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ON SEMI-STABLE, SINGULAR CUBIC SURFACES
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Abstract. — This paper deals with semi-stable and stable singular cubic surfaces from
the point of view of the geometric invariant theory. We are interested in properties
of the subsets iA1jA2 corresponding to all semi-stable, singular cubic surfaces with
exactly i singular points of type A1 and j singular points of type A2. We consider
semi-stable cubic surfaces as “csurfaces” of 6-point schemes in almost general position
with some conditions of configurations. This is a generalization of the blowing-up
of P

2 at 6 points in general position. From relevant configurations of 6-point schemes,
we can determine number of star points, the configuration of singular points, of lines
and tritangent planes with multiplicities on semi-stable, singular cubic surfaces.

Résumé(Sur les surfaces cubiques semi-stables). — Cet article concerne les surfaces
cubiques semi-stables et stables du point de vue de la théorie géométrique des inva-
riants. Nous nous sommes intéressé aux propriétés des sous-ensembles iA1jA2 cor-
respondant à toutes les surfaces cubiques singulières semi-stables avec exactement
i points singuliers de type A1 et j points singuliers de type A2. Nous considérons
les surfaces cubiques semi-stables comme « c-surfaces » d’ensembles de 6 points en
position presque générale avec certaines conditions de configurations. Ceci est une

généralisation de l’éclatement de P
2 en 6 points en position générale. À partir de

configurations adaptées d’ensembles de 6 points, nous pouvons déterminer le nombre
de points « étoile », la configuration des points singuliers, des droites et des plans
« tritangents » avec multiplicités sur les surfaces singulières cubiques semi-stables.

1. Introduction

Consider P
19 as a parametrizing space of cubic surfaces in P

3
k, where k is an alge-

braically closed field with characteristic 0. We have the action of PGL(4) on P
19. The

locus ∆ ⊂ P
19 of singular cubic surfaces is a closed subset of codimension 1. Some
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classifications of singular cubic surfaces can be found in [4] or [5]. We are interested

in singular cubic surfaces which correspond to semi-stable and stable points under

the action of PGL(4) on P
19 in the sense of the geometric invariant theory. One

reason we are interested in these kinds of singularities is that the quotient space of

semi-stable points over PGL(4) exists and it is a compactification of the moduli space

of non-singular cubic surfaces.

It is well-known that the blowing-up of P
2 at 6 points in general position is isomor-

phic to a non-singular cubic surface. Conversely, any non-singular cubic surface can

be obtained in that way. A question arises naturally: is there a similar correspondence

between a semi-stable, singular cubic surface and a 6-point scheme in some relevant

configuration of its points? Showing such a correspondence is one of main goals of

this paper. Namely, let X be a semi-stable cubic surface. Then there exists a 6-point

scheme P such that the linear system LP of cubic forms in four variables through P

has dimension 4; furthermore, for any basis of LP , the closure of the image of the

rational map from P
2 to P

3 defined by the basis is a surface which is isomorphic to X .

In this case, we have a morphism Y −→ X , where Y is the blowing-up of P
2 at P . In

general, this is a blowing-down and not an isomorphism. A close study of such 6-point

schemes enables us to determine the number of lines, the number of singularities of X

and their configuration as well.

This also gives a way to compute the multiplicity of lines and tritangent planes

on semi-stable, singular cubic surfaces. This investigation shows a clear picture on

the configuration of lines and tritangent planes of semi-stable, singular cubic sur-

faces. Moreover, we will give definitions of star point and proper star point which are

generalizations of the concept of Eckardt point on non-singular cubic surfaces. We

will determine the number of (proper) star points on a general one of any class of

semi-stable cubic surfaces and study some properties.

2. Stable and semi-stable, singular cubic surfaces

We denote by iA1jA2 the subset of P
19 corresponding to irreducible cubic surfaces

with exactly i singular points of type A1 and j singular points of type A2. We refer

to [1] and [2] or to [4] for general definitions of types of singularities. We will see later

that these subsets correspond to all semi-stable, singular cubic surfaces with respect

to the action of PGL(4) on P
19.

Remark 2.1

(i) In the case of cubic surfaces, the singularities of types A1 and A2 are character-

ized as follows. A point P on a cubic surface with only isolated singularities is called

a singular point of type A1 (respectively A2) if the tangent cone at P is an irreducible

quadric surface (respectively if the tangent cone at P consists of two distinct planes

whose intersection line does not lie on the surface).
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(ii) We have 2i+ 3j 6 9, i 6 4 and (i, j) 6= (3, 1), see [4], p. 255 or [11], pp. 49-50.

We use jA2 and iA1 instead of 0A1jA2 and iA10A2, respectively.

(iii) By the definition, a semi-stable, singular cubic surface can be given by a

polynomial in the following form:

F = x3f2(x0, x1, x2) + f3(x0, x1, x2),

where fi for i = 1, 2 is a homogeneous polynomial of degree i. Then the type of

singularity of the surface is characterized by rank(f2) and the configuration of points

in VP2(f2, f3).

Some interesting properties of subsets iA1jA2 are shown in the following.

Proposition 2.2. — The subsets iA1jA2 are irreducible of codimension i + 2j in P
19

and have a relation as shown in the Figure 1, where A −→ B means that A ⊂ B and

subsets are in the same column iff they have the same codimension.

A1
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2A1 3A1 4A1

A1A2

A2

2A1A2

2A2

A12A2

3A2

� �

}

=
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}

}
=

I

Figure 1

Proof. — This follows from [3], Prop. 2.1. and [3], Fig. 1, p. 435.

Proposition 2.3. — On the action of PGL(4) on P
19, we have:

(i) The subset of stable points consists of points in P
19 −∆ and those of types iA1

for 1 6 i 6 4.

(ii) The subset of semi-stable points consists of points in P
19 − ∆ and all those of

types iA1jA2.

Proof. — This result was mentioned, for instance, in [10], p. 80 or [9], p. 51. A detailed

proof could be found in [11], 3.2.14.

3. Semi-stable as csurfaces of 6-point schemes in almost general position

As in the case of non-singular cubic surfaces, we show that each semi-stable, singu-

lar cubic surface corresponds to a relevant 6-point scheme in almost general position.

Moreover we prove that the corresponding semi-stable cubic surfaces are isomorphic

if their 6-points schemes are different by quadratic transformations.
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Definition. — A 6-point scheme is a closed subscheme in P
2 of dimension zero and of

length 6. Any 6-point scheme P defines a formal cycle c(P) =
∑
niPi for

∑
ni = 6;

the set of the points Pi is called the support of P and denoted by Supp(P). If the linear

system of all cubic forms passing through a 6-point scheme P has (linear) dimension 4,

then P is called a 6-point scheme in almost general position.

Let Hilbn denote the Hilbert scheme of zero-dimensional closed subschemes of

length n in P
2. We denote by Ha the subscheme of Hilb6 consisting of all 6-point

schemes in almost general position.

Let P ∈ Ha and let l be any line in P
2 such that l ∩ P 6= ∅. Then the length

of l ∩ P is not greater than 4.

Definition. — Let P ∈ Ha. We say that P is a 6-point scheme with no 4 points on a

line if there does not exist any line l in P
2 such that the length of l ∩P is equal to 4.

Denote by Ho the subset of 6-point schemes with no 4 points on a line.

Lemma 3.1. — Let P ∈ Ho. Let LP be the linear system of cubic forms passing

through P.

(i) The base locus of LP is the support of P.

(ii) Let {f1, . . . , f4} be a basis of LP . Consider the morphism

ψ : P
2 − Supp(P) −→ P

3

P 7−→ (f1(P ) : f2(P ) : f3(P ) : f4(P )).

Let X be the closure of the image of ψ. Then X is a cubic surface.

(iii) If {g1, . . . , g4} is another basis of LP and X ′ is the cubic surface obtained as

in (ii), then X and X ′ are isomorphic.

Proof

(i) Let P ∈ P
2 − Supp(P). Since P does not have 4 points on a line, there exists a

cubic form in LP which does not contain P . This implies that the base locus of LP

is the support of P .

(ii) Let Q1, Q2 be two general points in P
2 − Supp(P). The linear subspaces con-

sisting of cubic forms through P∪{Q1} and P∪{Q1, Q2} respectively have dimension

3 and 2. This implies that there exists a cubic form in LP which contains Q1 but does

not contain Q2 and conversely. This means that ψ is injective over an open subset

of P
2. Moreover, any two general cubic forms in LP have 3 other points in common

which do not belong to P . This implies that X is a cubic surface.

(iii) Let A = (aij)4×4 be the base change matrix from {f1, . . . , f4} to {g1, . . . , g4}.

Then A defines a projective transformation which transforms X to X ′.

Definition. — A csurface is an algebraic variety Y such that there exists a cubic

surface X ⊂ P
3 such that X ∼= Y . From the lemma, we see that each P ∈ Ho

determines uniquely (up to isomorphisms) a csurface, which is called the csurface
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of P . If P consists of 6 points in general position, then the csurface of P is the

blowing-up of P
2 at P .

Definition. — Let P0 = (1 : 0 : 0), P1 = (0 : 1 : 0) and P2 = (0 : 0 : 1). Let

ϕ : P
2 −− → P

2 be the quadratic transformation with respect to P0, P1 and P2 (see

[8], V.4.2.3). Let C be the cubic curve given by

(1) F =
∑

aijk x
i
0x

j
1x

k
2 for i+ j + k = 3 and 0 6 i, j, k 6 2.

The cubic curve defined by Fϕ :=
∑
aijk y

2−i
0 y2−j

1 y2−k
2 in P

2 is called the image of C

by ϕ and is denoted by Cϕ.

Lemma 3.2. — Let P ∈ Ho. Suppose that Supp(P) contains 3 distinct points P1, P2

and P3. Suppose further that there exists a cubic form in LP which is non-singular

at any Pi for i = 1, 2, 3. Let ϕ be the quadratic transformation with respect to P1, P2

and P3. Then the set ϕ(LP ) := {Fϕ | F ∈ LP} is a 4-dimensional linear space whose

base locus is of dimension 0.

Proof. — Choose coordinates such that P1 = (1 : 0 : 0), P2 = (0 : 1 : 0) and

P3 = (0 : 0 : 1). Suppose that the base locus of ϕ(LP ) contains an irreducible compo-

nent Y of positive dimension. Since ϕ is one-to-one in P
2 − V (x0x1x2), the variety Y

is contained in V (y0y1y2). Assume that Y contains the line d12 = V (y0). This means

that for any F ∈ LP , we have Fϕ = y0g2(y0, y1, y2) where g2 is a homogeneous poly-

nomial of degree 2 and vanishes at Q3 = (0 : 0 : 1). Then F = (Fϕ)ϕ−1 is singular at

P1 = (1 : 0 : 0). A contradiction!

Definition. — Let P ∈ Ho satisfy the conditions as in the previous lemma. Let I be

the ideal generated by all cubic forms in ϕ(LP ). The scheme defined by this ideal is

called the image of P and denoted by ϕ(P).

Proposition 3.3. — Every semi-stable cubic surface is isomorphic to the csurface of

some 6-point scheme in almost general position with no 4 points on a line.

Proof. — Let X be a semi-stable cubic surface. If X is a non-singular cubic surface

then it is isomorphic to the blowing-up of a 6-point scheme in general position. We

consider the case that X is singular.

Suppose that X does not have any A2 singularity. By choosing coordinates, we

may assume X to be defined by

F = x3f2(x0, x1, x2) + f3(x0, x1, x2),

where fi for i = 2, 3 is a homogeneous polynomial of degree i and f2 is irreducible.

The scheme P = VP2(f2, f3) defines an element in Ho. The 6-point scheme P is

contained in an irreducible conic curve defined by f2 and the cycle c(P) corresponds

to a partition (2i−11k) of 6. Let LP be the linear space of cubic forms passing

through P . Since P does not contain any triple point, we see that the cubic forms
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x0f2, x1f2 and x2f2 are elements of LP . Moreover, we see that {x0f2, x1f2, x2f2,−f3}

is a basis of LP .

Consider the morphism ψ : P
2 − Supp(P) −→ P

3 determined by this basis. Then

we see that F (x0f2, x1f2, x2f2,−f3) = −f3f
3
2 + f3f

3
2 = 0. This means that X is

isomorphic to the csurface of P .

Suppose that X contains at least one A2 singularity. By choosing coordinates, we

may assume X to be defined by

F = x3f2(x0, x1, x2) + f3(x0, x1, x2),

where fi for i = 2, 3 is a homogeneous polynomial of degree i and f2 is reducible. The

scheme P = VP2(f2, f3) defines an element in Ho which corresponds to a partition

(3j−12i1k) of 6, where j > 1. Let LP be the linear space of cubic forms passing

through P . Note that, if P has a multiple point then the direction at the multiple point

is contained in the reducible conic defined by f2. This implies that the cubic forms

x0f2, x1f2 and x2f2 are elements of LP . Moreover, we have {x0f2, x1f2, x2f2,−f3} is

a basis of LP . As above, we see that X is isomorphic to the csurface of P .

Remark 3.4. — In [11], Prop. 2.1.3, we see that the blowing-up of P
2 at a given P in

general position is isomorphic to the blowing-up of P
2 at ϕ(P). We now show that a

similar property holds for all semi-stable cases.

Let P ∈ Ho such that the csurface of P is isomorphic to a semi-stable, singular

cubic surface and the support of P contains at least 3 distinct points. Let P1, P2, P3 be

some 3 distinct points contained in P . Choose coordinates such that P1 = (1 : 0 : 0),

P2 = (0 : 1 : 0) and P3 = (0 : 0 : 1). Let ϕ be the quadratic transformation

with respect to P1, P2 and P3. As in the proof of the previous proposition, there

exists a basis of LP of the form {x0f2, x1f2, x2f2,−f3} where f2, f3 ∈ k[x0, x1, x2]

are homogeneous polynomials such that the csurface of P is isomorphic to the surface

X = V (x3f2 + f3).

On the other hand, we see that {(x0f2)ϕ, (x1f2)ϕ, (x2f2)ϕ,−(f3)ϕ} is a basis of

the linear space ϕ(LP ). Consider the morphism:

P
2 − Supp(ϕ(P)) −→ P

3

(y0 : y1 : y2) 7−→ ((x0f2)ϕ : (x1f2)ϕ : (x2f2)ϕ : (−f3)ϕ)

defined by this basis. The closure of the image of this morphism is a surface Y . We will

see that the surface Y is isomorphic to X . For this, let f2 = a1x0x1+a2x0x2+a3x1x2.

Then f2 defines a conic curve containing P1, P2, P3. We have:

(x0f2)ϕ = y1y2(a1y2 + a2y1 + a3y0),

(x1f2)ϕ = y0y2(a1y2 + a2y1 + a3y0),

(x2f2)ϕ = y0y1(a1y2 + a2y1 + a3y0).
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Let h1 = a1y2 + a2y1 + a3y0 and F = x3f2 + f3. We have

F ((x0f2)ϕ, (x1f2)ϕ, (x2f2)ϕ, (−f3)ϕ)

= (−f3)ϕf2(y1y2h1, y0y2h1, y0y1h1) + f3(y1y2h1, y0y2h1, y0y1h1)

= (−f3)ϕh
2
1f2(y1y2, y0y2, y0y1) + h3

1f3(y1y2, y0y2, y0y1).

Note that

f2(y1y2, y0y2, y0y1) = a1y0y1y
2
2 + a2y0y

2
1y2 + a3y

2
0y1y2

= y0y1y2(a1y2 + a2y1 + a3y0) = y0y1y2h1,

and f3(y1y2, y0y2, y0y1) = y0y1y2(f3)ϕ. So we have

F ((x0f2)ϕ, (x1f2)ϕ, (x2f2)ϕ, (−f3)ϕ) = 0.

Since F is irreducible, the surface Y is defined by the polynomial F . This implies

that ϕ(P) is a 6-point scheme in almost general position. Therefore, we have proved

the following proposition.

Proposition 3.5. — Let P ∈ Ho. Suppose that the csurface of P is isomorphic to a

semi-stable cubic surface and the support of P contains at least 3 distinct points. Let

ϕ be the quadratic transformation with respect to some 3 distinct points of P. Then

the subscheme ϕ(P) is a 6-point scheme in almost general position and the csurface

of ϕ(P) is isomorphic to the csurface of P.

From the above propositions, we can easily describe the configuration of a 6-point

scheme of any semi-stable cubic surface.

Example 1(6-point schemes foriA1). — By (3.3), we see that the points P1, . . . , P6

(not necessarily distinct) of a 6-point scheme P corresponding to iA1 lie on an irre-

ducible conic. There are at least 3 distinct points in the support of P , say {P1, P2, P3},

and suppose that this set contains multiple points of P if it has. Applying the

quadratic transformation with respect to {P1, P2, P3} we obtain configurations as

mentioned in [7], pp. 641-646. In Figure 2 we see some 6-point schemes for 2A1.

:

P2

P3 P4

P5

P1 d

(a) (b)

Q6

Q2

Q3Q4

l2

Q5

Q1

l1

C

Figure 2. 6-point schemes giving points in 2A1
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Example 2. — Similarly, we give in Figure 3 some configurations of 6-point schemes

for A1A2.

1P5

P4

P3P2P1

(a)

>

�
Q5

Q4

Q6Q2Q1

ϕ125

(b)

Figure 3. 6-point schemes corresponding to elements in A1A2

4. Configurations of singular points, star points, lines and

tritangent planes with multiplicities

Definition. — Let X be a semi-stable cubic surface. A tritangent plane of X is a plane

such that the hyperplane intersection factors into 3 lines (not necessarily distinct).

A point P ∈ X is called a star point if it is contained in all lines of the hyper-

plane intersection of some tritangent plane. In that case, the lines of the hyperplane

intersection is called a star triple.

It is well-known that a non-singular cubic surface has exactly 27 lines and 45 tritan-

gent planes with a special configuration. The numbers of distinct lines and tritangent

planes of a semi-stable, singular cubic surface decrease. But with multiplicities, these

numbers are the same for all semi-stable cubic surfaces.

A description of configurations of lines and tritangent planes with multiplicities on

cubic surfaces could be found in [6]. In [6], the author has classified 23 classes of cubic

surfaces with normal forms. The explicit equations of the lines on any cubic surface

were carried out from the normal form. Moreover, when reducing from the non-

singular class to a singular class of cubic surfaces (with only isolated singularities), the

27 lines and 45 tritangent planes on a non-singular cubic surface reduce to the lines and

tritangent planes on the corresponding singular cubic surface. The multiplicity of a

line l (tritangent plane T ) of a singular cubic surface (with only isolated singularity) is

nothing but the number of lines (tritangent planes) which reduce to l (respectively T ).

See [6], Articles 35-201 for details.

We now see that the correspondence between semi-stable cubic surfaces and 6-point

schemes, as considered in the previous section, enables us to describe configurations

of lines and tritangent planes, to determine easily not only the multiplicities of lines

and tritangent planes but star points on a generic singular cubic surface with respect

to any iA1jA2.
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First of all, we recall how to determine the lines and tritangent planes on a semi-

stable cubic surface from a 6-point scheme of it. Let X be a semi-stable cubic surface

and let P be a 6-point scheme of X . Let LP be the linear space of cubic forms in P
2

containing P . Then LP has linear dimension 4. Let {f1, . . . , f4} be a basis of LP .

Consider the morphism

ψ : P
2 − Supp(P) −→ P

3

P 7−→ (f1(P ) : f2(P ) : f3(P ) : f4(P )).

The surface X is the closure of the image of ψ. Note that cubic forms of LP are in 1-1

correspondence with hyperplanes in P
3. We denote by Sij the two-dimensional linear

subspace consisting of all cubic forms factoring into the linear form defining lij =

PiPj and quadratic forms passing through P − {Pi, Pj}. This subspace determines

uniquely a line on X which is denoted by l̃ij . The line l̃ij is the closure of the image

of lij −{Pi, Pj}. There are 15 lines of this kind. Similarly, we denote by SPi
the two-

dimensional linear subspace consisting of cubic forms singular at Pi. This determines

uniquely a line on X which we denote by P̃i. There are 6 lines of this kind. Let SCi

denote the two-dimensional linear subspace consisting of all cubic forms factoring into

the quadratic form defining the conic Ci through {P1, . . . , P6}− {Pi} and linear forms

vanishing at Pi. This subspace determines uniquely a line on X , which is denoted by

C̃i. The line C̃i is nothing but the closure of the image of Ci − {P1, P2, P3}. There

are 6 lines of this kind.

Any tritangent plane of X has the form either (P̃i, C̃j , l̃ij) for 1 6 i 6= j 6 6 or

(l̃ij , l̃mn, l̃kh) for {i, j,m, n, h, k} = {1, . . . , 6}.

If P consists of 6 points in general position, then the above 27 two-dimensional

linear subspaces are all distinct. In general, some of the 27 two-dimensional linear

subspaces may coincide. The coincidence of them determines the multiplicities of lines

and tritangent planes on semi-stable, singular cubic surfaces. Formulating this idea,

we have:

Proposition 4.1. — Let X be a semi-stable cubic surface and l be a line on X.

(i) Suppose that l contains exactly one singular point.

(a) If the singular point is A1, then l is of multiplicity 2.(1)

(b) If the singular point is A2, then l is of multiplicity 3.

(ii) Suppose that l contains 2 singular points.

(a) If both of singularities are A1, then l is of multiplicity 4.

(b) If both of singularities are A2, then l is of multiplicity 9.

(c) If two singularities are of different types, then l is of multiplicity 6.

(iii) If l does not contain any singular point, then l is of multiplicity 1.

(1)This result was also mentioned in [13], p. 39 for the cases of real and complex fields.
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Proof

(1) Suppose that X contains only A1 singularities. By choosing coordinates, we

assume that X is given by

F = x3f2(x0, x1, x2) + f3(x0, x1, x2),

where fi for i = 1, 2 is a homogeneous polynomial of degree i and f2 is irreducible.

Let P be the 6-point scheme VP2(f2, f3). Let c(P) =
∑6

i=1 Pi where the points Pi for

1 6 i 6 6 are unnecessarily different. We know that X is the closure of the image of

the morphism from P
2−Supp(P) to P

3 determined by the basis {x0f2, x1f2, x2f2,−f3}

of LP . Let C be the conic curve in P
2 = V (x3) defined by f2. It is clear that the

image of any point on C − Supp(P) is the point S = (0 : 0 : 0 : 1), which is an A1

singularity. Let Pi be a point in the support of P . Each cubic form in SPi
factors

into f2 and a linear form vanishing at Pi. This implies that the line P̃i contains the

singular point S. Moreover, we prove that P̃i is the line containing S and Pi. For this,

suppose that Pi = (1 : 0 : 0 : 0). Any line d containing Pi is given by VP2(a1x1+a2x2).

We see that d ∪ P̃i = V (F, a1x1 + a2x2). The line connecting S and Pi is given by

x1 = x2 = 0. This implies that P̃i is the line containing S and Pi.

Let l be a line on X containing at least one A1 singularity; we may assume l to

be one of the P̃i’s. If l contains exactly one A1 singularity, then the corresponding

point Pi is a single point of VP2(f2, f3). It is easy to check that the linear subspaces

SPi
and SCi

are the same. Moreover, they are different from other linear subspaces

of the forms SPi
and Sij . Therefore, the multiplicity of l is 2. If l contains two A1

singularities, then the corresponding point Pi is a double point of VP2(f2, f3). So we

may assume that in the cycle c(P) =
∑6

i=1 Pi, the point P1 coincides with P2. This

implies that the linear subspaces SP1
, SP2

, SC1
and SC2

are the same; in fact, the line l

is of multiplicity 4.

Consider that l does not contain any singular point. If X has exactly one A1

singularity, then there exist exactly 6 lines of multiplicity 2. Note that X has ex-

actly 21 lines. This implies that the other 15 lines are of multiplicity 1. So l is of

multiplicity 1. If X has exactly two A1 singularities, then there exist exactly 8 lines

with multiplicity 2; there exists one line with multiplicity 4. Note that X has exactly

16 lines. This implies that the other 7 lines of X are of multiplicity 1. So l is of

multiplicity 1 in this case. If X has exactly three A1 singularities, then there exist

exactly 6 lines with multiplicity 2, there exist exactly 3 lines with multiplicity 4. In

this case, the surface X has exactly 12 lines. This implies that the other 3 lines are of

multiplicity 1. This means that l is of multiplicity 1. Finally, if X has exactly four A1

singularities, then there exist exactly 6 lines with multiplicity 4. Since X has exactly

9 lines, the other 3 lines are of multiplicity 1. So l is of multiplicity 1.

(2) Suppose that X contains at least one A2 singularity. The reader can perform

the result using a similar argument as used in (1).
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As illustrations, the rest of this section is used to work out some cases of iA1jA2.

We will describe the configurations of lines, tritangent planes with multiplicities, de-

termine the number of star points and describe how to recognize singular points of

semi-stable cubic surfaces from the corresponding 6-point schemes. From now on, un-

less stating differently, when we write the formal cycle c(P) of a given 6-point scheme

P , we always mean that the points in the cycle are mutually distinct.

A1. Let x ∈ A1. We know that the corresponding cubic surface Xx is isomorphic

to the csurface of a 6-point scheme P ∈ Ho such that c(P) =
∑6

i=1 Pi where the 6

mutually distinct points lie on an irreducible conic curve C (see Figure 4).

P6
P5

P4

P3

P2

P1

Figure 4. 6-point schemes corresponding to points in A1

By (4.1), we see that the image of C − Supp(P) (via any morphism from P
2 −

Supp(P) to P
3 determined by a basis of LP) is the singular point; the lines P̃i = C̃i

for 1 6 i 6 6 are the 6 lines through the singular point. Other lines of Xx are l̃ij
for 1 6 i < j 6 6. The 21 lines of Xx with multiplicities correspond to the partition

(26, 115) of 27. Moreover, we see that the tritangent planes (P̃i, C̃j , l̃ij), (P̃j , C̃i, l̃ij)

and (P̃i, P̃j , l̃ij) for 1 6 i < j 6 6 are the same. This means that every tritangent plane

(P̃i, P̃j , l̃ij) for 1 6 i < j 6 6 is of multiplicity 2. The corresponding cubic surface Xx

has 30 distinct tritangent planes which correspond to the partition (215, 115) of 45.

A2. Let x ∈ A2. The corresponding cubic surface Xx is isomorphic to the csurface

of a 6-point scheme P ∈ Ho such that c(P) =
∑6

i=1 Pi where 3 points P1, P2, P3 lie

on a line l1; three points P4, P5, P6 lie on another line l2; the intersection point of l1
and l2 does not belong to P (see Figure 5).

Let LP be the linear space of cubic forms passing through P . Consider any mor-

phism from P
2 − Supp(P) to P

3 determined by a basis of LP . By (4.1), the image

of (l1 ∪ l2) − Supp(P) is the singular point. The 6 lines P̃i for 1 6 i 6 6 contain

the singular point and they are of multiplicity 3. The other 9 lines of Xx are l̃ij for

i ∈ {1, 2, 3} and j ∈ {4, 5, 6}. These lines are of multiplicity 1. The 15 lines of Xx

with multiplicities correspond to the partition (36, 19) of 27.

Note that the linear subspaces SPi
, SCi

and Sjk for {i, j, k} = {1, 2, 3} or {i, j, k} =

{4, 5, 6} are the same. This implies that the tritangent plane (P̃1, P̃2, P̃3) has mul-

tiplicity 6 since it coincides with (P̃1, C̃2, l̃12), (C̃1, P̃2, l̃12), (P̃1, l̃13, C̃3), (C̃1, l̃13, P̃3),
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P1

P2

P6P5P4

P3

Figure 5. 6-point schemes corresponding to points in A2

(l̃23, P̃2, C̃3) and (l̃23, C̃2, P̃3). Similarly, the tritangent plane (P̃4, P̃5, P̃6) has mul-

tiplicity 6. Every tritangent plane (P̃i, P̃j , l̃ij) for 1 6 i 6 3 and 4 6 j 6 6 has

multiplicity 3 since it coincides with (P̃i, C̃j , l̃ij), (C̃i, P̃j , l̃ij) and (l̃mn, l̃kh, l̃ij) where

{m,n} = {1, 2, 3}−{i}, {k, h} = {4, 5, 6}− {j}. Every tritangent plane (l̃ij , l̃mk, l̃nh)

for {i,m, n} = {1, 2, 3}, {j, k, h} = {4, 5, 6} has multiplicity 1. So Xx has 17 distinct

tritangent planes. The 17 tritangent planes with their multiplicities correspond to the

partition (62, 39, 16) of 45.

Moreover, we see that the singular point is a star point of X , since it is contained

in all lines of the tritangent plane (P̃1, P̃2, P̃3).

A1A2. Let x ∈ A1A2. The corresponding cubic surface Xx is isomorphic to the

csurface of a 6-point scheme P ∈ Ho where c(P) = P1 +P2 +P3 +P4 +2P5 such that

P4 and 2P5 are contained in a line l1; three points P1, P2, P3 are contained in another

line l2; the intersection point of l1 and l2 does not belong to P (Figure 3. (a)).

View X as a point in the closure of P
19−∆. Consider P as a specialization position

of some family of 6-point schemes in general position. Suppose further that the family

has 6 sections of points. We may assume that the double point 2P5 is contained in

the two sections corresponding to the points P5 and P6. Consider any morphism from

P
2 − Supp(P) to P

3 determined by a basis of LP . By (4.1), we see that the image

of (l1 ∪ l2) − Supp(P) is the A2 singularity; the line P̃5 is of multiplicity 6 and is the

line containing 2 singularities; the lines P̃i for 1 6 i 6 4 contain the A2 singularity

and they are of multiplicity 3. Moreover, we see that the lines l̃i5 for 1 6 i 6 3 are

of multiplicity 2. So they contain the A1 singularity. The other lines of Xx are l̃4i

for 1 6 i 6 3 which are of multiplicity 1. The 11 lines of Xx with their multiplicities

correspond to the partition (61, 34, 23, 13) of 27.

As in the case of A2, we see that the tritangent planes (P̃1, P̃2, P̃3) and (2P̃5, P̃4) are

of multiplicity 6; every tritangent plane (P̃4, P̃i, l̃4i) for 1 6 i 6 3 has multiplicity 3.

Every tritangent plane (P̃5, P̃i, l̃5i) for 1 6 i 6 3 has multiplicity 6 since it coincides

with (P̃5, C̃i, l̃5i), (C̃5, P̃i, l̃5i), (l̃46, l̃kh, l̃5i), (P̃6, C̃i, l̃6i), (C̃6, P̃i, l̃6i) and (l̃45, l̃kh, l̃6i) for

{k, h} = {1, 2, 3} − {i}. Finally, every tritangent plane (l̃i5, l̃j5, l̃k4) for {i, j, k} =

{1, 2, 3} has multiplicity 2 since it coincides with (l̃i5, l̃j6, l̃k4) and (l̃i6, l̃j5, l̃k4). So X

SÉMINAIRES & CONGRÈS 10
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has 11 distinct tritangent planes. With multiplicities, the tritangent planes of Xx

correspond to the partition (65, 33, 23) of 45.

The A2 singularity is a star point of Xx, since it is the intersection of all lines of

the tritangent plane (2P̃5, P̃4).

Remark 4.2. — If we consider the above 6-point scheme, it is not clear how to ob-

tain the A1 singularity. Consider the quadratic transformation ϕ125 with respect to

P1, P2, P5. Let Q = ϕ(P) be the image of P . We see that c(Q) = 2Q5 +Q1 +Q2 +

Q4 +Q6, where Q1, Q2, Q6 lie on the line d1; three points Q4, Q5, Q6 lie on another

line d2 (Figure 3. (b)). The csurface of Q is isomorphic to Xx. Consider any mor-

phism from P
2 − Supp(Q) to P

3 determined by a basis of LQ. In this case, the image

of
(
l1 − {Q1, Q2, Q6}

)
is the A1 singularity; the image of

(
l2 − {Q4, Q5, Q6}

)
is the

A2 singularity; the line Q̃6 is the line containing two singularities.

Similarly, the reader easily performs all remaining cases. We list the results in

Table 1 with some remarks as follows.

(i) If a semi-stable cubic surface X contains two A1 singularities, denote by l

the line connecting the two singularities, then there exists exactly another line d

intersecting l such that (2l, d) is a tritangent plane. Therefore the intersection point

of l and d is a star point.

(ii) If a semi-stable cubic surface X contains two A2 singularities, denote by l the

line connecting the two singularities, then there is a tritangent plane such that the

hyperplane intersection consists of {3l}. Therefore, any point on l is a star point.

(iii) The number of star points mentioned in each column of the table holds at the

generic point of the corresponding stratum.

5. Proper star points

In this section we study star points of semi-stable cubic surfaces which are special-

ization positions in some specialization process. Such a star point is called a proper

star point. We will show that every star point is a proper star point.

Definition. — Let x be a semi-stable point in P
19. Suppose that x is a specialization

of a given one-dimensional family of semi-stable points, which locally possesses a

section of star points. The specialization position of the section of star point on the

corresponding cubic surfaceXx is called a proper star point with respect to the family.

It is clear that a proper star point is a star point.

Definition. — Let H1 be the subvariety of P
19 − ∆ parametrizing all non-singular

cubic surfaces with at least one star point. In fact, the subset H1 is irreducible of

codimension one in P
19 ([12], p. 288).
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P
19

− ∆ A1 2A1 A2 3A1 A1A2

Lines 27 21 16 15 12 11

with Mult. (127) (26, 115) (41, 28, 17) (36, 19) (43, 26, 13) (61, 34, 23, 13)

Tritangent 45 30 20 17 14 11

with Mult. (145) (215, 115) (44, 213, 13) (62, 39, 16) (81, 46, 26, 11) (65, 33, 23)

Star 0 0 1 1 3 1

points

4A1 2A1A2 2A2 A12A2 3A2

Lines 9 8 7 5 3

with Mult. (46, 13) (62, 41, 32, 22, 11) (91, 36) (91, 62, 32) (93)

Tritangent 11 8 6 5 4

with Mult. (84, 26, 11) (121, 64, 41, 31, 21) (93, 63) (181, 91, 63) (271, 63)

Star 6 2 ∞ ∞ ∞

points

Table 1. Information about lines, tritangent planes and star points on

semi-stable cubic surfaces

Lemma 5.1. — The subset 2A1 is contained in the closure of H1. Consequently the

star point on the line with multiplicity 4 of any cubic surface corresponding to a point

of 2A1 is a proper star point.

Proof. — Let x ∈ 2A1. The corresponding cubic surface Xx is isomorphic to the

csurface of a 6-point scheme Q =
∑6

i=1Qi where 3 points Q2, Q3, Q6 lie on a line l1;

the three points Q4, Q5, Q6 lie on another line l2; no 3 of the five points Q1, . . . , Q5

are collinear (Figure 6).

d

Q3

l1 l2

Q4

Pt
Q6Q1

Q5 Q2

Figure 6. 6-point schemes giving points in 2A1

Let Pt be a moving point on the line d = Q1Q6. At a general position of Pt on d,

the 6-point scheme Pt =
∑6

i=1 Pi where Pi = Qi for 1 6 i 6 5 and P6 = Pt, gives a

non-singular cubic surface with at least one star point. Except for a finite number of
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positions, when Pt moves on the line d, we have a family in H1. This implies that x

lies on the closure of H1. Moreover, we see that the section of star points over the

family is defined by the tritangent planes Ht = (l̃23, l̃45, l̃1t) where l̃ij is the line on

the csurface of a 6-point scheme in the family determined by the linear subspace Sij .

In the specialization position, the linear subspaces S23, S45, SC1
and SQ6

coincide.

This means that Q̃6 is the line connecting the 2 singular points and the section of

tritangent planes Ht contains the tritangent plane (2Q̃1, l̃16). So the section of star

points contains the star point on the line Q̃6 of multiplicity 4.

Lemma 5.2. — Any x ∈ A2 lies on the closure of H1. Consequently, the A2 singularity

of the corresponding cubic surface Xx, as a star point, is a proper star point.

Proof. — Let R be a 6-point scheme consisting of 6 distinct points R1, . . . , R6 such

that the 3 points R1, R2, R3 as well as the 3 points R4, R5, R6 are collinear (Fig-

ure 7. (b)). We know that the csurface of R is isomorphic to a cubic surface with

exactly one A2 singularity. Consider the quadratic transformation with respect to

R1, R4, R5. Then the image of R is a 6-point scheme Q where c(Q) = 2Q1 +
∑5

i=2Qi,

such that three points Q1, Q2, Q3 are collinear; the corresponding direction at double

point 2Q1 does not contain any Qi for i = 4, 5; the four points Q1, Q2, Q4, Q5 as well

as the four points Q1, Q3, Q4, Q5 are in general position (Figure 7. (a)).

9

m
l

Q1
P6

d

Q2

Q5Q4

P3 Q3

O

(a)

R1

R2

R6R5R4

R3

(b)

Figure 7. 6-point schemes giving points in A2

Let x ∈ A2. The corresponding cubic surface Xx is isomorphic to the csurface of a

6-point scheme Q where c(Q) = 2Q1 +
∑5

i=2Qi described as above.

Let O be the intersection point of Q1Q2 and Q4Q5. Let d be the direction at the

double point 2Q1. Let m be a fixed line which contains Q3 and does not contain any

other point of Supp(Q). Let (P6, P3) be a pair of moving points where P6 ∈ d and

P3 ∈ m such that P3P6 contains O. Except for a finite number of positions, when

moving (P6, P3), the csurfaces of 6-point schemes P =
∑6

i=1 Pi, where Pi = Qi for

i ∈ {1, 2, 4, 5}, are isomorphic to non-singular cubic surfaces with at least one star
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point. This defines a family in H1. When (P6, P3) = (Q1, Q3), we get the 6-point

scheme Q whose csurface is isomorphic toXx. So x lies on the closure of H1. Moreover,

the star section over the family is defined by the tritangent planes (l̃12, l̃45, l̃36) where

the line l̃ij on a surface corresponding to a point of the family is determined by

the linear subspace Sij . In the specialization position, the linear subspaces S12, S26

and SQ3
coincide; the linear subspaces S36, S13 and SQ2

coincide. Note that the 6 lines

Q̃1, Q̃2, Q̃3, l̃45, l̃14 and l̃15 have multiplicity 3 and they contain the A2 singularity. It is

clear that the section of star points gives a specialization to the intersection of Q̃2, Q̃3

and l̃45, which is the A2 singularity.

Proposition 5.3. — Let X be a semi-stable cubic surface. Any star point of X is a

proper star point.

Proof. — Let P be a star point of X . The result is clear if P is the intersection of a

star triple whose lines are of multiplicity 1. If P is an A2 singularity, then the result

follows from (5.2). Suppose that X has at least two A1 singularities. Let d be the

line containing two A1 singularities. Let (2d, l) be the star triple which factors into

2d and another line l on X . Suppose that {P} = d ∩ l, then the result follows from

(5.1).

Suppose that X has at least two A2 singularities and P is a point in the line

connecting two A2 singularities. We only consider the case that P is not a singular

point of X . Choose coordinates such that X is given by the polynomial (see [4],

p. 249):

F0 = x3x0x1 + x1(a1x
2
1 + a2x1x2 + a3x

2
2) + x3

2.

The surface X contains two A2 singularities, namely S1 = (0 : 0 : 0 : 1) and S2 =

(1 : 0 : 0 : 0). The line d = V (x1, x2) contains the two A2 singularities. Let

P = (λ, 0 : 0 : 1) ∈ d where λ 6= 0.

Consider the family given by

(2) Ft = x3(x0x1 + t(λ+ t)x2
2) + x1(a1x

2
1 + a2x1x2 + a3x

2
2) + x3

2 − tx0x
2
2,

where t ∈ k. Let f t
2 = x0x1+t(λ+t)x2

2 and f t
3 = x1(a1x

2
1+a2x1x2+a3x

2
2)+x

3
2−tx0x

2
2.

For t /∈ {0,−λ}, the polynomial f t
2 has rank 3. Consider Pt = VP2(f t

2, f
t
3). We see

that the point (1 : 0 : 0) is a double point of VP2(f t
2, f

t
3). Other four points of Pt are

determined by (−t(λ+ t)b2 : 1 : b) where b is a solution of the following equation:

(3) a1 + a2x2 + a3x
2
2 + x3

2 + t2(λ + t)x4
2 = 0.

The above equation has a multiple solution with multiplicity 4 for only a finite number

of t. It means that (2) defines a family Γt of semi-stable cubic surfaces which gives a

specialization to the surface X .

Each corresponding cubic surface Xt := V (Ft) of any element in Γt contains two

A1 singularities, namely S1 = (0 : 0 : 0 : 1) and S2 = (1 : 0 : 0 : 0). We see that

Tt = V (x1)∩Xt = 2d∪lt, where d = V (x1, x2) and lt = V (x1, t(λ+t)x3+x2−tx0) is a
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star triple. The surfaceXt contains the star point Pt = (λ+t : 0 : 0 : 1) = d∩lt. When

the family Γt gives a specialization to X ≡ X0, the sections of the A1 singularities

contain the A2 singularities of X . Moreover, the section of star points over Γt contains

P = (λ : 0 : 0 : 1) in X . This completes the proof.
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