ω ⊂ ∆2 be a domain. Define the subspace A∗
U×Ω ,vc ⊂ A∗

U×Ω
by

A∗
U×Ω ,vc := {ω ∈ A∗

U×Ω
; Supp(ω) ⊂ K × Ω for some compact subset K ⊂ U}.

We define the linear map
∫

U
: A∗

U×Ω ,vc → A∗−2n−2
Ω

as follows: For θ(ε, w) ∈ A∗
Ω

and

ω(z, ε, w) = a(z, ε, w) dzI ∧ dzJ ∧ θ(ε, w) ∈ A
∗+|I|+|J|
U×Ω ,vc ,

(∫

U

ω
)
(ε, w) :=

{
(
∫

U
a(z, ε, w) dz0 . . . dzndz0 . . . dzn)θ(ε, w) (I = J = {0, . . . , n}),

0 (otherwise),

where dzI = dzi1 ∧ · · · ∧ dzip
and |I| = p for I = {i1 < · · · < ip}. Then we extend

linearly the map
∫

U to A∗
U×Ω ,vc. One can verify that for all ω ∈ A∗

U×Ω ,vc,

(3.4) d∆2

( ∫

U

ω
)

=

∫

U

dU×∆2 ω, ∂∆2∂∆2

(∫

U

ω
)

=

∫

U

∂U×∆2∂U×∆2 ω.

c) Identify C2 with R4. Then we may regard Ω ⊂⊂ R4. For p > 1, Lp(Ω) (resp.

Lp
loc(Ω)) denotes the vector space of (resp. locally) Lp-integrable functions on Ω .

When p = ∞, L∞(Ω) (resp. L∞
loc(Ω)) denotes the vector space of (resp. locally)

bounded functions on Ω . For a multi-index k = (k1, . . . , k4), k1, . . . , k4 > 0 and for

a function f ∈ Lp
loc(Ω), set |k| = k1 + · · · + k4 and Dkf(x) = ∂k1

x1
· · · ∂k4

x4
f(x), where

Dkf is the derivative of f of order |k| in the sense of distributions on Ω . Obviously,

Dkf 6∈ Lp
loc(Ω) in general. For a real number 1 6 p < ∞ and an integer l > 1, we

define the Sobolev spaces W l,p(Ω) ⊂W l,p
loc(Ω) by

W l,p(Ω) := {f ∈ Lp(Ω); Dkf ∈ Lp(Ω) if |k| 6 l},

W l,p
loc(Ω) := {f ∈ Lp

loc(Ω); Dkf ∈ Lp
loc(Ω) if |k| 6 l}.
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We refer to [5, Chap. 1-9] and [6, Chap. 3] for distributions, currents, Sobolev spaces,

and the regularity theory of the Laplace operator.

3.2.2. Some lemmas. — Recall that V = {z ∈ U ; ‖z‖ > 3
4} and that χ ∈ C∞

0 (U) is

a function such that χ ≡ 1 on UrV = {z ∈ U ; ‖z‖ 6 3
4} (cf. Proposition 3.3). Hence

Supp(dχ) ⊂ V . By (3.3), we have the following for all w ∈ ∆:

(3.5) Supp(dχ) ∩ ΣF (·,w) ⊂ V ∩

{
z ∈ U ; ‖z‖ 6

1

2

}
= ∅.

Definition 3.5. — For (ε, w) ∈ ∆∗ × ∆, set

A(ε, w) :=

∫

U

χ(z) log

(
|ε|2

‖dzF (z, w)‖2 + |ε|2

)
N ∗ωn+1

Pn+1,

B(ε, w) :=

∫

U

χ(z) log(‖dzF (z, w)‖2 + |ε|2)N ∗ωn+1
Pn+1 .

Then A(ε, w) and B(ε, w) are smooth functions on ∆∗×∆ such that A(ε, 0) = a(ε)

and B(ε, 0) = b(ε). To establish (III), we study the regularities of ∂∆∂∆A and

∂∆∂∆B. For this purpose, we introduce the following (1, 1)-forms on ∆∗ × ∆:

Write ∂ = ∂U×∆2 and ∂ = ∂U×∆2 in what follows.

Definition 3.6. — For (ε, w) ∈ ∆∗ × ∆, set

K(ε, w) :=
i

2π

∫

U

log

(
|ε|2

‖dzF (z, w)‖2 + |ε|2

)
∂∂χ(z) ∧N ∗ωn+1

Pn+1(z, ε, w)

+
i

2π

∫

U

∂χ(z) ∧ ∂ log

(
|ε|2

‖dzF (z, w)‖2 + |ε|2

)
∧ N ∗ωn+1

Pn+1(z, ε, w)

−
i

2π

∫

U

∂χ(z) ∧ ∂ log

(
|ε|2

‖dzF (z, w)‖2 + |ε|2

)
∧ N ∗ωn+1

Pn+1(z, ε, w),

L(ε, w) :=
i

2π

∫

U

log(‖dzF (z, w)‖2 + |ε|2) ∂∂χ(z) ∧ N ∗ωn+1
Pn+1(z, ε, w)

+
i

2π

∫

U

∂χ(z) ∧ ∂ log(‖dzF (z, w)‖2 + |ε|2) ∧N ∗ωn+1
Pn+1(z, ε, w)

−
i

2π

∫

U

∂χ(z) ∧ ∂ log(‖dzF (z, w)‖2 + |ε|2) ∧N ∗ωn+1
Pn+1(z, ε, w).

Then K(ε, w) and L(ε, w) are real smooth (1, 1)-forms on ∆∗ × ∆ such that

K(ε, w) + L(ε, w) =

{
i

2π

∫

U

∂∂χ(z) ∧N ∗ωn+1
Pn+1

}
log |ε|2

+
i

2π

∫

U

{
∂χ(z) ∧N ∗ωn+1

Pn+1 ∧
dε

ε
− ∂χ(z) ∧ N ∗ωn+1

Pn+1 ∧
dε

ε

}
.(3.6)
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Lemma 3.7. — On ∆∗ × ∆, the following equations hold:

(1)
i

2π
∂∆2∂∆2A(ε, w) = K(ε, w), (2)

i

2π
∂∆2∂∆2B(ε, w) = L(ε, w).

Proof

(1) By (3.4), we get

i

2π
∂∆2∂∆2A(ε, w) =

i

2π

∫

U

∂∂

{
χ(z) log

(
|ε|2

‖dzF (z, w)‖2 + |ε|2

)
N ∗ωn+1

Pn+1

}

=
i

2π

∫

U

χ(z) ∂∂

{
log

(
|ε|2

‖dzF (z, w)‖2 + |ε|2

)}
∧ N ∗ωn+1

Pn+1

+
i

2π

∫

U

log

(
|ε|2

‖dzF (z, w)‖2 + |ε|2

)
∂∂χ(z) ∧N ∗ωn+1

Pn+1

+
i

2π

∫

U

∂χ(z) ∧ ∂ log

(
|ε|2

‖dzF (z, w)‖2 + |ε|2

)
∧ N ∗ωn+1

Pn+1

−
i

2π

∫

U

∂χ(z) ∧ ∂ log

(
|ε|2

‖dzF (z, w)‖2 + |ε|2

)
∧ N ∗ωn+1

Pn+1

=

∫

U

−χ(z)N ∗ωn+2
Pn+1 +K(ε, w) = K(ε, w),

where we used the equation ∂∂ log |ε|2 = 0 on ∆∗ = ∆ r {0} to get the third equality

and the equation N ∗ωn+2
Pn+1 ≡ 0 to get the last one. This proves (1).

(2) Similarly, we can verify that

i

2π
∂∆2∂∆2B(ε, w) =

∫

U

χ(z)N ∗ωn+2
Pn+1 + L(ε, w) = L(ε, w).

Lemma 3.8

(1) L extends to a smooth (1, 1)-form on ∆2.

(2) There exist σ, τ ∈ A1,1
∆2 such that K = log |ε|2 · σ + τ on ∆∗ × ∆.

Proof

(1) Since {(z, ε, w) ∈ U×∆2; ε = dzF (z, w) = 0}∩Supp(dχ) = ∅ by (3.5) and since

the indeterminacy locus of N and the singular locus of the function log(‖dzF (z, w)‖2+

|ε|2) are given by {(z, ε, w) ∈ U × ∆2; ε = dzF (z, w) = 0},

Φ := log(‖dzF (z, w)‖2 + |ε|2) ∂∂χ ∧ N ∗ωn+1
Pn+1

+∂χ ∧ ∂ log(‖dzF (z, w)‖2 + |ε|2) ∧ N ∗ωn+1
Pn+1

−∂χ ∧ ∂ log(‖dzF (z, w)‖2 + |ε|2) ∧ N ∗ωn+1
Pn+1

is well defined and is a smooth (n+ 2, n+ 2)-form on U × ∆2. Since L = i
2π

∫
U

Φ, L

is a smooth (1, 1)-form on ∆2. This proves (1).
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(2) Similarly, since ∂χ∧N ∗ωn+1
Pn+1 ∧ ε

−1dε and ∂χ∧N ∗ωn+1
Pn+1 ∧ ε

−1dε are smooth

(n+ 2, n+ 2)-forms on U × ∆2 by Lemma 3.4 and (3.5), we get

(3.7)

∫

U

∂χ ∧ N ∗ωn+1
Pn+1 ∧

dε

ε
∈ A1,1

∆2 ,

∫

U

∂χ ∧ N ∗ωn+1
Pn+1 ∧

dε

ε
∈ A1,1

∆2 .

By (3.6), (3.7), and L ∈ A1,1
∆2 , we get K(ε, w)− i

2π{
∫

U
∂∂χ∧N ∗ωn+1

Pn+1}·log |ε|2 ∈ A1,1
∆2 .

Since ∂∂χ ∧ N ∗ωn+1
Pn+1 is a smooth (n + 2, n + 2)-form on U × ∆2 by (3.5), we get∫

U
∂∂χ ∧ N ∗ωn+1

Pn+1 ∈ A1,1
∆2 . This proves (2).

Since the coefficients of K and L lie in L1
loc(∆

2) by Lemma 3.8, K and L define real

(1, 1)-currents on ∆2. By Lemma 3.7, they are d∆2 -closed on ∆∗ ×∆ in the ordinary

sense.

Lemma 3.9. — K and L are d∆2-closed currents on ∆2.

Proof. — Since d∆2L = 0 on ∆∗×∆ and since L is smooth on ∆2 by Lemma 3.8 (1),

L is a closed (1, 1)-form on ∆2. Let us prove that K is a d∆2-closed current.

Let ξ ∈ A1
∆2 and assume that Supp(ξ) is compact. For 0 < r < 1, set

∆(r) = {ε ∈ ∆; |ε| < r}. Since d∆2K = 0 on ∆∗×∆, we obtain from Stokes’ formula

that

(3.8)

∫

∆2

K ∧ d∆2ξ = lim
r→0

∫

(∆r∆(r))×∆

K ∧ d∆2ξ = − lim
r→0

∫

∂∆(r)×∆

K ∧ ξ.

Write K = i{Kεε dε ∧ dε + Kεw dε ∧ dw + Kwε dw ∧ dε + Kww dw ∧ dw} and set

|K|2 = |Kεε|
2 + |Kεw|

2 + |Kwε|
2 + |Kww|

2 ∈ C∞(∆∗ × ∆). We define the functions

|ξ|2 ∈ C∞
0 (∆2) and |σ|2, |τ |2 ∈ C∞(∆2) similarly. Then we have

∣∣∣∣∣

∫

∂∆(r)×∆

K(ε, w) ∧ ξ(ε, w)

∣∣∣∣∣ 6

∫ 2π

0

∫

∆

|K(r eiθ, w)| · |ξ(r eiθ, w)| r dθ dw dw

6 2π3
(

sup
Supp(ξ)

|σ| · log r2 + sup
Supp(ξ)

|τ |
)
· sup

∆2

|ξ| · r

→ 0 (r −→ 0),(3.9)

where we used Lemma 3.8 (2) to get the second line. Since ξ is an arbitrary test form,

the result follows from (3.8), (3.9).

Lemma 3.10

(1) There exists a function α ∈ C1(∆2)∩C∞(∆∗ ×∆) such that i
2π∂∆2∂∆2α = K

in the sense of currents on ∆2.

(2) There exists a function β ∈ C∞(∆2) such that i
2π∂∆2∂∆2β = L.

Proof

(1) Since K is a real closed (1, 1)-current on ∆2 by Lemma 3.9, it follows from

the ∂∂-Poincaré lemma ([14, Proof of Lemma 5.4]) that there exists a distribution

α on ∆2 satisfying the equation of currents i
2π∂∆2∂∆2α = K on ∆2. Write K =
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i{Kεε dε∧dε+Kεw dε∧dw+Kwε dw∧dε+Kww dw∧dw}. Then we have the equation

of distributions �α = 2π(Kεε+Kww) on ∆2, where � = ∂2

∂ε∂ε + ∂2

∂w∂w is the Laplacian.

Let Ω ⊂⊂ ∆2 be an arbitrary relatively compact domain. Since Kεε +Kww ∈ Lp(Ω)

for every p > 1 by Lemma 3.8 (2), there exists a function α̃ ∈ W 2,p(Ω) by [5,

Th. 9.9] such that �α̃ = 2π(Kεε + Kww) on Ω . Then �(α|Ω − α̃) = 0 in the sense

of distributions on Ω . By [6, pp. 379, Lemma], α|Ω − α̃ is a harmonic function on Ω .

Hence α|Ω − α̃ ∈ Cω(Ω). Since Ω ⊂⊂ ∆2 is arbitrary, we get α ∈ W 2,p
loc (∆2) for

every p > 1 and hence α ∈ C1(∆2) by the Sobolev embedding theorem W 2,p
loc (Ω) ⊂

C1(Ω) (p > 4) (cf. [5, pp. 158, (7.30)]). Since Kεε + Kww ∈ C∞(∆∗ × ∆) and

�α = Kεε +Kww, we get α ∈ C∞(∆∗ × ∆) by [5, Th. 6.17].

(2) Since d∆2L = 0 and L ∈ A1,1
∆2 , the result follows from the ∂∂-Poincaré lemma.

Lemma 3.11. — Set C(n) =
∫
Cn+1 log(‖z‖2 + 1){ i

2π∂∂ log(‖z‖2 + 1)}n+1 ∈ R. Then

the following identities hold for all ε ∈ C r {0}:

(1)

∫

Cn+1

log(‖z‖2 + |ε|2)

{
i

2π
∂∂ log(‖z‖2 + |ε|2)

}n+1

= log |ε|2 + C(n),

(2)

∫

Cn+1

log

(
‖z‖2 + |ε|2

|ε|2

){
i

2π
∂∂ log(‖z‖2 + |ε|2)

}n+1

= C(n).

Proof. — By setting ζ := ε−1z and using
∫
Cn+1 ω

n+1
Pn+1 = 1, we can verify (1), (2).

Lemma 3.12

(1) A ∈ C∞(∆∗ × ∆) extends to a C1-function on ∆2.

(2) B − µ(f) log |ε|2 ∈ C∞(∆∗ × ∆) extends to a C∞-function on ∆2.

Proof. — Let w ∈ ∆∗. Since F (·, w) ∈ O(U) has only non-degenerate critical points,

( ∂F
∂z0

(·, w), . . . , ∂F
∂zn

(·, w)) is a system of coordinates around ΣF (·,w). Hence there is a

system of coordinates (Up, (u
(p)
0 , . . . , u

(p)
n )) around each critical point p ∈ ΣF (·,w) such

that Up ∩ Uq = ∅ (p 6= q) and such that ‖dzF (·, w)‖2 =
∑n

i=0 |u
(p)
i |2 on Up.

(1) We have A|∆∗×{w} ∈ L∞
loc(∆) for every w ∈ ∆∗ by Lemma 3.11 (2) because

A(ε, w) =

∫

‖z‖<1

χ(z) log

(
|ε|2

‖dzF (z, w)‖2 + |ε|2

){
i

2π
∂∂ log(‖dzF (z, w)‖2 + |ε|2)

}n+1

=
∑

p∈ΣF (·,w)

∫

Up

log

(
|ε|2

‖u(p)‖2 + |ε|2

){
i

2π
∂∂ log(‖u(p)‖2 + |ε|2)

}n+1

+O(1)

= O(1) (ε −→ 0).

Hence (A − α)|∆∗×{w} ∈ L∞
loc(∆) because α|∆×{w} ∈ C1(∆) by Lemma 3.10 (1).

Since ∂∆2∂∆2(A−α) = 0 on ∆∗×∆ by Lemmas 3.7 (1) and 3.10 (1), (A−α)|∆∗×{w}
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is a harmonic function on ∆∗. By Riemann’s removable singularities theorem,

(A− α)|∆∗×{w} extends to a harmonic function on ∆.

Let r ∈ (0, 1) be an arbitrary number. Since (A− α)|∆×{w} is harmonic on ∆, we

obtain from Poisson’s formula ([5, Th. 2.6]) that for all |ε| < r and w ∈ ∆∗,

A(ε, w) − α(ε, w) =
1

2π

∫ 2π

0

{A(r eiθ, w) − α(r eiθ, w)}
r2 − |ε|2

|r eiθ − ε|2
dθ,

which implies that A−α ∈ C∞(∆×∆∗). This, together with Lemma 3.10 (1), yields

that A− α ∈ C∞(∆ × ∆∗) ∩ C∞(∆∗ × ∆) = C∞(∆2 r {(0, 0)}). Hence ∂∆2(A− α)

is a holomorphic 1-form on ∆2 r {(0, 0)} because ∂∆2{∂∆2(A − α)} = 0 on ∆∗ × ∆

by Lemmas 3.7 (1) and 3.10 (1). By Hartogs’ principle, ∂∆2(A − α) extends to

a holomorphic 1-form on ∆2. Since ker ∂∆2 consists of anti-holomorphic functions

on ∆2, we get A − α ∈ Cω(∆2). Since α ∈ C1(∆2) by Lemma 3.10 (1), this implies

that A ∈ C1(∆2).

(2) We have B|∆×{w} − µ(f) log |ε|2 ∈ L∞
loc(∆) by Lemma 3.11 (1) because

B(ε, w) =

∫

‖z‖<1

χ(z) log(‖dzF (z, w)‖2 + |ε|2)

{
i

2π
∂∂ log(‖dzF (z, w)‖2 + |ε|2)

}n+1

=
∑

p∈ΣF (·,w)

∫

Up

log(‖u(p)‖2 + |ε|2)

{
i

2π
∂∂ log(‖u(p)‖2 + |ε|2)

}n+1

+O(1)

= #(ΣF (·,w)) log |ε|2 +O(1) = µ(f) log |ε|2 +O(1) (ε −→ 0).

Here we used [13, pp.64 l.1-l.12] to get the last equality. Since we have the equation

∂∆2∂∆2(B − µ(f) log |ε|2 − β) = 0 on ∆∗ × ∆ by Lemmas 3.7 (2) and 3.10 (2), the

same argument as above using Riemann’s removable singularities theorem, Poisson’s

formula, and Hartogs’ principle, yields that B − µ(f) log |ε|2 − β ∈ Cω(∆2). Since

β ∈ C∞(∆2) by Lemma 3.10 (2), we get B − µ(f) log |ε|2 ∈ C∞(∆2).

Proof of Proposition 3.3. — Since a(ε) = A(ε, 0) and b(ε) = B(ε, 0) by the definitions

of a(ε), b(ε), A(ε, w), B(ε, w), the assertion follows from Lemma 3.12.

Remark 3.13. — Theorem 3.1 seems to be similar to [11], [12]. However, no higher

Milnor numbers appear in Theorem 3.1, since our proof is based on the “Picard-

Lefschetz principle” (cf. [15, Th. 4.1]). Is it possible to derive Theorem 3.1 from [11],

[12]?

4. Explicit formulas for the Chern forms around the critical point

As in Section 3, set U = ∆n+1 and let f : (U, 0) → (C, 0) be a holomorphic function

such that Σf = {0}. We do not assume that f is surjective. The relative tangent

bundle Tf = ker f∗ is a holomorphic subbundle of TU |Ur{0} = TCn+1|Ur{0}. As in

Section 2, let t be the coordinate of C, which is the target of the map f .
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Define the Hermitian metrics gTC
n+1

, gTC, gTf on TU , T∆, Tf , respectively by

gTC
n+1

:=

n∑

i=0

dzi ⊗ dzi, gTC := dt⊗ dt, gTf := gTC
n+1

|Tf .

Let

γ : U r {0} 3 z −→

(
∂f

∂z0
(z) : · · · :

∂f

∂zn
(z)

)
∈ Pn

be the Gauss map. Under the identification H = Pn as in Section 3.1, we have

γ = ν|(Ur{0})×{0} and γ∗ωPn = i
2π∂∂ log ‖df‖2.

Proposition 4.1. — The following equation of closed forms on U r {0} holds:

(4.1) c(Tf, gTf) =
1

1 + γ∗ωPn

.

In particular, for every polynomial P (c) ∈ C[c1, . . . , cn] and for every flat Hermitian

vector bundle (F, hF ) on U , P (Tf ⊕ F, gTf ⊕ hF )top|Ur{0} = 0.

Proof. — The equation (4.1) follows from [15, Lemma 2.1, (2.7), (2.13)]. Since

ci(Tf, g
Tf) = (−1)iγ∗ωi

Pn by (4.1) and since the curvature of (Tf ⊕ F, gTf ⊕ hF )

is given by RTf,gT f

, we get ci(Tf ⊕ F, gTf ⊕ hF ) = (−1)iγ∗ωi
Pn (i > 1) and hence

P (Tf ⊕ F, gTf ⊕ hF )top = P (−t, . . . , (−t)n+1)|tn+1 · γ∗ωn+1
Pn = 0.

Recall that Γf ⊂ U × C is the graph of f . We identify U with Γf via the obvious

projection pr1 : Γf → U . Let δ > 0. Define the Hermitian metric gTΓf on TU by

gTΓf := (gTC
n+1

⊕ δgTC)|Γf
.

In this section, we regard ε as a real parameter again. For ε > 0, set

gTU
ε := gTΓf +

1

ε2
f∗gTC = gTC

n+1

+

(
δ +

1

ε2

)
f∗gTC.

Proposition 4.2. — For all ε > 0, the following equation of closed forms on U holds:

c(TU, gTU
ε ) =

1

1 + i
2π∂∂ log

(
‖df‖2 + ε2

1+ε2δ

) .

Proof. — Identify U with Γf . Let N = NΓf /(U×C) be the normal bundle of Γf in

U × C. Consider the following short exact sequence of holomorphic vector bundles

on Γf ,

0 −→ TΓf −→ T (U × C)|Γf
−→ N −→ 0.

Let g
T (U×C)
ε be the Hermitian metric on T (U × C) defined by

gT (U×C)
ε := gTC

n+1

⊕ (δ + ε−2)gTC.

Then gTU
ε = g

T (U×C)
ε |Γf

. Let gN
ε be the metric on N induced from g

T (U×C)
ε by the

C∞-isomorphism N ∼= (TΓf)⊥. Since (T (U ×C), g
T (U×C)
ε ) is a flat Hermitian vector
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bundle on U × C, we have c(TU, gTU
ε ) ∧ c(N, gN

ε ) = 1 (cf. [15, Lemma 2.1, (2.6),

(2.7)]). Hence

(4.2) c(TU, gTU
ε ) =

1

c(N, gN
ε )

=
1

1 + c1(N, gN
ε )

=
1

1 − c1(N∗, (gN
ε )−1)

,

where N∗ is the conormal bundle of Γf in U ×C. Since N∗ is generated by the global

section df(z) − dt, we get

c1(N
∗, (gN

ε )−1) = −
i

2π
∂∂ log ‖df(z) − dt‖2

ε

= −
i

2π
∂∂ log{‖df‖2 + (δ + ε−2)−1}(4.3)

= −
i

2π
∂∂ log

{
‖df‖2 +

ε2

1 + ε2δ

}
,

where ‖ · ‖ε denotes the norm on N∗ ⊂ T ∗(U × C) with respect to the Hermitian

metric induced from g
T (U×C)
ε . The assertion follows from (4.2) and (4.3).

5. Proof of the Main Theorem 2.2

5.1. The convergence of the curvature form outside Σf . — In this section,

we keep the notation and the assumptions of Section 2.

Let (Tf)⊥ ⊂ TX be the orthogonal complement of Tf in TX with respect to gTX .

Then (Tf)⊥ is a C∞-vector bundle on X r Σf . Let g(Tf)⊥ be the Hermitian metric

on (Tf)⊥ induced from gTX , i.e., g(Tf)⊥ = gTX |(Tf)⊥ . Under the C∞-identification

f∗TS ∼= (Tf)⊥ via the projection f∗ : TX → f∗TS, there exists a positive C∞-

function h on X r Σf such that

f∗gTS = h · g(Tf)⊥ .

Then the C∞-decomposition TX |XrΣf
∼= Tf ⊕ (Tf)⊥ is orthogonal with respect to

the Hermitian metrics

gTX
ε = gTf ⊕ (1 + ε−2 h) g(Tf)⊥

for all ε > 0. We define the family of positive functions {aε}ε>0 on X r Σf by

aε = 1 + ε−2h.

Let A ∈ A1,0
XrΣf

(Hom(Tf, (Tf)⊥)) be the second fundamental form of the following

exact sequence of holomorphic vector bundles on X r Σf ,

0 −→ Tf −→ TX |XrΣf
−→ f∗TS −→ 0,

with respect to the Hermitian metrics gTf , gTX , g(Tf)⊥ on Tf , TX , (Tf)⊥, respec-

tively ([10, Chap. 1, Sect. 6]). Notice that A is independent of ε > 0.
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Proposition 5.1. — As ε → 0, the curvature RTX,gT X
ε converges uniformly on every

compact subset of X r Σf to the following matrix:

RTX,gT X
ε =

(
RTf,gT f

−(∂A∗ − ∂ log h ∧A∗)

0 f∗RTS,gTS

)
.

Proof. — We follow [3, pp.37 l.1-l.15]. By a straightforward computation (cf. [10,

Chap. I, (6.1)]), the curvature matrix of (TX, gTX
ε )|XrΣf

with respect to the orthog-

onal decomposition TX = Tf ⊕ (Tf)⊥ is given by

(5.1) RTX,gT X
ε =

(
RTf,gT f

− 1
aε
A∗ ∧A −(∂A∗ − ∂ log aε ∧A∗)

1
aε

(∂A− ∂ log aε ∧A) Rf∗TS,g(T f)⊥

+ ∂∂ log aε −
1
aε
A ∧A∗

)
.

Then the assertion follows from (5.1) because we have the following uniform conver-

gences on every compact subset of X r Σf as ε→ 0:

1

aε
=

ε2

ε2 + h
−→ 0, ∂ log aε =

∂h

ε2 + h
−→ ∂ log h, ∂∂ log aε −→ ∂∂ log h

and also the identity f∗RTS,gT S

= Rf∗TS,g(Tf)⊥

+ ∂∂ log h.

5.2. Proof of the Main Theorem 2.2. — Since (f∗TS, f∗gTS) is a flat line

bundle on each Up by Assumption 2.1 (2), the assertion (1) follows from Proposi-

tion 4.1. On X r
⋃

p∈Σf
Up, the assertion (2) follows from Proposition 5.1. Since

P (Tf ⊕ f∗TS, gTf ⊕ f∗gTS)top vanishes on
⋃

p∈Σf
Up r{p} again by Proposition 4.1,

it suffices to verify (2.2) on each Up.

By Proposition 4.2, we have the following identities on Up for k = 1, . . . , n+ 1:

ck(TUp, g
TUp
ε ) = (−1)k

{
i

2π
∂∂ log

(
‖df‖2 +

ε2

1 + ε2δ

)}k

,

which yields that

P (TUp, g
TUp
ε )top

= P

(
−
i

2π
∂∂ log

(
‖df‖2 +

ε2

1 + ε2δ

)
, . . . ,

{
−
i

2π
∂∂ log

(
‖df‖2 +

ε2

1 + ε2δ

)}n+1
)top

= P (−t, . . . , (−t)n+1)|tn+1 ·

{
i

2π
∂∂ log

(
‖df‖2 +

ε2

1 + ε2δ

)}n+1

→ P (−t, . . . , (−t)n+1)|tn+1 · µ(f, p) δp (ε −→ 0).

Here we used Theorem 3.1 to get the last line. This completes the proof of Theorem

2.2.
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cence des courbes, Acta Math. 165 (1990), p. 1–103.

[4] W. Fulton – Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete,
Folge 3 Band 2, Springer-Verlag, 1984.

[5] D. Gilbarg & N.S. Trudinger – Elliptic Partial Differential Equations of Second

Order, 2nd ed., Springer, Berlin, 1983.

[6] P.A. Griffiths & J. Harris – Principles of Algebraic Geometry, A. Wiley-Interscience,
New York, 1978.

[7] F.R. Harvey & H.B. Lawson – A theory of characteristic currents associated with a
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