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ON THE ASYMPTOTICS OF GREEN’S FUNCTIONS OF

ELLIPTIC OPERATORS WITH CONSTANT COEFFICIENTS

by

Shmuel Agmon

Abstract. — In this paper we discuss the following problem. Given an elliptic operator
P (D) with constant coefficients in R

n (P (ξ) 6= 0 in R
n) and an infinite cone Γ in R

n,
give conditions which ensure that the corresponding Green’s function G(x) admits a
nice asymptotic behavior as |x| → ∞ in Γ. A solution to the problem is presented
and some concrete applications are given. These are related to results by Evgrafov
and Postnikov.

Résumé(Sur le comportement asymptotique des fonctions de Green des opérateurs ellip-
tiques à coefficients constants)

Dans cet article nous considérons le problème suivant. Étant donné un opérateur
elliptique à coefficients constants, P (D), dans R

n (P (ξ) 6= 0 dans R
n), et un cône infini

Γ dans R
n, quelles sont les conditions pour que la fonction de Green associée G(x)

ait un bon comportement asymptotique lorsque |x| → ∞ dans Γ ? Nous présentons
une solution à ce problème ainsi que des applications. Ceci est relié à des travaux de
Evgrafov et Postnikov.

1. Introduction

Let P (D) be an elliptic operator with complex constant coefficients, of even order

m, acting on functions on Rn (D = (D1, · · · , Dn), Dj = 1
i

∂
∂xj

). Suppose that the

polynomial P (ξ) 6= 0 for ξ ∈ Rn. The Green’s function G(x) of P (D) on Rn is given

by

(1.1) G(x) = (2π)−n

∫

Rn

eiξ·x

P (ξ)
dξ, x ∈ R

n
r {0}

where the integral is understood in the distribution sense.

As is well known G(x) is a smooth function on Rn r{0} with a singularity at x = 0.

G(x) decays exponentially as |x| → ∞.
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14 S. AGMON

In this paper we propose to characterize a class of elliptic operators P (D), P (ξ) 6= 0

on Rn, possessing a Green’s function with a nice asymptotic behavior as |x| → ∞

(x ∈ Rn or, more generally, x ∈ Γ where Γ is some infinite cone in Rn). A prototype

of such operators is the Helmholtz operator: P = −∆−λ, λ ∈ Cr{0} whose Green’s

function Gλ(x) has the following well known asymptotic formula (derived classically

from the asymptotic formula for the Bessel functions). For 0 < ± argλ 6 π:

(1.2) Gλ(x) = c±λ(n−3)/4|x|−(n−1)/2e±iλ1/2|x| (1 + O (1/|x|))

as |x| → ∞ where c± = 1
2 (2π)−(n−1)/2e∓iπ(n−3)/2. (Formula (1.2) is also valid for

Gλ±i0(x), λ > 0).

We mention some known results on asymptotic behavior of Green’s functions of

higher order elliptic operators. First we mention the following results which apply

to a class of elliptic operators with constant coefficients different from the class of

operators we study here. Suppose that P (D) is positively elliptic: P (ξ) is real for

ξ ∈ Rn, P (ξ) > 0 for large |ξ|. Suppose further that the set: M = {ξ ∈ Rn : P (ξ) = 0}

is a non-empty connected C∞ manifold, P ′(ξ) 6= 0 on M . In this case there are two

distinguished Green’s functions defined by

(1.3) G±(x) = (2π)−n

∫

Rn

eiξ·x

P (ξ) ± i0
dξ.

If the manifold M is strictly convex it was shown by Vainberg [5] that the Green’s

functions G±(x) possess asymptotic formulas of the form:

(1.4) G±(x) = a±(x)e±iK(x) (1 + O (1/|x|))

as |x| → ∞ where K(x) is some real, smooth, convex homogeneous function of de-

gree 1 and a±(x) are certain smooth nowhere zero homogeneous functions of degree

−(n − 1)/2 on Rn r {0} (K and a± admit explicit expressions in terms of the mani-

fold M).

For higher order elliptic operators P (D) such that P (ξ) 6= 0 on Rn (the class of

operators which interests us here) an asymptotic formula for the Green’s function was

established by Evgrafov and Postnikov [1] for a rather special class of operators. The

main result in [1], for the elliptic Green’s function, can be formulated as follows.

Theorem 1.1. — Let P0(D) be an elliptic operator on Rn. Suppose that the form P0(ξ)

is a positive homogeneous polynomial of even degree m on Rn r {0}. Write P0(ξ) in

the form:

P0(ξ) =
∑

|α|=m

aα

(
m

α

)
ξα.

Suppose that P0(ξ) verifies the following

Condition S(Strong convexity condition)

(1.5)
∑

|α|=|β|=m/2

aα+βXαXβ > 0 in R
N

r {0}
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GREEN’S FUNCTIONS OF ELLIPTIC OPERATORS 15

where N denotes the number of multi-indices α = (α1, · · · , αn) of order |α| = m/2

and {Xα}|α|=m/2 stands for a generic point in RN .

Under these conditions the Green’s function Gλ(x) of P0(D) − λ verifies for

0 < ± argλ < π an asymptotic formula of the form:

(1.6) Gλ(x) = c±λ
n+1
2m −1a(x)e±iλ1/mQ0(x) (1 + O (1/|x|))

as |x| → ∞, uniformly in λ in any compact. Here c± are constants (c+ = c−), a(x) is

a positive smooth homogeneous function of degree −(n−1)/2, and Q0(x) is a positive

convex homogeneous function of degree 1 given by

Q0(x) = sup
P0(ξ)=1

〈x, ξ〉,

(a more explicit expression of (1.6) is given in §4, formula (4.2)).

Note that in view of the homogeneity of P0(ξ) (1.6) can also be viewed as an

asymptotic formula in λ (as λ tends suitably to infinity for a fixed x 6= 0).

Condition S is a strong convexity restriction. It was shown in [1] that Condition S

implies in particular that the polynomial P0(ξ) is strictly convex, i.e.:

(1.7) HessP0(ξ) > 0 for ξ ∈ R
n

r {0}.

In this connection note that under the assumption that the weaker condition (1.7)

holds it can be shown that the asymptotic formula (1.6) is valid for the Green’s

functions Gλ±i0(x) for λ ∈ R+. This follows from the explicit form of formula (1.4).

The asymptotic formula (1.6) is deduced in [1] from an asymptotic formula for

the Green’s function G(x, t) of the parabolic operator ∂/∂t + P0(D) as t → +0. It

was conjectured in [1] that this last asymptotic formula and consequently that the

asymptotic formula (1.6) for Gλ(x) should hold when Condition S is replaced by the

weaker condition (1.7). In a later publication [2] it was shown by the authors that

this conjecture is false for the Green’s function of the parabolic operator.

In this paper we shall consider the following general problem. Find sufficient and

necessary conditions in order that the Green’s function G(x) of a given elliptic operator

P (D), with P (ξ) 6= 0 on Rn, possesses an asymptotic formula of the form:

(1.8) G(x) = a(x)eiA(x)(1 + o(1))

as |x| → ∞ in some infinite open cone Γ, where A(x) is a smooth homogeneous

function of degree 1 and a(x) is a smooth homogeneous function of degree −(n−1)/2

in Γ.

The plan of this paper is as follows. In section 2 we describe some notions and

preliminary results needed in the sequel. Our main theorem giving necessary and

sufficient conditions for (1.8) to hold is discussed in section 2. In section 3 we describe

applications of the main theorem to Green’s functions of the operator P0(D)−λ where

P0(D) is the operator in Theorem 1.1 with Condition S replaced by the condition

that P0(ξ) is strictly convex. The main applications consist in giving necessary and
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16 S. AGMON

sufficient conditions on the complex zeros of P0(ζ) − λ in order that the Green’s

function Gλ(x) will possess a nice asymptotic expansion.

In conclusion we observe that this paper is a revised version of a lecture given at

the Journées Jean Leray on the occasion of the inauguration of the Laboratoire de

Mathématiques Jean Leray at the University of Nantes. This is an expository paper

with indications of proofs of the main results.

2. Preliminaries

In the following P (D) denotes an elliptic operator with complex constant coeffi-

cients, of even order m, such that P (ξ) 6= 0 for ξ ∈ Rn. G(x) denotes the Green’s

function defined by (1.1).

With the polynomial P (ζ), ζ ∈ Cn, associate norm functions K∗
P (x) and KP (x)

on Rn defined as follows. For any unit vector θ ∈ Rn set:

r(θ) = min{t ∈ R+ : P (ξ + itθ) = 0 for some ξ ∈ R
n}.

Define

(2.1) K∗
P (x) =

|x|

r (x/|x|)
for x ∈ R

n
r {0},

K∗
P (0) = 0, and set:

(2.1’) Ω∗ = {x ∈ R
n : K∗

P (x) < 1}.

Ω∗ is a bounded open connected set in Rn containing the origin. Furthermore,

since Ω∗ is a connected component of the set: {η ∈ Rn : P (ξ + iη) 6= 0, ∀ ξ ∈ Rn}

it follows by a known theorem that Ω∗ is convex (see [3, p. 43]). Thus K∗
P (x) is a

convex homogeneous function of degree 1, K∗
P (x) > 0 for x 6= 0. Next define:

(2.2) KP (x) = sup
ξ 6=0

〈x, ξ〉

K∗
P (ξ)

= sup
ξ∈∂Ω∗

〈x, ξ〉.

It is well known that KP (x), referred to as the polar of K∗
P (x), is a positive convex

homogeneous function of degree 1. Set:

Ω = {x ∈ R
n : KP (x) < 1}.

Clearly, Ω is a convex open set containing the origin. The convexity of K∗
P (x) implies

that K∗
P (x) is also the polar of KP (x), i.e.:

(2.2’) K∗
P (x) = sup

ξ∈∂Ω
〈x, ξ〉.

Next, observe that the Green’s function of P (D) verifies the following estimate:

(2.3) |G(x)| 6 C|x|me−KP (x) for |x| > 1,

C some constant.

SÉMINAIRES & CONGRÈS 9



GREEN’S FUNCTIONS OF ELLIPTIC OPERATORS 17

We indicate the proof of the essentially known estimate (2.3). Pick a function

χ(t) ∈ C∞(R) such that χ ≡ 0 for t 6 1/2, χ ≡ 1 for t > 1. Set: G1(x) = χ(|x|)G(x).

Then P (D)G1 = f where f ∈ C∞
0 (Rn). By Fourier transform:

(2.4) G(x) = (2π)−n

∫

Rn

f̂(ξ)

P (ξ)
eiξ·xdξ for |x| > 1.

Noting that f̂(ζ) is an entire function in ζ ∈ Cn which decays rapidly as |ζ| → ∞ in

any tube: | Im ζ| 6 R, it follows by complex integration that in the integral (2.4) the

domain of integration Rn can be shifted to the domain Rn + i(1− 1/|x|)ω∗ where ω∗

is any point in ∂Ω∗. An easy estimation of the resulting integral yields:

(2.5) |G(x)| 6 C|x|me−〈ω∗,x〉 for |x| > 1,

C some constant independent of x or ω∗. Minimizing the r.h.s. of (2.5) with respect

to ω∗ yields (2.3).

The following (essentially well known) proposition shows that the estimate (2.5) is

quite precise in the exponential factor.

Proposition 2.1. — Suppose that G(x) verifies an estimate of the form:

|G(x)| 6 C|x|Ne−Q(x) for |x| > 1,

where Q(x) is some continuous homogeneous function of degree 1 on Rn r {0}. Then

Q(ω) 6 KP (ω)

at all points ω ∈ ∂Ω which are extremal points of Ω.

We conclude this section with some notions and definitions related to the bound-

aries of the conjugate convex sets Ω and Ω∗.

Let Γ be an infinite open convex cone in Rn with vertex at the origin. Consider

the boundary set:

(2.6) ∂ΩΓ := ∂Ω ∩ Γ.

Assume that ∂ΩΓ is a C2 manifold with a positive Gaussian curvature at every point

(so that KP (x) is a C2 function and HessKP (x)2 > 0 in Γ). Define:

Γ∗ = {x ∈ R
n

r {0} : x/|x| = K ′
P (y)/|K ′

P (y)| for some y ∈ Γ},

(here K ′
P (y) := ∇KP (y)). Γ∗ is an open convex cone which we shall refer to as the

polar to Γ with respect to the “norm” KP (x). One finds readily that for x ∈ Γ∗:

(2.7) K∗
P (x) = 〈x, ω(x)〉

where ω(x) is the unique point in ∂ΩΓ such that K ′
P (ω(x)) is in the direction of x.

From (2.7) it follows that K∗
P (x) is a C2 function in Γ∗ and setting:

(2.6*) ∂Ω∗
Γ∗ = ∂Ω∗ ∩ Γ∗
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18 S. AGMON

it follows that ∂Ω∗
Γ∗ is a C2 manifold having a positive Gaussian curvature at every

point. Also, in analogy to (2.7):

(2.7*) KP (x) = 〈x, ω∗(x)〉 for x ∈ Γ,

where ω∗(x) is the unique point in ∂Ω∗
Γ∗ such that ∇K∗(ω∗(x)) is in the direction of

x. These considerations show that the gradient map:

(2.8) ∇ : ∂ΩΓ 3 ω −→ K ′
P (ω) = ω∗ ∈ ∂Ω∗

Γ∗

is a 1 − 1 C1 map from ∂ΩΓ onto ∂Ω∗
Γ∗ , with an inverse given by the map:

∂Ω∗
Γ∗ 3 ω∗ −→ ∇K∗

P (ω∗) ∈ ∂ΩΓ.

Definition 2.1. — A point ω ∈ ∂ΩΓ and its image ω∗ ∈ ∂Ω∗
Γ∗ under the map (2.8) will

be referred to as conjugate points (with respect to KP ).

3. The main theorem

We shall present in this section a solution to the following problem on the asymp-

totic behavior of Green’s functions mentioned in §1.

Problem. — Given the elliptic operator P (D) and an infinite open convex cone Γ (as

above, 0 /∈ Γ) give conditions which ensure that the Green’s function G(x) admits in

Γ an asymptotic behavior of the form:

(3.1) G(x) = a(x)eiA(x)(1 + o(1))

as x → ∞ in Γ, where A(x) is a C2 homogeneous function of degree 1 in Γ and a(x)

is a C2 homogeneous function of degree −n−1
2 , a(x) 6= 0.

We describe a solution to the problem under the following regularity assumption

on the function KP .

Condition R. — KP (x) is a C2 function in Γ verifying

Hess KP (x)2 > 0 in Γ.

Note that if KP (x) is a C2 function in Γ then the convexity of KP (x) implies that

HessKP (x)2 > 0 in Γ. It is also easy to see that Condition R is equivalent to each of

the following conditions.

Condition R1. — The set ∂ΩΓ := ∂Ω∩Γ is a C2 manifold possessing a positive Gaus-

sian curvature at every point.

Condition R2. — The set ∂Ω∗
Γ∗ := ∂Ω∗ ∩ Γ∗ is a C2 manifold possessing a positive

Gaussian curvature at every point.
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GREEN’S FUNCTIONS OF ELLIPTIC OPERATORS 19

Theorem 3.1. — Assume KP (x) satisfies Condition R in a cone Γ. Then

(i) In order that G(x) will have the asymptotic behavior (3.1) in Γ it is necessary

that the following condition hold:

Condition A. — For any point ω∗
0 ∈ ∂Ω∗

Γ∗ the equation P (ξ + iω∗
0) = 0 has a unique

solution ξ = ξ0 in Rn. Moreover, the zero ξ0 + iω∗
0 of P (ζ) is simple in the direction

ω∗
0 in the sense that

(3.2)
d

ds
P (ξ0 + sω∗

0)|s=i 6= 0.

(ii) In order that G(x) will possess the asymptotics (3.1) in Γ it is sufficient that

Condition A and Condition B (described below) should hold.

To describe Condition B assume that Condition A holds. Denote by R
n−1
ω∗

0
the

subspace in Rn orthogonal to ω∗
0 . By the analytic implicit function theorem the

equation

P (ξ0 + ξ′ + sω∗
0) = 0

has a unique solution s = s(ξ′) ∈ C for ξ′ ∈ R
n−1
ω∗

0
, |ξ′| < δ, δ > 0 sufficiently small,

such that s(0) = i; s(ξ′) real analytic in ξ′. Now from the definition of Ω∗ it follows

that P (ξ + sω∗
0) 6= 0 for 0 6 Im s < 1, ∀ ξ ∈ Rn. Hence, it follows from the above that

Im s(ξ′) > 1 for |ξ′| < δ, Im s(0) = 1.

Condition B. — The following holds:

det Hess s(ξ′)|ξ′=0 6= 0, ξ′ ∈ R
n−1
ω∗

0
.

Remark. — Under the sufficient conditions in Theorem 3.1 one finds that the func-

tions a(x) and A(x) are C∞ functions in Γ r {0}. Also, (3.1) can be replaced by an

asymptotic infinite series expansion.

We give some indications of the proof of the necessity part in the statement of the

theorem.

Thus assume that the asymptotic relation (3.1) holds in Γ. Noting that by Condi-

tion R all points of ∂ΩΓ are extremal points of Ω it follows from Proposition 2.1 and

the estimate (2.3), that

(3.3) ImA(x) = KP (x).

To prove that condition A is necessary we shall make use of the formula:

(3.4)
1

P (ξ)
=

∫

Rn

e−iξ·xG(x)dx.

Now, pick a point ω∗
0 ∈ ∂Ω∗

Γ∗ . Since Condition R holds, it follows from (2.8), and

Definition 2.1, that ω∗
0 is the conjugate (w.r.t. KP ) of a unique point ω0 ∈ ∂ΩΓ

and that ω∗
0 = K ′

P (ω0). Using the estimate (2.3) on G(x), noting that by (2.2)
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20 S. AGMON

KP (x) > 〈ω∗
0 , x〉 for x ∈ Rn, it follows from (3.4) by analytic continuation that

P (ξ + itω∗
0) 6= 0 for 0 6 t < 1, ξ ∈ Rn, and that

(3.5)
1

P (ξ + itω∗
0)

=

∫

Rn

e−iξ·xetω∗

0 ·xG(x)dx.

We shall consider the behavior of the r.h.s. of (3.5) as t ↑ 1. To this end observe

that since ∂ΩΓ is a C2 manifold having everywhere a positive Gaussian curvature the

inequality: KP (x) > 〈ω∗
0 , x〉, ∀x ∈ Rn, can be sharpened as follows:

(3.6) (1 − ε(x))KP (x) > 〈ω∗
0 , x〉 for x ∈ R

n
r {0}

where ε(x) is some continuous function on Rn r {0}, homogeneous of degree 0, veri-

fying:

(3.6’) ε(ω) > c|ω − ω0|
2 forω ∈ ∂Ω,

c some positive constant. Using (3.1), together with (3.3) and (3.6), (3.6’) to estimate

the integral (3.5) one finds (via integration by parts) that

(3.7)
1

P (ξ + itω∗
0)

= o

(
1

1 − t

)
as t ↑ 1

for any fixed ξ ∈ Rn, ξ 6= ξ0 where ξ0 = Re A′(ω0). One also proves that

(3.7’)
1

P (ξ0 + itω∗
0)

= O

(
1

1 − t

)
as t ↑ 1.

It thus follows that P (ξ + iω∗
0) 6= 0 for ξ 6= ξ0. On the other hand, since ω∗

0 ∈ ∂Ω∗ it

follows (by the definition of Ω∗) that P (ξ + iω∗
0) = 0 for some ξ ∈ Rn. Hence, ξ = ξ0

is the unique zero of the equation: P (ξ + iω∗
0) = 0, ξ ∈ Rn. This and (3.7’) establish

the necessity of Condition A.

As for the proof of the sufficiency part of the theorem, showing that if Conditions

A and B (as well as Condition R) hold then G(x) verifies in Γ an asymptotic formula

of the form (3.1), we just remark that the proof uses the method of stationary phase

in the general case where the phase function is complex (see [4], p. 220). The method

of stationary phase is applied to a “main term” of G(x) for x → ∞ along the ray:

x = tω0, t > 0(ω0 the conjugate of ω∗
0). The main term is obtained by the residuum

theorem starting with the (distribution sense) formula:

G(x) = (2π)−n

∫

Rn

eiξ·x

P (ξ + sω∗
0)

dξ

valid for any s ∈ C, 0 6 Im s < 1.

4. Applications

In this section we give applications of the main theorem to problems of asymp-

totics of Green’s functions of higher order elliptic operators with constant coefficients

described in the Introduction. Following the notation used in §1, we denote by P0(D)
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GREEN’S FUNCTIONS OF ELLIPTIC OPERATORS 21

an elliptic operator with constant coefficients such that P0(ξ) is a homogeneous poly-

nomial of even degree m, P0(ξ) > 0 for ξ ∈ Rn r {0}. We shall assume in addition

that P0(ξ) is strictly convex:

(4.1) Hess P0(ξ) > 0 for ξ ∈ R
n

r {0}.

We denote by Gλ(x) the Green’s function of the operator P0(D) − λ for λ ∈ C r R+

(given by the corresponding formula (1.1)). We recall that under the strong convexity

assumption (1.5) it was established in [1] that Gλ(x) verifies an asymptotic formula

of the form (1.6) for all λ verifying: 0 < | argλ| < π. In the following we discuss the

validity of (1.6) under the weaker assumption (4.1). We shall write (1.6) in its more

explicit form. To this end we introduce some notation. We set:

M = {ξ ∈ R
n : P0(ξ) = 1}.

M is a compact, smooth, strictly convex manifold. For any x ∈ Rn r {0} we denote

by ξ(x) the unique point on M such that P ′
0(ξ(x)) is in the direction of x. ξ(x) is a

smooth homogeneous function of degree 0 on Rn r {0}. We set:

Q0(x) = sup
ξ∈M

〈x, ξ〉 = 〈x, ξ(x)〉,

∆(x) = det

(
∂2

∂ξi∂ξj
P0 (ξ(x))

)
.

Under the above conditions and notation we have:

Theorem 4.1. — There exists a number α, 0 < α 6 π, such that for any λ in the

sectors: 0 6 ± argλ < α, the Green’s function Gλ(x)(Gλ±i0(x) if arg λ = 0) verifies

in Rn the asymptotic formula:

(4.2) Gλ(x) = c±λ
n+1
2m −1∆(x)−

1
2 Q0(x)−

n−1
2 e±iλ1/mQ0(x) (1 + O (1/|x|))

as |x| → ∞. Here the principal branch of the powers of λ are taken, and

c± = (2π)−
n−1

2 (m − 1)
1
2 m

n−2
2 e∓iπ n−3

4 .

Theorem 4.1 bis. — A necessary and sufficient condition that Gλ(x) verifies (4.2) for

some λ, 0 < | arg λ| < π, is that (with γ = arg λ) the following holds:

(4.3) P0

(
ξ + tei γ

m η
)
− eiγ 6= 0

for any ξ ∈ Rn, η ∈ M, 0 < t 6 1, except when t = 1 and ξ = 0 (any η ∈ M).

The proof of the theorems is based on Theorem 3.1 Here are some indications of the

proof. First note (as before) that the validity of (4.2) for Gλ±i0(x), λ ∈ R+, follows

by applying the relevant formula (1.4). Hence in view of the homogeneity of P0(ξ) it

would suffice to prove Theorem 4.1 for λ of the form: λ = eiγ , 0 < γ < π. Set:

P (D) = P0(D) − eiγ .
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22 S. AGMON

In order to find whether Theorem 3.1 is applicable to the operator P , consider the

complex roots of the polynomial P (ζ). Clearly: P (ei γ
m η) = 0 for any η ∈ M . On the

other hand one can show, using the strict convexity of the manifold M , that there

exists a number α, 0 < α < π, such that for any γ verifying 0 < γ < α the following

holds:

P
(
ξ + tei γ

m η
)
6= 0

for any ξ ∈ Rn, η ∈ M, 0 < t 6 1 except when t = 1 and ξ = 0. Assume from now on

that 0 < γ < α. The last observations on the complex zeros of P (ζ) can be used to

compute the “norm function” K∗
P (x) defined by (2.1). It follows that

(4.4) K∗
P (x) =

1

sin(γ/m)
P0(x)

1
m

and that KP (x), defined by (2.2), is given here by:

KP (x) = sin
( γ

m

) (
P0(x)

1
m

)∗

= sin
( γ

m

)
Q0(x).

From the strict convexity of P0(ξ) it follows further that KP (x)2 is a smooth strictly

convex function on Rn r {0}.

The above considerations show that the operator P0(D) − eiγ verifies Condition

R as well as the main part of Condition A of Theorem 3.1, with Γ = Rn r {0}. A

straight forward computation shows that (3.2) and Condition B also hold. Applying

Theorem 3.1 one finds that the Green’s function Geiγ (x) has an asymptotic formula

of the form:

Geiγ (x) = aγ(x)eiAγ (x) (1 + O (1/|x|))

as |x| → ∞, where aγ(x) is a homogeneous function of degree −n−1
2 and the phase

function Aγ(x) is a homogeneous function of degree 1 verifying:

Im Aγ(x) = KP (x) = sin
( γ

m

)
Q0(x).

Finally, using a more complete information on the asymptotic formula in Theorem

3.1 (not given in this paper) one finds that Aγ(x) = ei γ
m Q0(x) and that the explicit

asymptotic formula (4.2), with λ = eiγ , holds.

Theorem 4.1 bis is a straightforward application of Theorem 3.1. The sufficiency

part of the theorem follows in exactly the same manner as in the indicated proof of

the asymptotics in Theorem 4.1.

For the necessity part of the theorem observe that (with λ = eiγ , P = P0− eiγ) the

asymptotics (4.2) and (3.3) imply that KP (x) = sin(γ/m)Q0(x) and thus its polar

K∗
P (x) is given by (4.4). This and (2.1) imply that (4.3) must hold for 0 < t < 1.

Furthermore, since P0(e
iγ/mη) − eiγ = 0 for any η ∈ M , the necessity of Condition

A (in Theorem 3.1, when (4.2) holds, implies that (4.3) must also hold for t = 1 if

ξ 6= 0.

We conclude by considering the asymptotic expansion of Gλ(x) for λ a negative

number when P0(D) is an operator of order m > 2. In this case it was shown
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in [1], under the strong convexity assumption (1.5), that Gλ(x) admits a two terms

asymptotic expansion which in our (different) notation can be written in the following

form. Set λ = −ρ, ρ > 0. Then:

ρ1−n+1
2m ∆(x)

1
2 Q0(x)

n−1
2 G−ρ(x)(4.5)

=

(
1 + O

(
1

|x|

))
c0
+ exp

(
iei π

m ρ
1
m Q0(x)

)

+

(
1 + O

(
1

|x|

))
c0
− exp

(
−ie−i π

m ρ
1
m Q0(x)

)
,

as |x| → ∞ where c0
± = c± exp(±πin+1−2m

2m ). Now, Theorem 3.1 which deals with

asymptotic expansions of Green’s functions involving a single phase function can easily

be generalized to include asymptotic expansions involving sum of several terms with

different phase functions. Using this generalization one derives necessary and sufficient

conditions for the validity of the expansion (4.5) under the assumption that P0(ξ)

satisfies (4.1) (but not necessarily (1.5)). One obtains the following:

Theorem 4.2. — Under the convexity condition (4.1) on P0(ξ)(m > 2), a necessary

and sufficient condition for the asymptotic expansion (4.5) to hold is that:

P0

(
ξ + it sin

( π

m

)
η
)

+ 1 6= 0

for any ξ ∈ Rn, η ∈ M and 0 < t 6 1, except when t = 1 and ξ = ± cos(π/m)η.
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[3] L. Hörmander – An introduction to complex analysis, Van Nostrand, 1966.

[4] , The analysis of partial differential operators I, Springer-Verlag, Berlin Heidelberg
New York, 1983,1990.

[5] B. R. Vainberg – Principles of radiation, limiting absorption and limiting amplitude in
the general theory of partial differential equations, Russ. Math. Surv. 21 (1973), no. 3,
p. 167–190.

S. Agmon, Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram, 91904
Jerusalem, Israel • E-mail : agmon@math.huji.ac.il
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