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GENERALIZED GINZBURG-CHERN CLASSES
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Abstract. — For a morphism f : X → Y with Y being nonsingular, the Ginzburg-
Chern class of a constructible function α on the source variety X is defined to be the
Chern-Schwartz-MacPherson class of the constructible function α followed by capping
with the pull-back of the Segre class of the target variety Y . In this paper we give
some generalizations of the Ginzburg-Chern class even when the target variety Y is
singular and discuss some properties of them.

Résumé(Classes de Ginzburg-Chern généralisées). — Pour un morphisme algébrique
f : X → Y où la variété Y est non singulière, la classe de Ginzburg-Chern de la
fonction constructible α sur la variété source X est définie comme la classe de Chern-
Schwartz-MacPherson de la fonction constructible α suivi du cap-produit par l’image
réciproque de la classe de Segre de la variété but Y . Dans cet article nous donnons
quelques généralisations de la classe de Ginzburg-Chern y compris lorsque la variété
but Y est singulière et nous en discutons quelques propriétés.

1. Introduction

In [G1] Ginzburg introduced a certain homomorphism from the abelian group of

Lagrangian cycles to the Borel-Moore homology group

cbiv : L(X1 × X2) −→ H∗(X1 × X2),

which he called a bivariant Chern class. The construction or definition of the ho-

momorphism cbiv given in [G1] is not direct, but in his survey article [G2] he gives

an explicit description of it. It assigns to a Lagrangian cycle associated to a sub-

variety Y ⊂ X1 × X2 the relative Chern-Mather class of the fibers of the projection
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pY : Y → X2. The projection pY is the restriction of the projection p2 : X1×X2 → X2

to the subvariety Y . Let ν : Ŷ → Y be the Nash blow-up and T̂ Y the tautological

Nash tangent bundle over Ŷ . Then the above relative Chern-Mather class is defined

by

cbiv(ΛY ) := iY ∗ν∗

(
c(T̂ Y − ν∗p∗Y TX2) ∩ [Ŷ ]

)

where iY : Y → X1×X2 is the inclusion. Then it follows from the projection formula

and from pY = p2 ◦ iY that

cbiv(ΛY ) = iY ∗

( 1

p∗Y c(TX2)
∩ cM (Y )

)

= p∗2s(TX2) ∩ iY ∗c
M (Y ).

Here s(TX2) denotes the Segre class of the tangent bundle TX2.

Since the Chern-Schwartz-MacPherson class ([BS], [M], [Sw1], [Sw2] etc.) is a

linear combination of Chern-Mather classes, the above homomorphism cbiv can be

defined for any morphism π : X → Y from a possibly singular variety X to a smooth

variety Y and for any constructible function on the target variety X . Namely we can

define the following homomorphism

π∗s(TY ) ∩ c∗ : F (X) −→ H∗(X ;Z)

where c∗ : F (X) → H∗(X ;Z) is the usual Chern-Schwartz-MacPherson class trans-

formation. This “twisted” Chern-Schwartz-MacPherson class shall be called the

Ginzburg-Chern class.

On the other hand, in [Y3] we showed that the bivariant Chern class ([Br], [FM])

for any morphism with nonsingular target variety necessarily has to be the Ginzburg-

Chern class. To be more precise, if there exists a bivariant Chern class γ : F → H

from the Fulton-MacPherson bivariant theory of constructible functions to the Fulton-

MacPherson bivariant homology theory, then for any morphism f : X → Y with

Y being nonsingular and any bivariant constructible function α ∈ F(X → Y ) the

following holds

γf (α) = f∗s(TY ) ∩ c∗(α),

where γf : F(X
f

−→ Y ) → H(X
f

−→ Y ).

Quickly speaking, this theorem follows from the simple observation that for α ∈

F(X → Y ) ⊂ F (X) we have

c∗(α) = γf (α) • c∗(Y ),

where • on the right-hand-side is the bivariant product. Thus a näıve solution for

γf (α) is the following “quotient”

γf (α) = “
c∗(α)

c∗(Y )
”.
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It turns out that in the case when the target variety Y is nonsingular this “quotient”

is well-defined and it is nothing but

“
c∗(α)

c∗(Y )
” =

c∗(α)

f∗c(TY )
= f∗s(TY ) ∩ c∗(α).

From now on the Ginzburg-Chern class of α shall be denoted by γGin(α) or γGin
f (α)

emphasizing the morphism f .

As one sees, for the definition of the Ginzburg-Chern class the nonsingularity of

the target variety Y is clearly essential. In this paper, we put aside the bivariant-

theoretic aspect of the Ginzburg-Chern class ([Y4], [Y5], [Y6]) and, using Nash blow-

ups and also resolutions of singularities we introduce reasonably modified versions of

the Ginzburg-Chern class, even when the target variety is arbitrarily singular. We

discuss some properties of them and in particular we obtain some results concerning

the convolution product of them.

Acknowledgements. — The author is greatful for the hospitality and financial sup-

port he received from the Erwin Schrödinger International Institute for Mathematical

Physics (ESI) in Vienna, Austria, where most of this work was done in July and

August 2002. In particular the author would like to thank Professor Peter Michor,

Professor Franz Kamber and the staff of the ESI. The author thanks Professor Jean-

Paul Brasselet and Professor Tatsuo Suwa, the organizers of “Singularités franco-

japonaises” held at the CIRM, Luminy, September 9–12, 2002, for giving him the

opportunity to give a talk on the present work at the conference and for the finan-

cial support. The author also thanks the referee for his/her valuable comments and

suggestions.

2. Generalized Ginzburg-Chern classes

The Ginzburg-Chern class is a unique natural transformation satisfying a certain

normalization in the following sense:

Theorem 2.1([Y2, Theorem (2.1)]). — For the category of Y -varieties, i.e., morphisms

π : X → Y , with Y being a nonsingular variety, γGin
π : F (X) → H∗(X ;Z) is the

unique natural transformation from the constructible functions to the homology theory

such that for a smooth variety X we have

(2.2) γGin
π (11X) = c(Tπ) ∩ [X ],

where Tπ := TX − π∗TY is the relative virtual tangent bundle. Namely, for any

commutative diagram

X1

f
//

π1   
AA

AA
AA

X2

π2~~}}
}}

}}

Y
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432 S. YOKURA

where f is proper, we have the following commutaive diagram

F (X1)
f∗

//

γGin
π1

��

F (X2)

γGin
π2

��

H∗(X1)
f∗

// H∗(X2).

A natural question or problem on the Ginzburg-Chern class is whether or not one

can extend it to the case when the target variety Y is singular and we want to see if

a theorem similar to the above one holds.

Suppose that Y is singular and we consider the Nash blow-up ν : Ŷ → Y and the

following fiber square

X̂
ν̂

//

π̂
��

X

π
��

Ŷ ν
// Y.

Then we define the homomorphism

γ̂Gin
π : F (X) −→ H∗(X ;Z)

by

(2.3) γ̂Gin
π := ν̂∗

(
π̂∗s(T̂ Y ) ∩ c∗(ν̂

∗α)
)
.

This class shall be called a Nash-type Ginzburg-Chern class, abusing words. Then we

have the following theorem:

Theorem 2.4. — Let Y be a possibly singular variety. Then, for any commutative

diagram

X1

f
//

π1   
AA

AA
AA

X2

π2~~}}
}}

}}

Y

where f is proper, we have the following commutative diagram

F (X1)
f∗

//

γ̂Gin
π1

��

F (X2)

γ̂Gin
π2

��

H∗(X1)
f∗

// H∗(X2).
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Proof. — First we recall the following fact ([Er, Proposition 3.5], [FM, Axiom

(A23)]): for any fiber square

W ′
g′

//

h′

��

W

h
��

Z ′
g

// Z,

the following diagram commutes

F (W )
g′∗

//

h′

∗

��

F (W ′)

h∗

��

F (Z)
g∗

// F (Z ′).

Now we have the following commutative diagrams:

X̂1

ν̂1
//

f̂

  
@@

@@
@@

@

π̂1

��

X1

f

~~~~
~~

~~
~~

π1

��

X̂2

ν̂2
//

π̂2~~}}
}}

}}
}}

X2

π2
  

AA
AA

AA
AA

Ŷ
ν

// Y.

Then by definition we have

γ̂Gin
π2

(f∗α) = ν̂2∗

(
π̂∗

2s(T̂ Y ) ∩ c∗(ν̂
∗

2f∗α)
)

= ν̂2∗

(
π̂∗

2s(T̂ Y ) ∩ c∗(f̂∗ν̂
∗

1α)
)

= ν̂2∗

(
π̂∗

2s(T̂ Y ) ∩ f̂∗c∗(ν̂
∗

1α)
)

= ν̂2∗f̂∗

(
f̂∗π̂∗

2s(T̂ Y ) ∩ c∗(ν̂
∗

1α)
)

= f∗ν̂1∗

(
π̂∗

1s(T̂ Y ) ∩ c∗(ν̂
∗

1α)
)

= f∗γ̂
Gin
π1

(α).

Motivated by the definition of the Nash-type Ginzburg-Chern class, we give another

modification of the Ginzburg-Chern class via a resolution of singularities. Let ρ : Ỹ →
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Y be a resolution of singularities of Y, and consider the following fiber square

X̃
ρ̃

//

π̃
��

X

π
��

Ỹ ρ
// Y.

Then we define the homomorphism

γ̃Gin
π : F (X) −→ H∗(X ;Z)

by

γ̃Gin
π := ρ̃∗

(
π̃∗s(T Ỹ ) ∩ c∗(ρ̃

∗α)
)
.

This class shall be called a “resolution” Ginzburg-Chern class, abusing words. This

class of course depends on the choice of resolution of singularities of the target va-

riety Y . Then we can clearly see that the Nash-type Ginzburg-Chern class can be

replaced by any resolution Ginzburg-Chern class in the above theorem.

Remark 2.5. — At the moment, we do not know how to define a“canonical”resolution

Ginzburg-Chern class independent of the choice of resolution of singularities, which

remains to be seen. Of course, a minimal resolution would supply such a thing, if it

exists.

Remark 2.6. — Furthermore generalizing the above modifications of the Ginzburg-

Chern class, we can see the following. Suppose that (Y , E) is a variety Y , singular or

nonsingular, accompanied with a certain vector bundle E and that there is a morphism

η : Y → Y . Here in general there is not any connection between the bundle E and

the morphism η. However, to obtain a reasonable and interesting result, we would

need some geometric or topological connections between them. Then we consider the

fiber square

X
η

//

π
��

X

π
��

Y η
// Y.

Then we define the homomorphism

γGin
π : F (X) −→ H∗(X ;Z)

by

γGin
π (α) := η

∗

(
π∗s(E) ∩ c∗(η

∗α)
)
.

This class is called a generalized Ginzburg-Chern class associated to the data {a mor-

phism η : Y → Y , a vector bundle E on Y } .
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Note that in Theorem (2.4) the Nash-type Ginzburg-Chern class can be replaced

by γGin
π .

With this definition, we can consider the following problem: Suppose that Y is a

smooth compact variety and let G be a (reasonable, e.g., finite) group acting on Y and

let η : Y → Y /G be the projection. Then we have for any morphism π : X → Y /G

and for any constructible function α ∈ F (X)

γGin
π (α) = η

∗

(
π∗s(TY ) ∩ c∗(η

∗α)
)
.

In particular, for the projection π : Y → Y /G and for α ∈ F (Y ) we have

γGin
π (α) = η

∗

(
π∗s(TY ) ∩ c∗(η

∗α)
)

= s(TY ) ∩ c∗(π∗π
∗α).

It remains to see if there is an application of this class to quotient singularities.

A non-trivial uniqueness of γ̂Gin
π such as one in Theorem (2.1) is not available, ex-

cept for the following obvious one: for the category of Y -varieties (i.e., for morphisms

π : X → Y ) γ̂Gin
π : F (X) → H∗(X ;Z) is the unique natural transformation satisfying

the condition that for a nonsingular variety X and any morphism π : X → Y the

following holds

γ̂Gin
π (11X) = ν̂∗

(
π̂∗s(T̂ Y ) ∩ c∗(Ŷ ×Y X)

)
.

(Which is simply obtained by replacing α by 11X in the definition (2.3). But it is a

best one for the uniqueness so far.)

Theorem 2.7. — For a smooth morphism π : X → Y of possibly singular varieties X

and Y , we have

(2.8) γ̂Gin
π (11X) = c(Tπ) ∩ π∗ν∗

(
s(T̂ Y ) ∩ c∗(Ŷ )

)

where Tπ is the virtual relative tangent bundle of the smooth morphism.

(2.8) could be considered as an analogue of (2.2).

To prove Theorem (2.7), we need the so-called Verdier-Riemann-Roch for Chern

class ([FM], [Su], [Y1]):

Theorem 2.9. — Let f : X → Y be a smooth morphism of possibly singular varieties

X and Y . Then the following diagram commutes:

F (Y )
c∗

//

f∗

��

H∗(Y )

c(Tf ) ∩ f∗

��

F (X) c∗
// H∗(X).
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Proof of Theorem (2.7). — By definition we have

γ̂Gin
π (11X) = ν̂∗

(
π̂∗s(T̂ Y ) ∩ c∗(ν̂

∗11X)
)
.

The key trick is that ν̂∗11X = 11 bX
= π̂∗11bY

. Therefore we have

γ̂Gin
π (11X) = ν̂∗

(
π̂∗s(T̂ Y ) ∩ c∗(π̂

∗11bY
)
)
.

Since π is smooth, the pullback π̂ is also smooth. Hence, using the above Verdier-

Riemann-Roch for Chern class, we have

γ̂Gin
π (11X) = ν̂∗

(
π̂∗s(T̂ Y ) ∩

(
c(Tbπ) ∩ π̂∗c∗(11bY

)
))

= ν̂∗

((
π̂∗s(T̂ Y ) ∪ ν̂∗c(Tπ)

)
∩ π̂∗c∗(11bY

)
)

= ν̂∗

(
ν̂∗c(Tπ) ∩

(
π̂∗s(T̂ Y ) ∩ π̂∗c∗(11bY

)
))

= ν̂∗

(
ν̂∗c(Tπ) ∩ π̂∗

(
s(T̂ Y ) ∩ c∗(11bY

)
))

= c(Tπ) ∩ ν̂∗π̂
∗
(
s(T̂ Y ) ∩ c∗(11bY

)
)

= c(Tπ) ∩ π∗ν∗

(
s(T̂ Y ) ∩ c∗(Ŷ )

)
.

As a corollary of the proof of the theorem, we get the following

Corollary 2.10. — Let the situation be as in Theorem (2.7). For a resolution Ginzburg-

Chern class γ̃Gin
π we have the following

γ̃Gin
π (11X) = c(Tπ) ∩ [X ].

Remark 2.11. — One might expect that the formula (2.8) for a smooth morphism

π : X → Y could be used as a condition required for the the uniqueness of the

Nash-type Ginzburg-Chern class γ̂Gin
π , but it is not the case. Namely the following

speculation (which certainly implies the uniqueness of γ̂Gin
π ) is not necessarily true: For

any construcible function α ∈ F (X) there would exist some varieties Wi’s, morphisms

gi : Wi → X and integers ni such that

(i) α =
∑

i nigi∗11Wi
, and

(ii) the composite f ◦ gi : Wi → Y is smooth.

3. Convolutions

The notion of convolution (product) is important and ubiquitous in the geometric

representation theory. Here we recall the convolution on the Borel-Moore homology

theory.

In this paper the homology theory H∗(X) is the Borel-Moore homology group of

a locally compact Hausdorff space X , i.e., the ordinary (singular) cohomology group

of the pair (X,∞) where X = X ∪∞ is the one-point compactification of X .
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For any closed subsets X and X ′ in a smooth manifold M , we have the cup product

∪ : Hp(M, M r X) ⊗ Hq(M, M r X ′) −→ Hp+q(M, M r (X ∩ X ′)),

which implies, by the Alexander duality isomorphism H•(M, MrW ) ∼= Hdim M−•(W ),

denoted by AW , the following intersection product

· : Hi(X) ⊗ Hj(X
′) −→ Hi+j−dim M (X ∩ X ′).

Note that this product depends on the ambient manifold M . Let M1, M2, M3 be

smooth oriented manifolds and let pij : M1 × M2 × M3 → Mi × Mj be the canonical

projections. Let Z ⊂ M1 × M2 and Z ′ ⊂ M2 × M3 be closed subsets and we assume

that the restricted map

p13 : p−1
12 (Z) ∩ p−1

23 (Z ′) −→ M1 × M3

is proper. Then its image is denoted by the Z◦Z ′, i.e., the composite of the two corre-

spondences Z and Z ′ (see Fulton’s book [F]). The restricted map p−1
12 (Z)∩p−1

23 (Z ′) →

Z ◦ Z ′ is also denoted by p13. With this set-up, the convolution

? : Hi(Z) ⊗ Hj(Z
′) −→ Hi+j−dim M (Z ◦ Z ′)

is defined by

(3.1) x?y := p13∗(p
∗

12x · p∗23y).

Since the intersection product · depends on the ambient manifolds as pointed out

above, this convolution product depends on the ambient manifolds. To be more

precise, it is defined by

x?y := p13∗

(
Ap

−1
12 (Z)∩p

−1
23 (Z′)

(
p∗12A

−1
Z (x) ∪ p∗23A

−1
Z′ (y)

))
.

Given varieties X1, X2, X3, we let pij : X1×X2×X3 → Xi ×Xj be the projection.

Then we can consider the following convolution product on constructible functions:

? : F (X1 × X2) ⊗ F (X1 × X2) −→ F (X1 × X3)

defined by

α?β := p13∗(p
∗

12α · p∗23β).

Even if each Xi is contained in a smooth manifold Mi, this constructible function

convolution product does not depend on the ambinet manifolds and has nothing to

do with them at all, unlike the above homological convolution product (3.1). For any

varieties X, Y , we set

F̃(X × Y ) := 11X × F (Y ) = {11X × α|α ∈ F (Y )}.

Here we note that for any pair of constructible functions ω ∈ F (W ) and ζ ∈ F (Z),

the cross product ω × ζ ∈ F (W × Z) is defined by

(ω × ζ)(w, z) := ω(w)ζ(z).
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Let π : X × Y → X be the projection to the first factor. Then this subgroup

F̃(X × Y )(⊂ F (X × Y )) is invariant under the constructible function convolution

product, i.e., we have the convolution product:

? : F̃(X1 × X2) ⊗ F̃(X2 × X3) −→ F̃(X1 × X3).

Now we observe that for a nonsingular variety X we have

γGin
π (11X × α) = [X ] × c∗(α).

Which can been seen by the multiplicativity of the Chern-Schwartz-MacPherson class

[K] (cf. [KY]). With this observation we have the following theorem

Theorem 3.2([Y2, Theorem (3.2)]). — Let X1 = M1, X2 = M2 be nonsingular varieties

and let X3 be a subvariety in a smooth manifold M3. And we assume that X2 is

compact, which makes the projection p13 : X1 × X2 × X3 → X1 × X3 proper. Let

p1 : X × Y → X denote the projection for any X and Y . Then the Ginzburg-Chern

class γGin
p1

: F̃(X × Y ) → H∗(X × Y ) is convolutive; i.e., the following diagram

commutes:

F̃(X1 × X2) ⊗ F̃(X2 × X3)
?

//

γGin
p1

⊗ γGin
p1

��

F̃(X1 × X3)

γGin
p1

��

H∗(X1 × X2) ⊗ H∗(X2 × X3) ?
// H∗(X1 × X3).

As a matter of fact, it turns out that the commutativity of the diagram in the above

theorem holds even when X1 is singular, but that X2 = M2 has to be nonsingular .

Namely we have the following

Theorem 3.3. — Let Xi be a possibly singular variety in a nonsingular variety Mi

(i = 1, 2, 3).

(i) If X2 = M2 is a nonsingular compact variety, then the homomorphism γ̃ :

F̃(X × Y ) → H∗(X × Y ) defined by γ̃(11X × α) := [X ]× c∗(α) is convolutive; namely

for the constructible function convolution and homology convolution defined above the

following diagram is commutative:

F̃(X1 × X2) ⊗ F̃(X2 × X3)
?

//

γ̃ ⊗ γ̃
��

F̃(X1 × X3)

γ̃
��

H∗(X1 × X2) ⊗ H∗(X2 × X3) ?
// H∗(X1 × X3).

(ii) If X2 is singular, the above diagram cannot be commutative.

Before proving this theorem, we first observe the following four lemmas:
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Lemma 3.4. — Let Xi be a possibly singular variety in a nonsingular variety Mi (i =

1, 2, 3). Then the cohomolgy and homology cross products are compatible with the

Alexander duality isomorphism; namely we have:

Hp(Mi, Mi r Xi) ⊗ Hq(Mj , Mj r Xj)
×

//

AXi
⊗AXj

��

Hp+q(Mi × Mj, Mi × Mj r Xi × Xj)

AXi×Xj

��

Hdim Mi−p(Xi) ⊗ Hdim Mj−q(Xj)
×

// Hdim Mi+dim Mj−(p+q)(Xi × Xj).

Lemma 3.5. — Cohomolgy cross product and cup product commute, namely we have

(a × b) ∪ (a′ × b′) = (−1)deg a′ deg b(a ∪ a′) × (b ∪ b′).

Here deg x denotes the degree of the cohomology class x.

Note that in our case the sign (−1)deg a′ deg b is always equal to one because the

cohomology classes which we treat are always of even degree, thus we have that

(a × b) ∪ (a′ × b′) = (a ∪ a′) × (b ∪ b′).

Lemma 3.6. — With the above situation in Lemma (3.4), let xi, yi ∈ H∗(Xi) be ho-

mology classes. Then under the convolution

? : H∗(X1 × X2) ⊗ H∗(X2 × X3) −→ H∗(X1 × X3)

the following holds:

(x1 × x2)?(y2 × y3) =
(∫

X2

(
j∗2A

−1
X2

(x2)
)
∩ y2

)
(x1 × y3).

Here j2 : X2 → M2 is the inculsion.

Proof. — Let us denote the cohomology class dual to the fundamental class [Mi] by

1Mi
. By definition of the convolution and the above lemmas we have

(x1 × x2)?(y2 × y3)

= p13∗

(
AX1×X2×X3

((
A−1

X1
(x1) ×A−1

X2
(x2) × 1M3

)
∪

(
1M1

×A−1
X2

(y2) ×A−1
X3

(y3)
)))

= p13∗

(
AX1×X2×X3

(
(A−1

X1
(x1) ×

(
A−1

X2
(x2) ∪A−1

X2
(y2)

)
×A−1

X3
(y3)

))

= p13∗

(
x1 ×AX2

(
A−1

X2
(x2) ∪ A−1

X2
(y2)

)
× y3

)

= p13∗

(
x1 ×

((
j∗2A

−1
X2

(x2)
)
∩ y2

)
× y3

)

=
(∫

X2

(
j∗2A

−1
X2

(x2)
)
∩ y2

)
(x1 × y3).

Here we note that the equality AX2

(
A−1

X2
(x2) ∪ A−1

X2
(y2)

)
=

(
j∗2A

−1
X2

(x2)
)
∩ y2

follows from, e.g., [F, 19.1, (8), p. 371].
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Lemma 3.7([KY ]). — Let f : W → W ′ and g : Z → Z ′ be proper morphisms. Then

for any constructible functions ω ∈ F (W ) and ζ ∈ F (Z)

(f × g)∗(ω × ζ) = (f∗ω) × (g∗ζ).

Namely, the following diagram is commutative:

F (W ) ⊗ F (Z)
×

//

f∗ ⊗ g∗
��

F (W × Z)

(f × g)∗
��

F (W ′) ⊗ F (Z ′)
×

// F (W ′ × Z ′).

Proof of Theorem (3.3)

(i) Let 11Xi
× αj ∈ F̃(Xi × Xj) and let p2 : X2 → pt be the morphism to a point

pt. Then we have

(11X1
× α2)?(11X2

× α3) = p13∗(11X1
× α2 × α3)

= (p2∗α2)(11X1
× α3)

=
(∫

X2

c∗(α2)
)
(11X1

× α3).

The last equality of course follows from the naturality of the Chern-Schwartz-

MacPherson class c∗. The second equality is proved directly or it follows from the

above general formula Lemma (3.7).

On the other hand it follows from Lemma (3.6) that

([X1] × c∗(α2))?([X2] × c∗(α3)) =
(∫

X2

(
j∗2A

−1
X2

(c∗(α2))
)
∩ [X2]

)
([X1] × c∗(α3)).

A crucial assumption in the statement (i) of the theorem is that X2 = M2 is

nonsingular and compact. Thus AX2
: H∗(X2) → H2 dim X2−∗(X2) is the Poincaré

duality isomorphism and j∗2 : H∗(X2) → H∗(X2) is the identity. Therefore we get
(
j∗2A

−1
X2

(c∗(α2))
)
∩ [X2] = c∗(α2),

hence in particular we get
∫

X2

(
j∗2A

−1
X2

(c∗(α2))
)
∩ [X2] =

∫

X2

c∗(α2).

Thus the statement (i) follows.

(ii) Let X2 be singular, thus dimC X2 < dimC M2. Let us take a closer look at

the cohomology class
(
j∗2A

−1
X2

(c∗(α2))
)
∩ [X2], i.e., AX2

(
A−1

X2
(c∗(α2)) ∪A−1

X2
([X2])

)
.

Let [c∗(α2)]k denote the k-dimensional component of c∗(α2). Let m = dimC M2

and n = dimC X2. Then it follows from the definition of the Alexander duality

isomorphism that

(3.8) AX2

(
A−1

X2
([c∗(α2)]k) ∪ A−1

X2
([X2])

)
∈ Hk−2(m−n)(X2).
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Hence to compute
∫

X2

(
j∗2A

−1
X2

(c∗(α2))
)
∩ [X2], i.e., the degree of the 0-dimensional

component of
(
j∗2A

−1
X2

(c∗(α2))
)
∩ [X2], we need that k − 2(m − n) = 0, i.e., k =

2(m−n) > 2. Let α2 = 11p with p being a point on X2, in which case
∫

X2
c∗(11p) = 1.

On the other hand, the degree of c∗(11p) is zero and hence it follows from (3.8) that
(
j∗2A

−1
X2

(c∗(α2))
)
∩ [X2] ∈ H−2(m−n)(X2).

Since −2(m−n) < 0, H−2(m−n)(X2) = 0. This implies that
(
j∗2A

−1
X2

(c∗(α2))
)
∩[X2] =

0, thus
∫

X2

(
j∗2A

−1
X2

(c∗(α2))
)
∩ [X2] = 0.Therefore the square diagram in the theorem

cannot be commutative. Thus the statement (ii) follows.

So we would like to pose the following

Problem 3.9. — Generalize Theorem (3.3) to the case when X1, X2, X3 are all singu-

lar.

An interesting feature of the above homomorphism γ̃ : F̃(X × Y ) → H∗(X × Y )

defined by γ̃(11X × α) := [X ] × c∗(α) is that it can be described as any resolution

Ginzburg-Chern class. Namely we have the following

Proposition 3.10. — Let p1 : X × Y → X denote the projection to the first factor as

before. Then we have

γ̃Gin
p1

(11X × α) = [X ] × c∗(α).

When it comes to the Nash-type Ginzburg-Chern class, we have that

γ̂Gin
p1

(11X × α) = ν∗

(
s(T̂X) ∩ c∗(X̂)

)
× c∗(α).

And we can see the following theorem, using Lemma (3.6):

Theorem 3.11. — Let Xi be a possibly singular variety in a nonsingular variety Mi

(i = 1, 3). And let X2 = M2 be a nonsingular compact variety. Then we have the

following commutative diagram.

F̃(X1 × X2) ⊗ F̃(X2 × X3)
?

//

γ̂Gin
p1

⊗ γ̂Gin
p1

��

F̃(X1 × X3)

γGin
p1

��

H∗(X1 × X2) ⊗ H∗(X2 × X3) ?
// H∗(X1 × X3).
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