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Abstract. — We consider real monic hyperbolic polynomials in one real variable,
i.e. polynomials having only real roots. Call hyperbolicity domain Π of the
family of polynomials P (x, a) = xn + a1xn−1 + · · · + an, ai, x ∈ R, the set
{a ∈ Rn | P is hyperbolic}. The paper studies a stratification of Π defined by the

arrangement of the roots of P and P (k), where 2 6 k 6 n − 1. We prove that the
strata are smooth contractible semi-algebraic sets.

Résumé(Sur les arrangements des racines d’un polynôme hyperbolique et d’une de ses
dérivées)

Nous considérons des polynômes moniques hyperboliques à une variable réelle,
c’est-à-dire des polynômes dont toutes les racines sont réelles. Définissons le domaine

d’hyperbolicité Π de la famille de polynômes P (x, a) = xn +a1xn−1 + · · ·+an, ai, x ∈
R, comme l’ensemble {a ∈ R

n | P est hyperbolique}. L’article étudie la stratification

de Π définie par l’arrangement des racines de P et de P (k), où 2 6 k 6 n − 1. Nous
montrons que les strates sont des ensembles lisses, contractibles et semi-algébriques.

1. Introduction

In the present paper we consider real monic hyperbolic (resp. strictly hyperbolic)

polynomials in one real variable, i.e. polynomials having only real (resp. only real

distinct) roots. If a polynomial is (strictly) hyperbolic, then so are all its non-trivial

derivatives.

Consider the family of polynomials P (x, a) = xn + a1x
n−1 + · · · + an, ai, x ∈ R.

Call hyperbolicity domain Π the set {a ∈ Rn | P is hyperbolic}. The paper studies

a stratification of Π defined by the configuration (we write sometimes arrangement)

of the roots of P and P (k), where 2 6 k 6 n − 1. The study of this stratification

began in [KoSh], see also [Ko1] and [Ko2] for the particular cases n = 4 and n = 5.

2000Mathematics Subject Classification. — Primary 12D10; Secondary 14P05.
Key words and phrases. — Stratification; arrangement (configuration) of roots; (strictly) hyperbolic
polynomial; hyperbolicity domain.
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Properties of Π were proved in [Ko3] and [Ko4], the latter two papers use results

of V.I. Arnold (see [Ar]), A.B. Givental (see [Gi]) and I. Meguerditchian (see [Me1]

and [Me2]).

Notation 1. — Denote by x1 6 · · · 6 xn the roots of P and by ξ1 6 · · · 6 ξn−k the

ones of P (k). We write sometimes x
(k)
i instead of ξi if the index k varies. Denote by

y1 < · · · < yq the distinct roots of P and by m1, . . . , mq their multiplicities (hence,

m1 + · · · + mq = n).

The classical Rolle theorem implies that one has the following chain of inequalities:

(1) xi 6 ξi 6 xi+k, i = 1, . . . , n − k

Definition 2. — A configuration vector (CV) of length n is a vector whose components

are either positive integers (sometimes indexed by the letter a, their sum being n)

or the letter a. The integers equal the multiplicities of the roots of P , the letters a

indicate the positions of the roots of P (k); ma means that a root of P of multiplicity

m < k coincides with a simple root of P (k). A CV is called a priori admissible if

inequalities (1) hold for the configuration of the roots of P and P (k) defined by it.

Remark 3. — If a root of P of multiplicity < k is also a root of P (k), then it is a simple

root of P (k), see Lemma 4.2 from [KoSh]. By definition “a root of multiplicity 0”

means “a non-root”.

Example 4. — For n = 8, k = 3 the CV (1, a, 1, 2a, a, a, 4) (which is a priori admis-

sible) means that the roots xj and ξi are situated as follows: x1 < ξ1 < x2 < x3 =

x4 = ξ2 < ξ3 < ξ4 < x5 = · · · = x8 = ξ5. The multiplicity 4 is not indexed with a

because it is > k, i.e. it automatically implies x5 = · · · = x8 = ξ5.

Definition 5. — Given a hyperbolic polynomial P call roots of class B (resp. roots of

class A) its roots of multiplicity < k which coincide with roots of P (k) (resp. all its

other roots). In a CV the roots of class B correspond to multiplicities indexed by a.

Definition 6. — For a given CV ~v call stratum of Π (defined by ~v) its subset of poly-

nomials P with configuration of the roots of P and P (k) defined by ~v.

The aim of the present paper is to prove the following

Theorem 7. — All strata of this stratification are smooth contractible real semi-

algebraic sets. Their closures are real algebraic varieties.

The theorem is proved in Section 5. That the strata mentioned above define a true

stratification is shown in Remark 15.

Remark 8. — It is shown in [KoSh], Theorem 4.4, that every a priori admissible CV

defines a non-empty connected stratum. The essentially new result of the present

paper is the proof not only of connectedness but of contractibility. In [Ko5] the
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notion of a priori admissible CV is generalized in the case of not necessarily hyperbolic

polynomials and it is shown there that all such CVs are realizable by the arrangements

of the real roots of polynomials P and of their derivatives P (k) (the position and

multiplicity of the complex roots is not taken into account there).

Notation 9. — We denote by D(i, j) the discriminant set {a ∈ Rn | Res(P (i), P (j))=0}

(recall that for a ∈ Π one has Res(P (i), P (j)) = 0 if and only if P (i) and P (j) have a

common root).

Let a0 ∈ D(0, k) ∩ IntΠ be such that for a0 there hold exactly s equalities of the

form x
(k)
j = xi, with s different indices j and s different indices i.

Proposition 10. — In a neighbourhood of the point a0 the set D(0, k) is locally the

union of s smooth hypersurfaces intersecting transversally at a0.

All propositions are proved in Section 4. The proposition can be generalized in the

following way. Suppose that at a point a0 lying in the interior of Π there hold exactly

s equalities x
(ki)
j = xi, with s different indices i and s different couples (ki, j).

Proposition 11. — In a neighbourhood of the point a0 these s equalities define s smooth

hypersurfaces intersecting transversally at a0.

Remark 12. — It is shown in [Ko3] that for each q-tuple of positive integers mj

with sum n the subset T of Π (we call it a stratum of Π defined by the multiplicity

vector (m1, . . . , mq), not by a CV) consisting of polynomials with distinct roots yi, of

multiplicities mi, is a smooth variety of dimension q in Rn.

Denote by T a stratum of Π defined by a multiplicity vector. Fix a point G ∈ T .

Suppose that at G there are s among the roots yj which are of class B. Suppose that

one has mi < k for all i. The condition mi < k implies that all points from D(0, k)∩T

close to G result from roots of P (k) coinciding with roots of P of class B.

Proposition 13. — In a neighbourhood of the point G the set D(0, k)∩ T is locally the

union of s smooth codimension 1 subvarieties of T intersecting transversally at G.

Remarks 14. — 1) A stratum of Π of codimension κ 6 k defined by κ equalities of

the form xi = ξj (i.e. P has no multiple root) has a tangent space transversal to the

space Oan−κ+1 . . . an. Indeed, the roots ξj depend smoothly on a1, . . . , an−k, and the

conditions P (ξj , a) = 0 allow one to express an−κ+1, . . . , an as smooth functions of

a1, . . . , an−κ (use Vandermonde’s determinant with distinct arguments ξ1, . . . , ξκ). It

would be nice to prove or disprove the statements:

A) this property holds without the assumption κ 6 k and that P has no multiple

root;

B) the limit of the tangent space to a stratum, when a stratum in its closure is

approached, exists and is transverse to the space Oan−κ+1 . . . an.
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For n = 4 and n = 5 this seems to be true, see [Ko1] and [Ko2]. The statements

would be a generalization of such a transversality property of the strata of Π defined

by multiplicity vectors, not by CVs (proved in [Ko3], Theorem 1.8; see Remark 12).

Outside Π the first statement is not true – for n = 4, a1 = 0, the discriminant set

D(0, 2) has a Whitney umbrella singularity at the origin and there are points where

its tangent space is parallel to Oa4; this can be deduced from [Ko1] (see Section 3

and Lemma 29 in it).

2) In [KoSh], [Ko1] and [Ko2] a stratification of Π defined by the arrangement of

all roots of P, P ′, . . . , P (n−1) is considered (the initial idea to consider this stratifica-

tion belongs to B.Z. Shapiro). The results of the present paper cannot be transferred

directly to that case for two reasons:

a) for n > 4 not all arrangements consistent with (1) are realized by hyperbolic

polynomials and it is not clear how to determine for any n ∈ N∗ the realizable ones

(e.g. for n = 4 only 10 out of 12 such arrangements are realized, see [KoSh] or [Ko1];

for n = 5 only 116 out of 286, see [Ko1]); the reason for this is clear – a monic

polynomial has only n coefficients that can be varied whereas there are n(n + 1)/2

roots of P, P ′, . . . , P (n−1);

b) for n > 4 there are overdetermined strata, i.e. strata on which the number

of equalities between any two of the roots of P, P ′, . . . , P (n−1) is greater than the

codimension of the stratum.

In Section 3 we prove two technical lemmas (and their corollaries) used in the

proof of the theorem and the propositions. Section 2 is devoted to the dimension of

a stratum and its relationship with the CV defining it. The above propositions are

just the first steps in the study of the set D(0, 1) ∪ D(0, k) (and, more generally, of

the set D(0, 1) ∪ · · · ∪ D(0, n − 1)) at a point of Π.

2. Configuration vectors and dimensions of strata

In this section we recall briefly results some of which are from [KoSh]:

1) Call excess of multiplicity of a CV the sum m =
∑

(mj − 1) taken over all

multiplicities mj of distinct roots of P . A stratum of codimension i is defined by a

CV which has exactly i − m letters a as indices, i.e. the polynomial P has exactly

i − m distinct roots of class B.

2) A stratum of codimension i is locally a smooth real algebraic variety of dimension

n − i in Rn.

3) In what follows we say a stratum of codimension i to be of dimension n−i−2. We

decrease its dimension in Rn by 2 to factor out the possible shifting of the variable x

by a constant and the one-parameter group of transformations x 7→ exp(t)x, aj 7→

exp(jt)aj , t ∈ R; both of them leave CVs unchanged. This allows one to consider the
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family P only for a1 = 0, a2 = −1 (if a1 = 0, then there are no hyperbolic polynomials

for a2 > 0 and for a2 = 0 the only one is xn).

4) In accordance with the convention from 3), it can be deduced from 1) that the

CVs defining strata of dimension δ are exactly the ones in which the polynomial P

has δ + 2 distinct roots of class A, i.e. these are CVs having δ + 2 components which

are multiplicities of roots of P not indexed by the letter a.

5) A point of a stratum of codimension i > 1 defined by a CV ~v belongs to the

closure of any stratum of codimension i− 1 whose CV ~w is obtained from ~v by means

of one of the following three operations:

i) if ~v = (A, la, B), l 6 k − 1, A and B are non-void, then ~w = (A, l, a, B) or

~w = (A, a, l, B);

ii) if ~v = (A, ra, B), r 6 k − 1, A and B are non-void, then ~w = (A, r′, r′′a , B) or

~w = (A, r′a, r′′, B), r′ > 0, r′′ > 0, r′ + r′′ = r.

iii) if ~v = (A, r, B), then ~w = (A, C, B) where C is a CV defining a stratum of

dimension 0 in Rr, see 4).

6) It follows from the definition of the codimension of a stratum that the three

possibilities i), ii) and iii) from 5) are the only ones to increase by 1 the dimension

of a stratum S when passing to a stratum containing S in its closure. Indeed, one

has to increase by 1 the number of roots of class A, see 4). If to this end one has

to change the number or the multiplicities of the roots of class B, then there are no

possibilities other than i) and ii). If not, then exactly one root xi of class A must

bifurcate, the roots stemming from it and the roots of P (k) close to xi must define

an a priori admissible CV (they must satisfy conditions (1)), and among these roots

there must be exactly two of class A. Hence, the bifurcating roots must define a CV

of dimension 0 in Rr, see 4).

Remark 15. — The strata define a true stratification in the sense that they are con-

nected components of differences of closed sets of a filtration. Indeed, the filtration

is defined by the codimension of the strata. Contractibility (hence, connectedness)

follows from Theorem 7. To obtain a stratum as a difference of closed sets one can

represent it as the difference between its closure Z and the closure of the union of all

strata of lower dimension belonging to Z.

3. Two technical lemmas and their corollaries

For a monic strictly hyperbolic polynomial P of degree n consider the roots x
(k)
j

of P (k) as functions of the roots xi of P . Hence, these functions are smooth because

the roots x
(k)
j are simple, see Remark 3.

Lemma 16. — For i = 1, . . . , n, k = 1, . . . , n − 1, j = 1, . . . , n − k one has

∂(x
(k)
j )/∂(xi) > 0.
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Proof. — 1◦. Set xi = c, P = (x − c)Q(x), degQ = n − 1, ξ = x
(k)
j . We prove that

for k = 1 one has ∂ξ/∂c > 0. One has (ξ − c)Q′(ξ) + Q(ξ) = 0. Hence,
(

∂ξ

∂c
− 1

)

Q′(ξ) + (ξ − c)Q′′(ξ)
∂ξ

∂c
+ Q′(ξ)

∂ξ

∂c
= 0, i.e.

∂ξ

∂c
=

Q′(ξ)

(ξ − c)Q′′(ξ) + 2Q′(ξ)
=

Q′(ξ)

P ′′(ξ)
.

As Q(ξ) = P (ξ)/(ξ − c), one has

(2)
∂ξ

∂c
=

(ξ − c)P ′(ξ) − P (ξ)

(ξ − c)2P ′′(ξ)
= −

P (ξ)

(ξ − c)2P ′′(ξ)

For a strictly hyperbolic monic polynomial the signs of P (ξ) and P ′′(ξ) are opposite

and ξ 6= c. This proves the lemma for k = 1.

2◦. For k > 1 use induction on k. Considering the roots of P (k+1) as functions of

the ones of P (k) one can write

(3)
∂(x

(k+1)
j )

∂c
=

n−k
∑

ν=1

∂(x
(k+1)
j )

∂(x
(k)
ν )

∂(x
(k)
ν )

∂c

and observe that all factors in the right hand-side are > 0. The lemma is proved.

Remark 17. — The roots x
(k)
j are C1-smooth functions of the roots xi (one can forget

for a moment that x1 6 · · · 6 xn and assume that (x1, . . . , xn) ∈ Rn and the claim

is true for not necessarily strictly hyperbolic polynomials; however, in order to define

correctly x
(k)
j one has to impose the condition x

(k)
1 6 · · · 6 x

(k)
n−k). Indeed, it suffices

to prove this for k = 1 (because in the same way one proves that the roots of P (ν+1)

are C1-smooth functions of the roots of P (ν) for ν = 1, . . . , n − 2 etc.). For k = 1

the claim can be deduced from equality (2) – the fraction in the right hand-side has

a finite limit for ξ → c (this limit depends on the order of c as a zero of P ) and for ξ

close to c it is a function continuous in c. We leave the details for the reader.

Corollary 18. — For a (not necessarily strictly) hyperbolic polynomial one has

∂(x
(k)
j )/∂(xi) > 0 for i, j, k as in the lemma.

The corollary is automatic.

Corollary 19. — For a monic strictly hyperbolic polynomial one has 0 < ∂(x
(k)
j )/∂(xi) <

(n − k)/n (for i, j, k as in the lemma) and
∑n−k

j=1 ∂(x
(k)
j )/∂(xi) = (n − k)/n.

Proof. — By Vieta’s formulas one has x1+· · ·+xn = −a1, x
(k)
1 +· · ·+x

(k)
n−k = −n−k

n
a1.

As ∂(x
(k)
j )/∂(xi) > 0 for all j, one has

∂(x
(k)
j )

∂(xi)
<

∂(x
(k)
1 + · · · + x

(k)
n−k)

∂(xi)
=

(n − k)

n

∂(x1 + · · · + xn)

∂(xi)
=

n − k

n

which proves the corollary.
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Remark 20. — In the above corollary one sums up w.r.t. the index j. When summing

up w.r.t. i one obtains the equality

(4)

n
∑

i=1

∂(x
(k)
j )

∂(xi)
= 1

Indeed, if the roots xi are functions of one real parameter (say, τ), then one has the

equality
∑n

i=1

∂(x
(k)
j

)

∂(xi)
ẋi = ẋ

(k)
j where ẋi stands for dxi/dτ . When one has ẋi = 1 for

all i, i.e. the variable x is shifted with constant speed 1, then one has ẋ
(k)
j = 1 for all

k, j and one gets (4). One needs not suppose the roots xi distinct.

In the case of a not strictly hyperbolic polynomial P consider the roots x
(k)
j as

functions of the distinct roots yi of P (their multiplicities remain fixed).

Lemma 21. — For i = 1, . . . , q, k = 1, . . . , n − 1 one has ∂(x
(k)
j )/∂(yi) > 0 with

equality exactly if x
(k)
j is a root of P of multiplicity > k (hence, of multiplicity > k+1)

and x
(k)
j 6= yi.

Proof. — 1◦. The proof follows the same ideas as the proof of Lemma 16. Set ξ = x
(k)
j ,

P = (x − c)sQ(x) where c = yi, s = mi for some i, 1 6 i 6 q.

Let first k = 1. One has (ξ − c)sQ′(ξ) + s(ξ − c)s−1Q(ξ) = 0. Hence,

s

(

∂ξ

∂c
− 1

)

(ξ − c)s−1Q′(ξ) + (ξ − c)sQ′′(ξ)
∂ξ

∂c

+ s(ξ − c)s−1Q′(ξ)
∂ξ

∂c
+ s(s − 1)(ξ − c)s−2

(

∂ξ

∂c
− 1

)

Q(ξ) = 0, i.e.

∂ξ

∂c
=

s(s − 1)Q(ξ) + s(ξ − c)Q′(ξ)

s(s − 1)Q(ξ) + 2s(ξ − c)Q′(ξ) + (ξ − c)2Q′′(ξ)

=
s((ξ − c)P ′(ξ) − P (ξ))

(ξ − c)2P ′′(ξ)
.

If ξ = c, i.e. s > 1, then ∂ξ/∂c = 1. If not, then ∂ξ/∂c = −P (ξ)/(ξ − c)2P ′′(ξ).

Either P (ξ) = P ′(ξ) = 0 and in this case ∂ξ/∂c = 0 whatever the multiplicity of ξ as

a root of P is, or P (ξ) 6= 0, P (ξ) and P ′′(ξ) have opposite signs and ∂ξ/∂c > 0. This

proves the lemma for k = 1.

2◦. For k > 1 use induction on k. Consider the roots of P (k+1) as functions of the

ones of P (k). Then there holds (3). All factors in the right hand-side are > 0.

One has ∂(x
(k+1)
j )/∂c = 0 exactly if in every summand in the right hand-side of

(3) at least one of the two factors is 0. This is the case if ξ = x
(k+1)
j is a root of P of

multiplicity > k + 1 and ξ 6= c. Indeed, in this case one has ∂(x
(k+1)
j )/∂(x

(k)
ν ) = 0 if

x
(k+1)
j 6= x

(k)
ν and ∂(x

(k)
ν )/∂c = 0 if x

(k+1)
j = x

(k)
ν (and, hence, x

(k)
ν 6= c).

If ξ is a root of P of multiplicity > k +1 and ξ = c, then one has ∂(x
(k+1)
j )/∂c = 1.
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If ξ is a root of P of multiplicity 6 k, then it is not a root of P (k). Hence,

∂(x
(k+1)
j )/∂(x

(k)
ν ) > 0 for all ν. At least one of the factors ∂(x

(k)
ν )/∂c is > 0 (i.e. for

at least one ν). Indeed, if c is a root of P of multiplicity > k + 1, then this is true

for the root x
(k)
ν which equals c (by inductive assumption). If c is a root of P of

multiplicity 6 k, then there exists a simple root x
(k)
ν of P (k) (this follows from Rolle’s

theorem applied k times). Hence, x
(k)
ν is a root of P of multiplicity 6 k − 1, and for

this root one has ∂(x
(k)
ν )/∂c > 0.

The lemma is proved.

Corollary 22. — For a monic hyperbolic polynomial one has 0 6 ∂(x
(k)
j )/∂(yi) 6

(n − k)/n (for i, j, k as in the lemma) and
∑n−k

j=1 ∂(x
(k)
j )/∂(yi) = (n − k)/n.

The corollary is proved by analogy with Corollary 19.

4. Proofs of the propositions

Proof of Proposition 10. — We first prove the smoothness. The roots x
(k)
j are smooth

functions of the coefficients a1, . . . , an−k. The condition P (x
(k)
j , a) = 0 allows one to

express an as a smooth function of a1, . . . , an−1. Hence, this equation defines locally

a smooth hypersurface in Rn.

To prove the transversality assume first that the indices are changed so that i = j =

1, . . . , s. It suffices to prove that the “Jacobian” matrix
{

∂(xj − x
(k)
j )/∂(xν)

}

, j, ν =

1, . . . , s, is of maximal rank (in the true Jacobian matrix one has ν = 1, . . . , n, not

ν = 1, . . . s). Its diagonal entries equal 1 − ∂(x
(k)
j )/∂(xj) while its non-diagonal ones

equal −∂(x
(k)
j )/∂(xν). Corollary 19 implies that the matrix is diagonally dominated

– for ν fixed its diagonal entry (which is positive) is greater than the sum of the

absolute values of its non-diagonal entries (which are all negative). Hence, the matrix

is non-degenerate.

Proof of Proposition 11. — The proof of the smoothness is done as in the proof of

Proposition 10. To prove the transversality assume again that i = j = 1, . . . , s and

consider again the “Jacobian” matrix
{

∂(xj − x
(kj)
j )/∂(xν)

}

, j, ν = 1, . . . , s. As in

the previous proof we show that the matrix is diagonally dominated, hence, non-

degenerate. However, the numbers kj are not necessarily the same and therefore we

fix j (hence, kj as well) and we change ν. By equality (4), one has

s
∑

ν=1

∂(xj − x
(kj)
j )

∂(xν)
= 1 −

s
∑

ν=1

∂(x
(kj)
j )

∂(xν)
> 1 −

n
∑

ν=1

∂(x
(kj)
j )

∂(xν)
= 0

and the case of equality has to be excluded because the smallest and the greatest

root of P are not among the roots x1, . . . , xs and all partial derivatives are strictly
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positive, see Lemma 16. The last inequality implies that the matrix is diagonally

dominated.

Proof of Proposition 13. — The proof is almost a repetition of the one of Propo-

sition 10. The only difference is that the Jacobian matrix looks like this:
{

∂(yj − mνx
(k)
j )/∂(yν)

}

(recall that yν , of multiplicity mν , are the distinct roots

of P ).

5. Proof of Theorem 7

1◦. Smoothness is proved in [KoSh], Proposition 4.5; it is evident that the strata

are semi-algebraic sets and that their closures are algebraic varieties. So one has to

prove only contractibility. Assume that a1 = 0, a2 = −1.

To prove contractibility of the strata represent each stratum T of dimension δ > 1

as a fibration whose fibres are one-dimensional varieties with the following properties:

a) the fibres are phase curves of a smooth vectorfield without zeros defined on T ;

hence, each fibre can be smoothly parametrized by τ ∈ (0, 1); this is proved in 2◦–4◦;

b) the limits for τ → 1 of the points of the fibres exist and they belong to a finite

union U of strata of lower dimension; we call the limits endpoints ; the proof of this is

given in 3◦–5◦;

c) the union U is a contractible set (proved in 7◦–8◦);

d) each point of the union U is the endpoint of some fibre (proved in 6◦).

Thus the union U is a retract of the given stratum and contractibility of U implies

the one of the stratum. Contractibility of the strata of dimension 0 will be proved

directly (in 7◦).

2◦. A shift γ1 and a rescaling γ2 of the x-axis fix the smallest root of P at 0 and

the greatest one at 1. Set γ = γ2 ◦ γ1.

Notation 23. — Denote by ∆ the set of monic hyperbolic polynomials obtained from

the stratum T by applying the transformation γ to each point of T .

Remark 24. — The set ∆ (like T ) is a smooth variety of dimension δ. The transforma-

tion γ defines a diffeomorphism T → ∆ while γ−1 defines a diffeomorphism ∆ → T ;

this can be deduced from the conditions a1 = 0, a2 = −1.

3◦. Recall that yi denotes the distinct roots of P . We construct (see 4◦–5◦) the

speeds ẏi on ∆ which amounts to constructing a vectorfield defined on ∆. Therefore

the fibration from 1◦ can be defined by means of the phase curves of a vectorfield

defined on T (to this end one has to apply γ−1). We leave the technical details for

the reader.

Remark 25. — It follows from our construction (see in particular part 3) of Lemma 26)

that these two vectorfields can be continuously extended respectively on ∆ and T .
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Along a phase curve of the vectorfield, all roots of P of class A except one (in

particular, the smallest and the greatest one) do not change their position and multi-

plicity; the rest of the roots of P do not change their multiplicity. The limits (forwards

and backwards) of the points of the phase curves exist when the boundary of ∆ is

approached. At these limit points, if a confluence of roots of P occurs, then the mul-

tiplicities of the coinciding roots are added. The images under γ−1 of the forward

limits are the endpoints (see b) from 1◦).

Denote by Pσ (σ ∈ R) a family of monic hyperbolic polynomials represented by

the points of a given phase curve in ∆. We prove in 4◦ that there exists σ0 > 0 such

that for σ ∈ [0, σ0) one has Pσ ∈ ∆ (hence, γ−1(Pσ) ∈ T ) while Pσ0 6∈ ∆ (hence,

γ−1(Pσ0) 6∈ T ). The polynomial Pσ0 represents the forward limit point of the given

phase curve. We set ẏi = dyi/dσ.

4◦. Change for convenience (in 4◦–6◦) the indices of the distinct roots yi of P

and of the roots ξi of P (k). Choose a root of class A different from the smallest and

the greatest one. Denote it by y1. Denote by y2, . . . , yd the roots of class B and by

ξ2, . . . , ξd the roots of P (k) which are equal to them.

Set ẏ1 = 1. We look for speeds ẏi for which one has ẏi = ξ̇i, i = 2, . . . , d. Hence,

one would have yi = ξi, i = 2, . . . , d, and the multiplicities of the roots of P do not

change for σ > 0 close to 0. This means that for all such values of σ for which the

order of the union of roots of P and P (k) is preserved, the point γ−1(Pσ) belongs

to T . The value σ0 (see 3◦) corresponds to the first moment when a confluence of

roots of P or of a root of P and a root of P (k) occurs (such a confluence occurs at

latest for σ = 1 because ẏ1 = 1 while the smallest and the greatest roots of P remain

equal respectively to 0 and 1).

Lemma 26. — 1) One can define the speeds ẏi, i = 2, . . . , d, in a unique way so that

ẏi = ξ̇i, i = 2, . . . , d.

2) For these speeds one has 0 6 ẏi 6 1.

3) The speeds are continuous and bounded on ∆ and smooth on ∆.

The lemma is proved after the proof of the theorem.

Remark 27. — The lemma implies property a) of the fibration from 1◦. The absence

of stationary points in the vectorfield on ∆ results from ẏi > 0, ẏ1 = 1 which implies

that ȧ1 < 0. As γ−1 is a diffeomorphism, the vectorfield on T has no stationary points

either.

5◦. The lemma implies that for σ = σ0 one or several of the following things

happen:

– a root ξi0 of P (k) which is not a root of P becomes equal to a root yj0 of P of

class A different from y1, from the smallest and from the greatest one; for σ ∈ [0, σ0)

one has ξi0 < yj0 ; this is the contrary to what happens in i) from 5) of Section 2;
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– the root y1 becomes equal to a root ξi1 of P (k) (and eventually to yi1 if yi1 is a

root of class B); for σ ∈ [0, σ0) one has y1 < ξi1 and ξi1 is not a root of P ; this is the

contrary to what happens in i) or ii) from 5) of Section 2;

– the root y1 becomes equal to a root yi2 of class A; for σ ∈ [0, σ0) one has y1 < yi2 ;

there might be roots of P (k) (and eventually roots of P of class B) between y1 and

yi2 ; this is the contrary to what happens in iii) from 5) of Section 2.

Remarks 28. — 1) If the CV allows the third possibility (i.e. if the third possibility

leads to no contradiction with condition (1) and with Section 2), then it does not allow

the second or the first one with j0 = i2. Indeed, if the third possibility exists, then

between y1 and yi2 there must be µ − k roots of P (k) counted with the multiplicities

where µ is the sum of the multiplicities of y1, yi2 and of all roots of P (if any) between

them; if the second possibility exists as well, then for σ = σ0 there must be µ−k roots

of P (k) strictly between y1 and yi2 which means that for σ < σ0 there were µ− k + 1

of them (one must add the root ξi1) – a contradiction. In the same way one excludes

the first possibility with j0 = i2.

2) If the third possibility takes place, then yi2 is the first to the right w.r.t. y1 of

the roots of class A because these roots do not change their positions.

3) Part 1) of these remarks implies that if the CV allows several possibilities of

the above three types, with different possible indices i0, j0, i1, i2 to happen, then

they can happen independently and simultaneously (all of them or any part of them).

These possibilities can be expressed analytically as conditions (we call them equalities

further in the text) of the form yi = ξj or yi1 = yi2 for σ = σ0 while for σ < σ0 there

holds yi > ξj or yi < ξj or yi1 > yi2 .

4) Property b) of the fibration from 1◦ follows from 1) – 3); the CVs of the strata

from U are obtained by replacing certain inequalities between roots by the corre-

sponding equalities in the sense of 3) from these remarks.

6◦. Denote by U ′ the set of images under γ of strata of Π (we call these images

strata of U ′) whose CVs are obtained from the one of T by replacing some or all

inequalities by the corresponding equalities, see part 4) of Remarks 28.

Consider the vectorfield defined on ∆ ∪ U ′ by the conditions ẏ1 = −1 and ẏi = ξ̇i,

i = 2, . . . , d. On each stratum of U ′, when defining the vectorfield, some of the

multiple roots of P and/or P (k) should be considered as several coinciding roots of

given multiplicities. What we are doing resembles an attempt “to reverse the phase

curves of the already constructed vectorfield on ∆” (and it is the case on ∆) but we

have not proved yet that each point of each stratum of U ′ is a limit point of a phase

curve of that vectorfield and that each point of U ′ belongs to ∆. Notice that due to

the definition of the vectorfield each phase curve stays in ∆∪U ′ on some time interval.

Each phase curve of the vectorfield defines a family Pσ of polynomials. It is conve-

nient to choose as parameter again σ ∈ [0, σ0] where the point of the family belongs

to U ′ for σ = σ0.
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Lemma 29. — For σ < σ0 and close to σ0 the point of the family Pσ belongs to ∆.

The lemma is proved after the proof of Lemma 26. It follows from the lemma that

U ′ ⊂ ∆. Hence, one can set U = γ−1(U ′) and property d) of the fibration follows.

7◦. There remains to be proved that the fibration possesses property c). To this

end prove first that all strata of dimension 0 are contractible, i.e. connected. Recall

that a hyperbolic polynomial from a stratum of dimension 0 has exactly two distinct

roots of class A – the smallest and the greatest one (see 4) of Section 2).

The strata of dimension 0 whose CVs contain only two multiplicities are connected.

Indeed, the uniqueness of such monic polynomials up to transformations γ, see 2◦, is

obvious – they equal xm1(x − 1)n−m1 .

Prove the uniqueness up to a transformation γ of all polynomials defining strata

of dimension 0 by induction on q (the number of distinct roots of P ). For q = 2 the

uniqueness is proved above. Denote by Ai parts (eventually empty) of the CV which

are maximal packs of consecutive letters a.

Deduce the uniqueness of the stratum V defined by the CV

~v = (m1, A1, (m2)a, A2, (m3)a, A3, . . . , (mq−1)a, Aq−1, mq)

from the uniqueness of the stratum W defined by the CV

~w = (m1, A
′

1, (m2)a, A′

2, (m3)a, A3, . . . , (mq−1)a, Aq−1, mq)

We denote again the distinct roots of P by 0 = y1 < · · · < yq = 1 (and we change the

indices of the roots ξi so that on V , ξ2, . . . , ξq−1 be equal respectively to y2, . . . , yq−1).

The part A′

1 (resp. A′

2) contains one letter a more than A1 (resp. one letter a less

than A2). Possibly A′

2 can be empty.

To do this construct a one-parameter family Pσ (depending on σ ∈ [0, σ0]) of

polynomials joining the two strata (for σ = 0 we are on V , for σ = σ0 we are on W );

these polynomials belong to the one-dimensional stratum Z defined by the CV

~z = (m1, A
′

1, m2, A2, (m3)a, A3, . . . , (mq−1)a, Aq−1, mq)

For the root y2 one has ẏ2 = 1. One defines ẏi, i = 3, . . . , q − 1 so that ξ̇i = ẏi. This

condition defines them in a unique way (see Lemma 26) and there exists a unique

σ0 > 0 for which one obtains ~w as CV (this follows from the uniqueness of W – the

ratio (y2 − y1)/(y2 − yq) = y2/(y2 − 1) increases strictly with σ which implies the

uniqueness of σ0).

Remark 30. — One has Pσ ∈ V only for σ = 0, and for σ > 0 one has y2 > ξ2. This

can be proved by full analogy with Lemma 29.

For σ = σ0 no confluence of roots of P or of P and P (k) other than the one of y2

with the left most root of A2 can take place. This can be deduced by a reasoning

similar to the one from part 1) of Remarks 28.

SÉMINAIRES & CONGRÈS 10
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On the other hand, one can reverse the speeds, i.e. for the polynomial defining the

CV ~w one can set ẏ2 = −1, ξ̇i = ẏi, i = 3, . . . , q − 1 and deform it continuously into a

polynomial defining the CV ~v; the deformation passes through polynomials from the

stratum Z. This means that the polynomials defining the strata V and W can be

obtained from the family Pσ. The uniqueness of the strata of dimension 0 is proved.

8◦. Prove the contractibility of the set U . Each of the strata of U is defined by a

finite number of equalities (see part 3) of Remarks 28) which replace inequalities that

hold in the CV defining the stratum T . For each stratum of U of dimension p > 0

one can construct a fibration in the same way as this was done for T and show that

the stratum can be retracted to a finite subset of the strata from U which are all of

dimension < p. Hence, U can be retracted on its only stratum of dimension 0 (it is

defined by all equalities). By 7◦ this stratum is a point. Hence, U is contractible, T

as well.

Proof of Lemma 26. — 1◦. Fix the index i of a root of class B. Recall that we denote

by mν the multiplicity of the root yν . Set Gi,ν = (∂(ξi)/∂(yν)). One has

ξ̇i =

d
∑

ν=1

mνGi,ν ẏν .

Hence, the condition ξ̇i = ẏi for i = 2, . . . , d reads:

(5) ẏi =

d
∑

ν=1

mνGi,ν ẏν , i = 2, . . . , d

Further in the proof “vector”means “(d− 1)-vector-column”. Denote by V the vector

with components ẏi. Hence, the last system can be presented in the form V =

GV + H (∗) or (I − G)V = H where H is the vector with entries m1Gi,1, 2 6 i 6 d

(recall that ẏ1 = 1) and G is the matrix with entries Gi,ν , i, ν = 2, . . . , d.

2◦. As in the proof of Proposition 10 one shows that the matrix I−G is diagonally

dominated. Hence, system (5) has a unique solution V . Moreover, its components are

all non-negative. Indeed, one has m1Gi,1 > 0 for i = 2, . . . , d, all entries of the matrix

G are non-negative (see Lemma 16 and Corollary 18), and one can present V as a

convergent series H + GH + G2H + . . . whose terms are vectors with non-negative

entries. This proves 1) and the left inequality of 2).

3◦. To prove the right inequality of 2) denote by V0 the vector whose components

are units; write equation (∗) in the form (V − V0) = G(V − V0) + H + GV0 − V0 and

observe that all components of the vector H + GV0 − V0 are non-positive (this can

be deduced from Corollary 22). As in 2◦ we prove that the vector V − V0 is with

non-positive components. This proves the right inequality of 2).

4◦. Boundedness and continuity of the speeds ẏi on ∆ follows from the boundedness

and continuity of G on ∆ (which is compact), and from the fact that the matrix I−G
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is uniformly diagonally dominated for any point of ∆ (see Corollary 22). Smoothness

of the speeds in ∆ follows from the fact that the entries of G are smooth there – all

roots x
(k)
j are smooth functions of xi inside Π, i.e. when xi are distinct.

Proof of Lemma 29. — 1◦. We show that for σ < σ0 and sufficiently close to σ0 the

CV of Pσ changes – at least one equality (see part 3) of Remarks 28) is replaced by the

corresponding inequality. Hence, either the point of the phase curve belongs to ∆ for

all σ < σ0 sufficiently close to σ0 or it belongs to a stratum S of U ′ of higher dimension

than the dimension of the initial one S0. The same reasoning can be applied then to

S instead of S0 which will lead to the conclusion that the curve cannot stay on S for

σ ∈ (σ0 − ε, σ0] for any ε > 0 small enough. Hence, the curve passes through ∆ for

such ε.

2◦. If for σ = σ0 there occurs a confluence of two roots of P (w.r.t. σ < σ0), then

it is obvious that the CV has changed. So suppose that there occurs a confluence of

a root yj0 of P and of a root ξi0 of P (k) without a confluence of yj0 with another root

of P . Hence, yj0 is a root of P of multiplicity 6 k − 1.

By full analogy with Lemma 26, one proves that one has −1 6 ẏi 6 0 for all indices

i of roots of class B.

3◦. Suppose first that j0 = 1. Show that one has −1 < ξ̇i0 < 0 which implies

that the CV has changed (because ẏ1 = −1). One has ξ̇i0 =
∑q

j=1 mj
∂ξi0

∂yj
ẏj with

∂ξi0/∂yj > 0 for all j (see Lemma 21) and −1 6 ẏi 6 0. Moreover, one has ẏi = 0 for

the smallest and for the greatest root of P . As
∑q

j=1 mj∂ξi0/∂yj = 1 (see (4)), one

has −1 < ξ̇i0 < 0.

4◦. If j0 6= 1, then one has ẏj0 = 0 (because before the confluence yj0 has been

a root of class A). Like in 3◦ one shows that −1 < ξ̇i0 < 0. Hence, the CV changes

again.
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