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EXPLICIT CALCULATIONS
IN RINGS OF DIFFERENTIAL OPERATORS

by

Francisco J. Castro-Jiménez & Michel Granger

Abstract. — We use the notion of a standard basis to study algebras of linear dif-

ferential operators and finite type modules over these algebras. We consider the
polynomial and the holomorphic cases as well as the formal case.
Our aim is to demonstrate how to calculate classical invariants of germs of coherent

(left) modules over the sheaf D of linear differential operators over Cn. The main
invariants we deal with are: the characteristic variety, its dimension and the multi-
plicity of this variety at a point of the cotangent space.
In the final chapter we shall study more refined invariants of D-modules linked to the

question of irregularity: The slopes of a D-module along a smooth hypersurface of
the base space.

Résumé(Calculs explicites dans l’anneau des opérateurs différentiels). — Dans ce cours

on développe la notion de base standard, en vue d’étudier les algèbres d’opérateurs
différentiels linéaires et les modules de type fini sur ces algèbres. On considère le

cas des coefficients polynomiaux, des coefficients holomorphes ainsi que le cas des

algèbres d’opérateurs à coefficients formels.
Notre but est de montrer comment les bases standards permettent de calculer certains

invariants classiques des germes de modules (à gauche) cohérents sur le faisceaux

D des opérateurs différentiels linéaires sur Cn. Les principaux invariants que nous
examinons sont : la variété caractéristique, sa dimension et sa multiplicité en un

point du fibré cotangent.
Dans le dernier chapitre nous étudions des invariants plus fins des D-modules qui

sont reliés aux questions d’irrégularité : les pentes d’un D-module, le long d’une

hypersurface lisse.
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Introduction

The purpose of these notes is to make an account of explicit methods, using the no-
tion of a standard basis, which could be used in studying algebras of linear differential
operators and finite type modules over these algebras. We consider in parallel each
of the following cases: coefficients in a ring of polynomials k[x1, . . . , xn] for the Weyl
algebra An(k), in the ring of germs of holomorphic functions at 0 ∈ Cn for Dn, or in
the ring of formal power series for D̂n. We denote R any of these rings of operators
and B the corresponding commutative ring of coefficients.

Our aim is to demonstrate how to calculate classical invariants of germs of coherent
(left) modules over the sheaf D of linear differential operators over Cn. In practice we
shall look at finite type modules over Dn or D̂n. The main invariants we are dealing
with are: the characteristic variety, and the multiplicity of this variety at a point of the
cotangent space. See [25] and [19] for an introduction to the theory of D-modules
and for the definition of the characteristic variety, of its dimension and and of its
multiplicity. In the last chapter we shall study more refined invariants of R-modules
linked to the question of irregularity: The slopes of a Dn-module or an An(k)-module
along a smooth hypersurface of the base space. In these notes we deal mainly with
the case of monogenic modules M = R/I with I a (left) ideal of R. We provide an
algorithm to build standard bases of I and in the context of chapter II these bases
yield a special kind of system of generators for which the module of relations is easy to
describe. There is a straightforward generalisation for the case M = Rp/N involving
a submodule N of Rp. Then continuing the process of building standard bases for
submodules we can thus obtain a (locally) free resolution of M . The techniques used
are the notion of privileged exponents with respect to an ordering and a theorem of
division. They were introduced by H.Hironaka (cf. [26] or [1]). In the polynomial
case the notion of a standard basis was developed by Buchberger under the name of
a Gröbner basis in [13] where he also gives an algorithm for its calculation.

The commutative case is treated in chapter I, where we recall the notions of a
privileged exponent of a polynomial or a power series with respect to a convenient
ordering, the definition of a standard basis and the algorithm for calculating it, which
is the Buchberger’s algorithm in the polynomial case. We also draw attention to the
elegant proof in the convergent case taken from Hauser and Muller (cf. [20].) We finish
by giving some applications in commutative algebra such as calculating multiplicities,
syzygies, and the intersections of ideals.

In chapter II, we consider division processes in algebras of operators which are
compatible with a filtration which may either be the filtration by the order of operators
or in the particular case of An(k), the Bernstein filtration by the total order. At the
same time, for the sake of completeness we treat a weighted homogeneous version
of these filtrations. Using a compatible ordering on monomials we again develop a
division algorithm and an algorithm for the construction of a standard basis. These
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EXPLICIT CALCULATIONS IN RINGS OF DIFFERENTIAL OPERATORS 91

algorithms are very similar to those developed in chapter I, since in fact a division by
a family of operators {P1, . . . , Pr}, or by a standard basis of an ideal I induces the
same object via the principal symbols in the commutative associated graded rings.
The references for these results are [11] and [14]. Let us also notice that it is only in
the case of k[x1, . . . , xr] or An(k) that the suitable orderings used in chapters I and II
are well orderings and therefore that the algorithms are effective. In the power series
case they depend on formal or convergent processes in the local rings of series.

In chapter III we give an algorithm for the calculation of the slopes of a coherent
R-module along a smooth hypersurface Y of kn or Cn in the neighbourhood of a
point of Y . The material is essentially taken from our work with A.Assi [2] where
however only the case of An(k) is considered.

The notion of a slope of a coherent D-module M was introduced by Y. Laurent
under the name of a critical index. He considers, in the more general context of
microdifferential operators a family of filtrations Lr = pF + qV (with r a rational
number such that 0 6 r = p/q 6 +∞), which is an interpolation between the filtration
by the order F and the V -filtration of Malgrange and Kashiwara (cf. [22]). The critical
indices are those for which the Lr-characteristic variety of M is not bihomogeneous
with respect to F and V . Laurent proved in loc. cit. the finiteness of the number
of slopes and then C.Sabbah and F.Castro proved the same result in [30] by using a
local flattener. In [28] Z.Mebkhout introduced the notion of a transcendental slope of
a holonomic D-module M , as being a jump in the Gevrey filtration Irr(r)Y (M ) of the
irregularity sheaf IrrY (M ). The irregularity sheaf is the complex of solutions of M

with values in the quotient of the formal completion along Y of the structural sheaf O,
by O itself. By the main result of [28], it is a perverse sheaf, and Irr(r)Y (M ) is the sub-
perverse sheaf of solutions in formal series of Gevrey type r along Y . In [23] Laurent
and Z.Mebkhout proved that the transcendental slopes of an holonomic D-module
are equal to the slopes in the sense of Laurent called algebraic slopes. The analogue
in dimension one is Malgrange’s paper [27] for the perversity of the irregularity sheaf
and Ramis’s paper [29] for the theorem of the comparison of slopes.

In chapter III, we recall the principle of the algorithm of calculation of the algebraic
slopes of an R-module that we developed in [2] and we give some supplementary
information. Here the additional difficulty is that the linear form Lr which yields
the similarly called filtration now possesses a negative coefficient in the variable x1.
Although we can still speak of privileged exponents and standard bases, the standard
bases are no longer systems of generators of the ideal I which we consider but only
induce a standard basis of the graded associated ideal. A more serious consequence
of non-positivity, is that the straightforward division algorithm does not work inside
finite order operators. The way to solve this problem is to homogenize the operators
in R[t] with respect to the order filtration or, in the case of An(k), with respect to the
Bernstein filtration. We notice in chapter III, following a remark made by L.Narváez
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92 F.J. CASTRO-JIMÉNEZ & M. GRANGER

[16] that we can simplify the original proof in [2] by considering on An[t] a different
structure as a Rees ring. Another improvement to [2] lies in the distinction between
the slopes in the sense of Laurent and the values of r for which the ideal I gives a
non-bihomogeneous graded ideal grLr

(I). We call those r, the idealistic slopes of I. In
[2] we considered only this set of slopes and proved its finiteness; this paper however
already contains the hard part of the algorithm of the calculation of algebraic slopes.
Let us end this introduction by pointing out two other extensions of the original
material of our paper [2]. First we make the same algorithm work for the rings of
operators Dn, or D̂n. Secondly we give some significant examples of the calculations
of slopes: the slopes of the direct image of DCe

1/xk

by an immersion in C2, with
respect to a smooth curve Y tangent to the support. This example contains idealistic
slopes which end up not being algebraic slopes. Finally, we calculate the slopes of
DC2e1/(y

p−xq) along any line through the origin.

Added on March 21, 2003. — This paper was written in September 1996, as mate-
rial for a six hour course given in the CIMPA summer school “Differential Systems”
(Sevilla, September 1996). Consequently, the bibliography is outdated. Since then,
many papers have been published about the computational aspects in D-modules
theory. We have therefore decided to add, after the references, a complementary list
of recent publications on the subject.

1. Division theorems in polynomial rings and in power series rings

1.1. Let k be a field, with an arbitrary characteristic unless otherwise stated. Let n
be a positive integer . We denote by:

• k[X] = k[X1, . . . , Xn] the ring of polynomials with coefficients in k and variables
X1, . . . , Xn.

• k[[X]] = k[[X1, . . . , Xn]] the ring of formal power series with coefficients in k

and variables X1, . . . , Xn.
• k{X} = k{X1, . . . , Xn} the ring of convergent power series with coefficients in

k and variables X1, . . . , Xn, if k = R or C. (1)

If f ∈ k[[X]], f 6= 0, we write f =
∑
α∈Nn fαXα where fα ∈ k. If f ∈ k[X] f 6= 0,

then this sum is finite. The set N (f) = {α ∈ Nn | fα 6= 0} is called the Newton
diagram of the power series or of the polynomial f .

1.2. L-degree and L-valuation. — Let L : Qn → Q be a linear form with non
negative coefficients.

Definition 1.2.1. — Let 0 6= f ∈ k[X]. We define the L-degree of f (and we denote it
by degL(f)) as being max{L(α) | fα 6= 0}. We set degL(0) = −∞.

(1)Or, more generally, a complete valued field.
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Definition 1.2.2. — Let 0 6= f ∈ k[[X]]. We define the L-valuation of f (which we
denote by valL(f)) as being min{L(α) | fα 6= 0}. We set valL(0) = +∞.

We have degL(fg) = degL(f) + degL(g) if f, g ∈ k[X] and valL(fg) = valL(f) +
valL(g) if f, g ∈ k[[X]].

Definition 1.2.3. — Let 0 6= f ∈ k[[X]]. We call the sum inL(f) =
∑
L(α)=valL(f) fαXα

the L- initial form of the power series f (2). Let I be an ideal of k[[X]]. We call the
ideal of k[[X]] generated by {inL(f) | f ∈ I}, the initial ideal of I . We denote it by
InL(I) (or simply In(I))

Notation. — The following notation will be useful. If f =
∑
α fαXα is a power

series, we set inL,ν(f) =
∑
L(α)=ν fαXα. When no confusion can occur, we write

inν(f) instead of inL,ν(f). We have: f =
∑
ν inν(f).

Definition 1.2.4. — Let 0 6= f ∈ k[X]. We call the sum finL(f) =
∑
L(α)=degL(f) fαXα

the L-final form of the polynomial f . Let I be an ideal of k[X]. We call the ideal of
k[X] generated by {finL(f) | f ∈ I} the final ideal of I. We denote it by FinL(I) (or
simply by Fin(I)).

1.3. Orderings in Nn. — Let < be a total well ordering on Nn compatible with
sums (i.e. if α, β ∈ Nn and α < β then we have α + γ < β + γ for any γ ∈ Nn). Let
L : Qn → Q be a linear form with non negative coefficients . The relation <L, defined
by:

α <L β if and only if
{
L(α) < L(β)
or L(α) = L(β) and α < β

is a total well ordering on Nn compatible with sums.

1.4. The privileged exponent of a polynomial or of a power series. — The
notion of the privileged exponent of a power series is due to H.Hironaka. It was
introduced in [26] (see also [1], [10]). We fix, once and for all, a total well ordering
<, compatible with sums, in Nn. Let L : Qn → Q be a linear form as above.

Definition 1.4.1. — Let f =
∑
α fαXα ∈ k[X], f 6= 0. We call:

• The n-uple expL(f) = max<L
{α | fα 6= 0}, the L-privileged exponent of f

• The monomial mpL = fexpL(f)X
expL(f), the L-privileged monomial of f

Let f =
∑
α fαXα ∈ k[[X]], f 6= 0. We call:

• The n-uple expL(f) = min<L
{α | fα 6= 0}, the L-privileged exponent of f .

• The monomial mpL = fexpL(f)X
expL(f), the L-privileged monomial of f .

(2)If all the coefficients of L are positive, then the initial form of a power series is a polynomial.
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94 F.J. CASTRO-JIMÉNEZ & M. GRANGER

When it becomes necessary, we shall use the more precise notation, exp<L
(f) =

expL(f) and mp<L
(f) = mpL(f). In all the cases, when no confusion can result, we

shall write exp(f) instead of expL(f) and mp(f) instead of mpL(f).

Note 1.4.2. — When f ∈ k[X], f 6= 0, we shall take care not to confuse the privileged
exponent of the polynomial f with the privileged exponent of the power series f , in
spite of the notation. If necessary, we shall use the notation expp(f) for the privileged
exponent of the polynomial f and exps(f) for the privileged exponent of the power
series f .

Proposition 1.4.3. — Let f, g ∈ k[X] (resp. f, g ∈ k[[X]]) be non zero elements. We
have:

(1) exp(fg) = exp(f) + exp(g).
(2) mp(fg) = mp(f) mp(g).
(3) If exp(f) 6= exp(g) then

exp(f + g) = max
<L

{exp(f), exp(g)} (resp. exp(f + g) = min
<L

{exp(f), exp(g)}).

Let I be a non zero ideal of k[X] (resp. k[[X]]). We denote

E<L
(I) = {expL(f) | f ∈ I r {0}}.

When no confusion can result, we write E(I) instead of E<L
(I). Because of 1.4.3, we

have E(I) + Nn = E(I). We denote by mp(I), the ideal of k[X] generated by the
family of monomials {mp(f) | f ∈ I}(3).

Proposition 1.4.4. — Let I be a non zero ideal of k[X] (resp. k[[X]]). Then we have:

E(I) = E(mp(I)) = E(Fin(I)) (resp. E(I) = E(mp(I)) = E(In(I))).

Proof. — By definition, for every non zero polynomial f , we have

exp(f) = exp(fin(f)) and exp(f) = exp(mp(f))

(see 1.4.1). If f is a non zero power series, then we have: exp(f) = exp(in(f)) and
exp(f) = exp(mp(f)) (see 1.4.1).

Note 1.4.5. — With the notations of 1.4.2, if f is a power series such that in(f) is
a polynomial, (this condition is verified if every coefficient in the linear form L is
positive) then we have, in general, exp(f) 6= expp(in(f)).

Assume that every coefficient in the linear form L is positive (we then just say that
L is a positive linear form). Consider the ordering CL defined on Nn by the formula:

αCLβ if and only if
{
L(α) < L(β)
orL(α) = L(β) and β < α

(3)This is a monomial ideal, which means that a polynomial f is an element of the ideal if and only

if every monomial of f is in the ideal.
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This is a total well ordering (4) on Nn compatible with the sum.
If f is a power series, then we have: exp<L

(f) = exps<L
(inL(f)) = exppCL

(inL(f)).

Proposition 1.4.6. — Let E ⊂ Nn such that E + Nn = E. Then E contains a finite
family of generators; In other words, there exists a finite family F ⊂ E such that
E = ∪α∈F (α+ Nn).

Proof. — This is a version of Dickson’s lemma. The proof is by induction on n. For
n = 1 a (finite) family of generators is given by the smallest element of E (for the
usual ordering in N). Assume that n > 1 and that the result is true for n − 1. Let
E ⊂ Nn be such that E+ Nn = Nn. We can assume that E is non empty. Let α ∈ E.
For any i = 1, . . . , n and j = 0, . . . , αi we consider the bijective mapping

φi,j : Ni−1 × {j} × Nn−i −→ Nn−1

(β1, . . . , βi−1, j, γi+1, . . . , γn) 7−→ (β1, . . . , βi−1, γi+1, . . . , γn)

and we denote Ei,j = φi,j(E∩(Ni−1×{j}×Nn−i)). It is clear that Ei,j+Nn−1 = Ei,j
and by the induction hypothesis there is a finite subset Fi,j ⊂ Ei,j generating Ei,j .
The family F = {α}∪

(
∪i,j(φi,j)−1(Fi,j)

)
generates E. The proof above is taken from

[18].

Remark. — The previous proposition can be rephrased as follows: Any monomial
ideal in k[X] is finitely generated. This is a particular case of the Hilbert basis
theorem. In the same way we can see that any increasing sequence Ek of subsets of
Nn, stable under the action of Nn, is stationary. We shall often use this property
called the Noetherian property for Nn.

We can adapt the proof above to show that, given E ⊂ Nn as in the proposition,
we can find in any set of generators, a finite subset of generators of E . This proves in
particular that in any system of generators made of monomials of a monomial ideal
of k[X], we can find a finite subset of generators. This is Dickson’s lemma.

Definition 1.4.7. — Let I be a non zero ideal of k[X] (resp. k[[X]]). A standard
basis(5) of I, relative to L (or L-standard basis of I) is any family f1, . . . , fm of
elements in I such that E(I) = ∪mi=1(expL(fi) + Nn).

Remark. — There always exist a standard basis for I, because of the definition of
E(I) and 1.4.6.

(4)If the form L has at least one non positive coefficient the previous formula defines a total ordering

over Nn, but not a well ordering.
(5)The notion of a standard basis, introduced by H.Hironaka in [21], is similar to the notion of a

Gröbner basis, introduced by Buchberger in [13]. We shall come back to this analogy later.
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96 F.J. CASTRO-JIMÉNEZ & M. GRANGER

1.5. Here are the divisions. — We shall prove here that a standard basis of an
ideal I is a system of generators of this ideal.

With any m-uple (α1, . . . , αm) of elements of Nn we shall associate a partition(6)

∆1, . . . ,∆m,∆ of Nn in the following way. We set:

∆1 = α1 + Nn, ∆i+1 = (αi+1 + Nn) r (∆1 ∪ · · · ∪∆i) if i > 1,

∆ = Nn r (∪mi=1∆
i)

Theorem 1.5.1. — Let (f1, . . . , fm) be an m-uple of non zero elements of k[[X]]
(resp. of k[X]). We denote by ∆1, . . . ,∆m,∆ the partition of Nn associated with
(exp(f1), . . . , exp(fm)). Then, for any f in k[[X]] (resp. in k[X]) there exists a
unique (m+ 1)-uple (q1, . . . , qm, r) of elements of k[[X]] (resp. of k[X]) such that:

1) f = q1f1 + · · ·+ qmfm + r,
2) exp(fi) + N (qi) ⊂ ∆i, i = 1, . . . ,m,
3) N (r) ⊂ ∆.

If k is either R or C and if the fi are convergent power series, then for any convergent
power series f the series qi and r are convergent.

Remark. — The element qi in the theorem is called the i-th quotient and r is called
the remainder of the division of f by (f1, . . . , fm). We shall denote the remainder by
r(f ; f1, . . . , fm). Of course, the quotients as well as the remainder depend on the well
ordering <L.

Proof of theorem 1.5.1. — Assume that two (m + 1)-uples, (q1, . . . , qm, r) and
(q′1, . . . , q

′
m, r

′), satisfy the conditions of the theorem. We have:

(1)
m∑
i=1

(qi − q′i)fi + r − r′ = 0

If qi 6= q′i then exp((qi − q′i)fi) ∈ ∆i. If r 6= r′ then exp(r − r′) ∈ ∆. Since
∆1, . . . ,∆m,∆ is a partition of Nn, the equality (1) is only possible if qi = q′i for
any i and if r = r′. This proves the uniqueness in the theorem. We shall now prove
the existence. Let us first consider the polynomial case. Since the set Nn is well
ordered with respect to <L, we use an induction on unitary monomials of k[X]. If
Xα = 1 (i.e. if α = (0, . . . , 0)), then either exp(fi) 6= (0, . . . , 0) for any i and in this
case it is enough to write 1 =

∑m
i=1 0fi + 1, or there exists an integer j such that

exp(fj) = (0, . . . , 0). In this case fj is a non zero constant.(7) Assume that j is
minimal. We write 1 =

∑
i 6=j 0 · fi + (1/fj)fj + 0. This proves the result at the first

step of the induction. Assume that the result is proved for any β such that β <L α.
Let j be such that α ∈ ∆j . If there is no such j we write Xα =

∑m
i=1 0fi + Xα. If

(6)We use the word partition in a broad sense, which means that an element of the family may be

empty.
(7)We use here the fact that for the well ordering <L, (0, . . . , 0) is the first element of Nn.
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j exists, let γ ∈ Nn be such that α = exp(fj) + γ. We can write, Xα = 1
cj

Xγfj + gj
where cj is the coefficient of the privileged monomial of fj and all the monomials in
gj are smaller (with respect to <L) than α. By the induction hypothesis there exists
(q′1, . . . , q

′
m, r

′) satisfying the conditions of the theorem for f = gj . In particular we
have:

Xα =
∑
i 6=j

q′ifi +
( 1
cj

Xγ + q′j

)
fj + r′.

This proves the result for α. Thus, existence is proved for the polynomials.
We say that a polynomial g is L-homogeneous if all its monomials have the same

L-degree.
It is clear in the proof above that if f is L-homogeneous of L-degree d ∈ Q and if

fi is L-homogeneous of L-degree di ∈ Q (for any i) then the quotient qi, if it is non
zero is L-homogeneous of L-degree d − di, and the remainder r, if it is non zero is
L-homogeneous of L-degree d.

Assume now that f is a power series. Let us now see the existence in that case,
first assuming that L is a positive linear form (see 1.4.5). Any non zero power series
f =

∑
α fαXα can be represented, in a unique way, as a sum f =

∑
ν∈L(N2) fν where

fν =
∑
L(α)=ν fαXα is a L-homogeneous polynomial. By definition (see 1.2.2) we

have: valL(f) = min{ν | fν 6= 0}.
Because of 1.4.5 we have, for any i: exp(fi) = exppCL

(in(fi)) and we can apply
the division, in the polynomial case, of in(f) by (in(f1), . . . , in(fm)). There exists a
(unique) (m+ 1)-uple (σ1, . . . , σm, ρ) such that

in(f) =
m∑
i=1

σi in(fi) + ρ

and satisfying the conditions similar to 2) and 3) in the theorem. The following
notations will be useful: σi(f) = σi, ρ(f) = ρ and for any power series g, ĝ = g−in(g).
We have:

f = in(f) + f̂ =
m∑
i=1

σi(f)fi + ρ(f) + f̂ −
m∑
i=1

σi(f)f̂i

We introduce the following notation:

s0(f) = f, s(f) = s1(f) = f̂ −
m∑
i=1

σi(f)f̂i, sj(f) = s(sj−1(f)).

We have:

• valL(sj+1(f)) > valL(sj(f)) for any j.
• degL(σi(sj+1(f))) > degL(σi(sj(f))) for any i and any j.
• degL(ρ(sj+1(f))) > degL(ρ(sj(f))) for any i and any j.
• For any i, the series ∑

j>0

σi(sj(f))
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98 F.J. CASTRO-JIMÉNEZ & M. GRANGER

is convergent in the (X)-adic topology of k[[X]].
• The series ∑

j>0

ρ(sj(f))

is convergent in the (X)-adic topology of k[[X]].
• f =

∑m
i=1(

∑
j>0 σi(s

j(f)))fi + (
∑
j>0 ρ(s

j(f)))

If we write qi =
∑
j>0 σi(s

j(f)) and r =
∑
j>0 ρ(s

j(f)), the (m+1)-uple (q1, . . . , qm, r)
satisfies the conditions 1), 2) et 3) in the theorem, relative to f .

Now, we prove the convergent case. We will follow the proof of H.Hauser and
G.Müller [20]. Set

k{X}∆ = {r ∈ k{X} |N (r) ⊂ ∆}
and

k{X}m,∆ = {(q1, . . . , qm) ∈ k{X}m | exp(fi) + N (qi) ⊂ ∆i for all i}.

Let L′ : Qn → Q be a positive linear form such that expL′(fi) = expL(fi), for all i
and the Newton diagram of each inL′(fi) is reduced to a point.

For s ∈ R, s > 0 consider

(1) the pseudo-norm defined on k{X} by |g|s =
∑
α |gα|sL

′(α),
(2) the pseudo-norm defined on k{X}m by |(g1, . . . , gm)|s =

∑
i |gi|s.

We define k{X}s = {g ∈ k{X} | |g|s <∞} and

k{X}∆s = k{X}∆ ∩ k{X}s,

which are Banach spaces with norm ||s. Similarly we define

k{X}m,∆s = {q ∈ k{X}m,∆ | |q|s <∞}

which is a Banach space with norm ||s. There are constants c > 0 and ε > 0 such that
|mi|s 6 |fi|s 6 c|mi|s and |fi −mi|s 6 sε|mi|s for all i and all sufficiently small s,
where mi is the monomial of fi corresponding to exp(fi). For such an s we consider
the continuous linear map

us : k{X}m,∆s ⊕ k{X}∆s −→ k{X}s
defined by us(q, r) =

∑
i qifi + r. We will show that us is onto for small s.

We define on k{X}m,∆s ⊕ k{X}∆s the norm ||(q, r)||s =
∑
i |qi|s|mi|s + |r|s. With

this norm this space becomes a Banach space. The linear map

vs : k{X}m,∆s ⊕ k{X}∆s −→ k{X}s
defined by vs(q, r) =

∑
i qimi + r is bijective and bicontinuous of norm 1. Its inverse

v−1
s has norm 1. Let ws denote the continuous linear map us−vs. We have ws(q, r) =∑
i qi(fi −mi).
There exits s0 > 0 such that, for s < s0, we have ||ws|| 6 sε and ||wsv−1

s || 6 sε < 1.
We have usv−1

s = Id+ wsv
−1
s and so usv−1

s is invertible. Then us is invertible.
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Assume now that L is general (with non negative coefficients). We remark that
there is a form L′′, with positive coefficients, such that expL(fi) = expL′′(fi) for
any i (see e.g. [6]). We perform the division of the series f by (f1, . . . , fm) relative to
the form L′′. Because of the note 1.5.2 below this division is also a division relative
to L.

Remark. — It follows from the proof that for any division f = q1f1 + · · ·+ qmfm + r

as in the polynomial case of the theorem we have max{maxi{expL(qifi)}, expL(r)} =
expL(f) and as a consequence: If f ∈ k[X] then max{maxi{degL(qifi)},degL(r)} =
degL(f). In the power series case the same is true with max and deg replaced respec-
tively by min and val.

Note 1.5.2. — We must remark that if L and L′ are two linear forms (with non nega-
tive coefficients) such that expL(fi) = expL′(fi) then the quotients and the remainders
of a division of f by (f1, . . . , fm) relative to <L′ also give a division relative to <L.

Corollary 1.5.3. — Let I be a non zero ideal of the ring B (B = k[X], k[[X]]
or k{X}). Let E = E(I) with respect to an arbitrary linear form L and BE =
{f =

∑
α fαXα ∈ B |N (f) ∩ E = ∅}. Then, the natural mapping

$ : BE −→ B/I

is an isomorphism of k-vector spaces.

Proof. — The mapping $ is defined as the composition of the l’inclusion BE ⊂ B

and the projection B → B/I. Thus $ is a homomorphism of vector spaces. Let us
prove that it is onto. Let f ∈ B. Let {f1, . . . , fm} be a standard basis of I with respect
to L and let r = r(f ; f1, . . . , fm) be the remainder of the division of f by the standard
basis. Because of 1.4.7 and 1.5.1 r is an element of BE and $(r) = r + I = f + I.
Let us now see the injectivity of $. Let b ∈ BE . If $(b) = 0 + I then b ∈ I. If b 6= 0
this would imply exp(b) ∈ E which contradicts the fact that N (b) ∩ E = ∅.

Corollary 1.5.4. — Let I be a non zero ideal of B and let f1, . . . , fm be a family of
elements of I. The following conditions are equivalent:

1) f1, . . . , fm is a standard basis of I.
2) For any f in B we have: f ∈ I if and only if r(f ; f1, . . . , fm) = 0.

Corollary 1.5.5. — Let I be a non zero ideal of B and let f1, . . . , fm be a standard
basis of I. Then f1, . . . , fm is a system of generators of I.

Proof. — Because of 1.5.4, if f is in I, we obtain by division f =
∑
qifi.

Note 1.5.6. — Let L,L′ be two linear forms with non negative coefficients. Let
{f1, . . . , fm} be a standard basis of an ideal I (in B) relative to L. Assume that we
have expL′(fi) = expL(fi) for any i. Then {f1, . . . , fm} is a standard basis relative
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to L′. This result will be very useful in the calculations that follows. It is a direct
application of the note 1.5.2 and of 1.5.4.

1.6. Semisyzygies and the explicit calculation of a standard basis

Definition 1.6.1. — Let g1, g2 be elements of B. The semisyzygy relative to (g1, g2),
is the polynomial (resp. the power series) (defined up to a factor c ∈ k∗)

S(g1, g2) = m1g1 −m2g2

characterized by the following conditions:

(1) mi is a monomial.
(2) exp(m1g1) = exp(m2g2) = µ

(3) Any pair of monomial (m′
1,m

′
2) such that exp(m′

1g1) = exp(m′
2g2) satisfies

exp(m′
1g1) = exp(m′

2g2) ∈ (µ+ Nn)
(4) exp(S(g1, g2)) <L µ (resp. µ <L exp(S(g1, g2))

In other words µ is the gcd —in the sense of Nn— of exp(g1), exp(g2).

Proposition 1.6.2. — Let F = {p1, . . . , pr} be a system of generators of the ideal I of
B such that for any (i, j), the remainder of the division of S(pi, pj) by (p1, . . . , pr) is
zero. Then F is an L-standard basis of I.

Proof. — For the polynomial case we refer to [13] and [24]. Remember that if f =∑r
i=1 bifi the problem is to reduce to the case when the exponent α = max{exp(bifi)}

is equal to exp(f). This can be done by induction on α. For that purpose we change
the above decomposition of f by using the division of the semisyzygies. Consider now
the power series case, assuming first that L is positive. The proof in this case is the
same but by descending induction on α = min{exp(bifi)}. In the case of a general L
(with non negative coefficients), let L′ be a form with positive coefficients and such
that expL(fi) = expL′(fi) (see e.g. [6]). The result follows now from the notes 1.5.2
and 1.5.6.

Note 1.6.3. — This proposition gives an algorithmic process in the case of polynomials,
in order to calculate a standard basis starting from a system of generators, by a finite
number of divisions. This is Buchberger’s algorithm for polynomials [13]. The version
for differential operators is given in detail in the next chapter.

Corollary-definition 1.6.4. — Let F = {p1, . . . , pr} be a system of generators of the
ideal I of B such that for any (i, j), the remainder of the division of S(pi, pj) by
(p1, . . . , pr) is zero. Let ri,j be the relation obtained by this division. Then, the
module of the relations S between the pi is generated by the relations ri,j. Each of
these relations is called an elementary relation between the pi.
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Proof. — The module S is the set of r-uples s = (a1, . . . , ar) ∈ Br such that
a1p1 + · · · + arpr = 0. Let S ′ be the module generated by the family ri,j . By
the same principle as in the previous proof, if b = (b1, . . . , br) is in S , and if
δ = max{exp(bipi)} (resp. δ = min{exp(bipi)}) we can, modulo S ′, replace b by
a relation b′ with max{exp(b′ipi)} < δ (resp. min{exp(b′ipi)} > δ). In the polynomial
case we end the proof by induction. In the case of power series, we first reduce the
proof to the case when L is positive. By iterating the process above we find, for any
positive integer N , S ⊂ S ′ + (X1, . . . , Xn)Nk[[X]]r (or a similar formula in the
case of k{X}). This allows us to conclude by applying the intersection theorem of
Krull.

Thus we have a way to calculate the first step of a free resolution of the module
M = B/I. Indeed, we have an exact sequence:

Br φ1−−−→ B
φ0−−−→M −→ 0

where φ1(b1, . . . , br) =
∑
i bipi and φ0 is the natural morphism. The kernel of φ1 is

the module of relations between the pi (denoted above by S ). By 1.6.4 this module
is generated by the elementary relations between the pi. Let s be the number of these
relations. We then have a natural morphism φ2 : Bs → Br which sends each element
ei,j of the canonical basis of the free module Bs to the relation ri,j . We deduce from
this an exact sequence:

Bs φ2−−−→ Br φ1−−−→ B
φ0−−−→M −→ 0.

1.7. Application 1. Elimination of variables. — Let I be an ideal of k[X]
and k be an integer 0 6 k 6 n − 1. We define Ik = I ∩ k[Xk+1, . . . , Xn]. Ik is the
set of polynomials in I which depend only on the variables Xk+1, . . . , Xn. We write
In = k ∩ I. The set Ik is, for any k, an ideal of the ring k[Xk+1, . . . , Xn]. The ideal
Ik is called the k-th elimination ideal of I. We shall return later on this definition.

Note 1.7.1. — The lexicographic ordering in Nn is by definition the total well ordering
<lex defined by:

α<lexβ if and only if


in the vector α− β

the first non zero component
is negative

The lexicographic ordering is compatible with the sum in Nn.

Lemma 1.7.2. — Let f be a polynomial in k[X]. Then mp<lex
(f) is in k[Xk+1, . . . , Xn]

if and only if f is in k[Xk+1, . . . , Xn].

Proof. — Let Xα be the unitary monomial corresponding to mp<lex
(f). Let Xβ

be another monomial of f . We have: β<lexα and thus, by 1.7.1, the first non zero
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component of the vector β − α is negative. But α1 = · · · = αk = 0 and thus
β1 = · · · = βk = 0, which proves the lemma.

For any integer k such that 0 6 k 6 n − 1, we identify Nn−k with a subset
of Nn by the injective mapping ϕk : Nn−k → Nn defined by ϕk(βk+1, . . . , βn) =
(0, . . . , 0, βk+1, . . . , βn). The lexicographic ordering on Nn induces on Nn−k the lexi-
cographic ordering of Nn−k

Theorem 1.7.3. — Let I be an ideal of k[X] and k an integer such that 0 6 k 6 n.
Let G be a standard basis of the ideal I relative to the lexicographic ordering. Let
Gk = G ∩ k[Xk+1, . . . , Xn]. Then we have:

(1) If Gk = ∅ then Ik = (0).
(2) If Gk 6= ∅ then Gk is a standard basis of the ideal Ik relative to the lexicographic

ordering.

Proof. — Assume that there a non zero f in Ik. Since f ∈ I and since G is a
standard basis of I, there is g ∈ G and β ∈ Nn such that mp(f) = Xβ mp(g) (see
1.4.7). Therefore mp(g) ∈ k[Xk+1, . . . , Xn] and , by lemma 1.7.2 g ∈ Gk. In particular
Gk is non empty.

Assume that Gk is non empty. Let f be a non zero polynomial in Ik. In the proof
just above we also get Xβ ∈ k[Xk+1, . . . , Xn] so that we have:

E(Ik) ⊂
( ⋃

g∈Gk
exp<lex

(g) + Nn−k
)

The other inclusion being obvious, Gk is a standard basis of Ik.

1.8. Application 2. Some useful calculations on ideals of k[X]

1.8.1. Intersections of ideals.— Let I, J be two ideals of k[X]. Let y be a new
indeterminate. We denote by Ie (resp. Je) the extension of the ideal I (resp. J) to
the ring k[X, y]. If h is a polynomial in k[y] we denote by hIe (resp. hJe) the product
of the ideals(8) (h) and Ie (resp. (h) and Je). With these notations we have:

Theorem 1.8.2. — Let I, J be two ideals of k[X]. Then I∩J = (yIe+(1−y)Je)∩k[X].

Proof. — If f ∈ I ∩ J then yf ∈ yIe and (1 − y)f ∈ (1 − y)Je. Therefore f =
yf +(1−y)f ∈ (yIe+(1−y)Je)∩k[X]. Conversely, let f ∈ (yIe+(1−y)Je)∩k[X].
We can write:

(1) f = yG+ (1− y)H,

with G = G(X, y) ∈ Ie and H = H(X, y) ∈ Je. We set y = 0 in the equation (1)
and we get f = H(X, 0) and it is clear that H(X, 0) ∈ J . On the other side, if we set
y = 1 in the equation (1), we get f = G(X, 1) and it is clear that G(X, 1) ∈ I.

(8)these are ideals of the ring k[X, y]
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This theorem gives a way to find a standard basis of I ∩ J by eliminating the
variable y.

1.8.3. The radical of an ideal.— Let I be an ideal of k[X]. We recall that the radical
of the ideal I is the set of polynomials f ∈ k[X] such that f j ∈ I for some integer j.
The radical of I is denoted by

√
I. It is an ideal of k[X].

Let us consider the problem of deciding whether an element of the ring belongs to
the ideal

√
I. Let y be a new variable. Let f ∈ k[X].

Theorem 1.8.4. — With the notations above, we have f ∈
√
I if and only if the ideal

Ie + (1− yf) of the ring k[X, y] is the whole ring.

Proof. — Exercise. See e.g. [17].

1.9. Application 3. The calculation of the dimension and the multiplicity
of a local algebra k[[X]]/I

1.9.1. The Hilbert-Samuel function.— Recall that if (A,m) is a Noetherian local ring,
the Hilbert-Samuel function of A is the mapping:

FHSA : N −→ N

k 7−→ dimA/m(A/mk+1)

Recall also that there is a polynomial PHSA(t) ∈ Q[t] –called the Hilbert-Samuel
polynomial of A- such that, for k � 0, we have FHSA(k) = PHSA(k).

Theorem 1.9.2(The dimension theorem). — Let (A,m) be a Noetherian local ring.
Then the Krull dimension of A (denoted by dim(A)) is equal to the degree of the
Hilbert-Samuel polynomial of A.

Proof. — See [5] chapter 11 or [8].

The highest degree monomial of PHSA(t) can be written e(A)
dim(A)! t

dim(A), where
e(A) is a positive integer called the multiplicity of A.

This applies in particular, to the case when A = k[[X]]/I (or A = k{X}/I) where
I is an ideal of k[[X]] (or k{X}). If we denote by m the maximal ideal (X1, . . . , Xn)
then we have:

FHSA(k) = dimk

( k[[X]]
I + mk+1

)
The aim in this section is to compute the dimension and the multiplicity of the

k-local algebra k[[X]]/I (or k{X}/I), in terms of E(I) for a well chosen ordering
in Nn.

Proposition 1.9.3. — Let L be the linear form on Qn defined by L(α) = α1+· · ·+αn =
|α|. Let I be an ideal of k[[X]] (or k{X}) and E(I) = E<L

(I). Then, for any k ∈ N
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we have:

FHSA(k) = dimk

( A

Amk+1

)
= #{α ∈ (Nn r E(I)) | |α| 6 k}.

Proof. — Let us consider the formal power series case, the convergent case being sim-
ilar. We have a natural isomorphism of vector spaces A/Amk+1 ' k[[X]]/(I + mk+1).
For the ordering <L we have the equality E(I + mk+1) = E(I) ∪ E(mk+1). Indeed,
it is enough to prove the inclusion E(I + mk+1) ⊂ E(I) ∪ E(mk+1), the other being
obvious. Let f ∈ I and g ∈ mk+1. If val(f) < val(g) then in(f + g) = in(f) and thus
exp(f+g) = exp(f) ∈ E(I). If val(f) > val(g) then val(f+g) > min{val(f), val(g)} >
val(g) > k + 1. Whence f + g ∈ mk+1.

We end the proof of the proposition by applying 1.5.3.

Let us denote by ℘ the set of the subsets {1, . . . , n}. We introduce the following
notations:

• For each σ ∈ ℘ we write:

– S(σ) = {α ∈ Nn | αi = 0 if i ∈ σ}
– T (σ) = S({1, . . . , n}r σ)
– #σ = cardinal of σ

• For each non-empty subset E ⊂ Nn such that E + Nn = E:

– cd(E) = min{#σ |S(σ) ∩ E = ∅}
– d(E) = n− cd(E)

Proposition 1.9.4. — Let ∅ 6= E ⊂ Nn be such that E + Nn = E. Let σ ∈ ℘ be such
that #σ = cd(E). Then the set

{α ∈ T (σ) | (α+ S(σ)) ∩ E = ∅}

is finite.

Proof. — We remark that the set defined in the proposition is the complement of
p(E) in T (σ), p being the natural projection of Nn onto T (σ). Since p(E) is stable by
addition in T (σ), this complement could only be infinite if it contained a coordinate
axis in T (σ), which would contradict the minimality of the cardinal of σ.

Let us denote by eσ(E) the cardinal of the set defined in the previous proposition
and by e(E) the sum

e(E) =
∑

#σ=cd(E)

eσ(E)

Theorem 1.9.5. — With the notations above we have:

(1) d(E(I)) = dim(A)
(2) e(E(I)) = e(A).

Proof. — See [15], [7].
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2. Division theorems in the rings of differential operators

2.1. The aim of this section is to adapt the division theorems proved in chapter I
to the case of the rings of differential operators and to give some applications: The
calculation of free resolutions, of characteristic varieties and of multiplicities. The
references are [11] and [14].

Let k be a field of characteristic zero. We denote:

• An(k) = k[X,∂] = k[X1, . . . , Xn; ∂1, . . . , ∂n] the Weyl algebra, i.e. the ring of
linear differential operators with polynomial coefficients in n variables.

• D̂n(k) = k[[X]][∂] = k[[X1, . . . , Xn]][∂1, . . . , ∂n] the ring of linear differential
operators with formal power series in n variables as coefficients.

• Dn(k) = k{X}[∂] = k{X1, . . . , Xn}[∂1, . . . , ∂n] the ring of linear differential
operators with convergent power series in n variables as coefficients, if k = R or C or,
more generally, a complete valued field of characteristic zero.

For the sake of brevity we shall write when no confusion is possible: An, D̂n, Dn.
We denote by R any of these three rings.

If P is an operator we develop it in the following way:

P =
∑

(α,β)∈N2n

a(α,β)X
α∂β =

∑
β∈Nn

fβ∂
β

where a(α,β) ∈ k, fβ ∈ k[X],k[[X]] or k{X}.
We call the following subset of N2n, denoted by N (P ), the Newton’s diagram of P :

N (P ) = {(α, β) ∈ N2n | a(α,β) 6= 0}

2.2. The order of an operator. — We fix a linear form L on Q2n with non
negative coefficients, whose restriction L2 to {0}×Qn has strictly positive coefficients.
This condition is only necessary in the case of power series coefficients.

Definition 2.2.1. — Let 0 6= P ∈ R = An, D̂n or Dn. We define the L2-order of P (and
we denote it by ordL2(P )) as being max{L2(β) | fβ 6= 0}. We set ordL2(0) = −∞.

We have ordL2(PQ) = ordL2(P ) + ordL2(Q) for any operators P and Q.
For each k ∈ L2(Qn), we write

FL2
k (R) = {P ∈ R | ordL2(P ) 6 k}.

The family FL2
• (R) is an increasing filtration of the ring R. Let grL2

k (R) (or, more
briefly, grk(R)) denote the quotient FL2

k (R)/FL2
<k(R). We call the mapping σL2

k :
Fk(R) → grk(R) the symbol function of order k.

Definition 2.2.2. — Let P ∈ Fk(R)rF<k(R). We call σL2
k (P ) the L2-principal symbol

of P . We denote the L2-principal symbol of ∂i by ξi. Thus, σL2
k (P ) =

∑
L2(β)=k fβξ

β .
We shall write it simply σL2(P ).
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The ring grL2(R) = ⊕
k

grL2
k (R) is commutative and isomorphic to the ring

B[ξ1, . . . , ξn] where as the case may be B = k[X], k[[X]], or k{X}.

Definition 2.2.3. — Let I be an ideal (9) of R. We call the ideal of grL2(R), denoted
by grL2(I), generated by {σL2(P ) | P ∈ I} the L2-graded ideal associated with I.

Definition 2.2.4. — Let I be an ideal of R. We call the set

{(x, ξ) ∈ k2n | σL2(P )(x, ξ) = 0 for all P ∈ I},

denoted by CharL2(R/I), the L2-characteristic variety of the R-module R/I.

When R = An we also have the possibility of mixing the variables X and ∂:

Definition 2.2.5(TheL-Bernstein filtration) . — Let P ∈ An(k). We call the integer

max{L(α, β) | a(α,β) 6= 0}

the L-order of P (and we denote it by ordL(P )). The L-principal symbol of P is the
sum σL(P ) =

∑
L((α,β))=ordL(P ) a(α,β)X

αξβ .

We have once again the notion of graded ideal associated with an ideal I of An
and the notion of L-characteristic variety of An/I, for the L-Bernstein filtration.

On the other hand when L2(β) = β1 + · · ·+ βn, the filtration induced by L2 is the
usual filtration by the order of operators with respect to derivation variables.

2.3. Orderings in N2n and the privileged exponent of an operator. — Let <
be a total well ordering on N2n compatible with sums. We define an ordering denoted
by <L, on N2n, in a different way according to whether we are in An or with power
series coefficients.

• In An:

(α, β) <L (α′, β′) if and only if


L2(β) < L2(β′)
or L2(β) = L2(β′) and L(α, β) < L(α′, β′)

or
{
L2(β) = L2(β′), L(α, β) = L(α′, β′)
and (α, β) < (α′, β′)

This is a total well ordering compatible with sums.
• In D̂n or Dn:

(α, β) <L (α′, β′) if and only if


L2(β) < L2(β′)
or L2(β) = L2(β′) and L(α, β) > L(α′, β′)

or
{
L2(β) = L2(β′), L(α, β) = L(α′, β′)
and (α, β) > (α′, β′)

Definition 2.3.1. — Let P ∈ An, D̂n or Dn. We call the 2n-uple expL(P ) =
max<L

{(α, β) | a(α,β) 6= 0}, the L-privileged exponent of P .

(9)All the ideals under consideration are left ideals.
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Remark. — We have in every case the formula expL(P ) = expL(σL2(P )) with
σL2(P ) ∈ k[X, ξ], k[[X]][ξ] or k{X}[ξ] respectively, the two last rings being seen as
subrings of k[[X, ξ]] or of k{X, ξ} and the privileged exponents being taken in the
sense of the first chapter.

Then we can state the following propositions which can be proved exactly as in the
first chapter:

Proposition 2.3.2. — Let P,Q ∈ R . We have:

1) exp(PQ) = exp(P ) + exp(Q).
2) If exp(P ) 6= exp(Q) then exp(P +Q) = max<L

{exp(P ), exp(Q)}.

For each non zero ideal I of R let E<L
(I) denote the set {expL(P ) | P ∈ I r {0}}.

If no confusion is possible we write E(I) instead of E<L
(I). We have, by 2.3.2,

E(I) + N2n = E(I) and as we prove in 1.4.6 we have:

Proposition 2.3.3. — Let E ⊂ N2n be such that E + N2n = E. Then there is a finite
subset F ⊂ E such that E = ∪(α,β)∈F ((α, β) + N2n).

Definition 2.3.4. — Let I be a non zero ideal of R. We call any family P1, . . . , Pm of
elements in I such that E(I) = ∪mi=1(expL(Pi) + N2n), a standard basis of I, relative
to L (or an L-standard basis of I)

Remarks

1) There always exists a standard basis of I by definition of E(I) and 2.3.3.
2) In the case of An we can also consider the L-Bernstein filtration, and the fol-

lowing ordering similar to the one given in the preceding chapter up to the change of
n into 2n:

(α, β) <L (α′, β′) if and only if
{
L(α, β) < L(α′, β′)
or L(α, β) = L(α′, β′) and (α, β) < (α′, β′)

2.4. More divisions. — The statements below narrowly follow those in the pre-
ceding chapter and we shall only give the proofs of the points specific to the case of
the operators.

With each m-uple ((α1, β1), . . . , (αm, βm)) of elements of N2n, we associate a par-
tition ∆1, . . . ,∆m,∆ of N2n in the same way as in chapter I. We set:

∆1 = (α1, β1) + N2n, ∆i+1 = ((αi+1, βi+1) + N2n) r (∆1 ∪ · · · ∪∆i) if i > 1,

∆ = N2n r (∪mi=1∆
i).

Theorem 2.4.1. — Let (P1, . . . , Pm) be an m-uple of non zero elements of R and let
∆1, . . . ,∆m,∆ be the partition of N2n associated with (exp(P1), . . . , exp(Pm)). Then,
for any P in R, there is a unique (m + 1)-uple (Q1, . . . , Qm, R) of elements in R,
such that:

(1) P = Q1P1 + · · ·+QmPm +R.
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(2) exp(Pi) + N (Qi) ⊂ ∆i, i = 1, . . . ,m.
(3) N (R) ⊂ ∆.

Proof. — Uniqueness can be proved as in the commutative case. For existence, we
consider σL2(P ) and σL2(Pi) as elements of k[X, ξ] (resp. k[[X, ξ]], or k{X, ξ}),
which are L2-homogeneous with respect to the variable ξ. Let us write the division
in the sense of chapter I, in any of the three cases:

σL2(P ) =
m∑
i=1

qiσ
L2(Pi) + r,

the qi(X, ξ) and r(X, ξ) being polynomials and L2-homogeneous with respect to
variables ξ (since the coefficients of L2 are strictly positive). Suppose that d =
ordL2(P ) and that di = ordL2(Pi). Then the degrees of the quotients and of the
remainder are given by the relations:

ordL2(qi) = d− di, or qi = 0, ordL2(r) = d or r = 0.

Let then Qi and R be the obvious operators such that qi = σL2(Qi) and r = σL2(R)
(for example if qi =

∑
L2(β)=d−di

a(α,β)X
αξβ , Qi =

∑
L2(β)=d−di

a(α,β)X
α∂β).

Then the operator P ′ = P −
∑m
i=1QiPi −R is of L2-order strictly smaller than d.

We remark that the Qi and R have the properties 2) and 3) above since qi and r have
the corresponding properties and exp(Pi) = exp(σL2(Pi)).

We end the proof by an induction (finite since the coefficients of L2 are > 0) on
the L2-order.

Remark. — The element Qi in the theorem is called the i-th quotient and R is called
the remainder of the division of P by (P1, . . . , Pm). The remainder will be denoted
by R(P ;P1, . . . , Pm).

Remark. — It follows from the proof that for any division P = Q1P1+· · ·+QmPm+R
as in the theorem we have max{maxi{expL(QiPi)}, expL(R)} = expL(P ) and as a
consequence max{maxi{ordL2(QiPi)}, ordL2(R)} = ordL2(P ).

Remark. — We have a similar (and simpler to prove) division theorem in the ring
grL2(R) = B[ξ]. We let the reader state (and prove) a division theorem in An,
relative to the L-Bernstein filtration. See [14].

Corollary 2.4.2. — Let I be a non zero ideal of R (or grL2(R)) and let P1, . . . , Pm be
a family of elements of I. The following conditions are equivalents:

1) P1, . . . , Pm is a standard basis of I.
2) For any P in R, we have: P ∈ I if and only if R(P ;P1, . . . , Pm) = 0.

Corollary 2.4.3. — Let I be a non zero ideal of R (or grL2(R)) and let P1, . . . , Pm be
a standard basis of I. Then P1, . . . , Pm is a system of generators of I.

These two statements can be proved exactly as in the commutative case.
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Remark. — Let I be an ideal of R. Then {P1, . . . , Pm} is a standard basis of I if and
only if {σ(P1), . . . , σ(Pm)} is a standard basis of grL2(I).

2.5. The calculation of a standard basis and its applications. — Let P1, P2

be two operators with privileged exponents (α1, β1), (α2, β2). As in chapter I, we call
the semisyzygy of P1, P2 the operator M1P1 −M2P2 = S(P1, P2) where M1,M2 are
two monomials whose exponents ν1, ν2 are such that ν1 + (α1, β1) = ν2 + (α2, β2)
and minimal for this property and furthermore such that the leading coefficients
satisfy c(M1)c(P1) = c(M2)c(P2) so that we get expL(S(P1, P2)) <L expL(M1P1) =
expL(M2P2). We have again:

Proposition 2.5.1. — Let P1, . . . , Pr be a system of generators of the ideal I of R such
that for any (i, j) the remainder of the division of S(Pi, Pj) by (P1, . . . , Pr) is zero.
Then, {P1, . . . , Pr} is a standard basis of the ideal I.

Proof. — We deduce the proof from the result in the commutative case by considering
the σ(Pi) ∈ B[ξ1, . . . , ξn], and by using the fact that Pi and σ(Pi) have the same
privileged exponent. If MiPi −MjPj = S(Pi, Pj) = A1P1 + · · ·+ ArPr is a division,
we have ordL2(AkPk) 6 ordL2(MiPi) = ordL2(MjPj).

We set mi = σ(Mi), ak = σνk
(Ak) where νk = ordL2(MiPi) − ordL2(Ak), and

then we get the relation:

miσ(Pi)−mjσ(Pj) = a1σ(P1) + · · ·+ arσ(Pr).

This is a division in k[X, ξ], k[[X, ξ]] or k{X, ξ} as the case may be. Furthermore,
it is L2-homogeneous, hence in B[ξ].

Thus, {σ(P1), . . . , σ(Pr)} gives a standard basis of the ideal which they generate
in the above rings hence also in B[ξ]. It remains to prove that the σ(Pi)’s generate
gr(I). We consider P ∈ I and we write:

P = A1P1 + · · ·+ArPr (∗)

If ordL2(P ) < δ = max(ordL2(AkPk)), we have a1σ(P1) + · · · + arσ(Pr) = 0, where
ak = σδ−ordL2 (Pk)(Ak).

We deduce from 1.6.4 the fact that in B[ξ], L2-homogeneous relations between the
σ(Pk) are generated by those which come from the divisions of semisyzygies. This
allows us to change the relation (∗) in order to lower δ.

We finally obtain a decomposition (∗) for which δ = ordL2(P ) in which case we
have σ(P ) = a1P1 + · · ·+ arPr ∈ gr(I).

Let I ⊂ R be an ideal given by a system of generators P1, . . . , Ps. The
process that we are going to describe enables us to build a standard basis
(P1, . . . , Ps, Ps+1, . . . , Ps+t) by a finite sequence of divisions. This algorithm is
the analogue for algebraic differential operators of Buchberger’s [13] (see 1.6.3).
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• Assume that (P1, . . . , Ps, Ps+1, . . . , Ps+q) are already built and define Eq =⋃s+q
k=1(exp(Pk) + N2n).
• If there is (i, j) such that the remainder of the division of S(Pi, Pj) by

(P1, . . . , Ps+q) is non zero, let us choose the first of these (i, j) (for the lexico-
graphic ordering) and denote by Ps+q+1 the remainder thus obtained. Thus we have
Eq ⊂ Eq+1 and Eq 6= Eq+1 ⊂ E(I).

• By a Noetherian argument, this process stops and there exists an integer t such
that Es+t = E(I). This can be detected by the lack of a non zero remainder since
then (P1, . . . , Ps, . . . , Ps+t) is a standard basis.

• We can eliminate (one by one) the Pk whose privileged exponents are contained
in the N2n-subset generated by the remaining exponents.

Application 1. The calculation of the characteristic variety of a R-module of type R/I

Proposition 2.5.2. — Let (P1, . . . , Pr) be a L-standard basis of the ideal I of R. Then
the equations of the L2-characteristic variety of R/I are:

σ(P1)(X, ξ) = · · · = σ(Pr)(X, ξ) = 0

Indeed the equations σ(P )(X, ξ) = 0 for all P ∈ I are linear combinations of these
equations.

Application 2. Free resolutions of an R-module of type R/I. — Let (P1, . . . , Pr) be
a standard basis of the ideal I of R. Let S be the module of relations between the
operators Pk. This module is the set of r-uples R = (A1, . . . , Ar) ∈ Rr such that
A1P1 + · · ·+ArPr = 0. We say that R is of order k if k = max(ordL2(AiPi)) and we
set: σk(R) = (σk−d1(A1), . . . , σk−dr

(Ar)).
Let us denote the relations following from the division of semisyzygies by Ri,j and

ri,j = σ(Ri,j).

Proposition 2.5.3. — We have an exact sequence: Dr(r+1)/2 ϕ−→ Dr ψ−→ D → D/I

with:
ψ(Q1, . . . , Qr) = Q1P1 + · · ·+QrPr, ϕ((Ai,j)) =

∑
Ai,jRi,j .

Proof. — This is equivalent to stating that the relations between the P` are generated
by the relations Ri,j . If R is such a relation, σ(R) = r is a homogeneous relation
between the σ(P`), of degree k = ordL2(R). By the commutative analogue (see
1.6.4), we can write r =

∑
λi,jri,j with ord(λi,j) + ki,j 6 k where ki,j = ord(Ri,j).

We choose Λi,j ∈ R such that σ(Λi,j) = λi,j .
Then, R′ = R−

∑
Λi,jRi,j is a relation between the operators P` of L2-order < k.

We conclude by an induction on the L2-order.

Application 3. Elimination of variables in An and intersection of ideals. — Rename
the vector (x1, . . . , xn, ∂1, . . . , ∂n) as (y1, . . . , yn, yn+1, . . . , y2n) and consider new vari-
ables z1, . . . , zn, zn+1, . . . , z2n. Let τ be a permutation of 2n symbols and denote
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zi = yτ(i). Denote by ρ the inverse of τ . Then An is isomorphic to the k-algebra
generated by z1, . . . , zn, zn+1, . . . , z2n with relations [zρ(i), zρ(j)] = 0 (i 6 j) except for
j = i+ n in which case [zρ(i), zρ(j)] = −1.

Let I be a left ideal of An and k be an integer 0 6 k 6 2n− 1. We denote by An,k
the subalgebra of An generated by zk+1, . . . , z2n. We define Ik = I ∩An,k. The (left)
ideal Ik of An,k is the set of operators in I which depend only on zk+1, . . . , z2n. We
write I2n = k ∩ I. The ideal Ik is called the k-th elimination ideal of I. We shall
return later to this definition.

Using the lexicographic ordering on N2n (as in 1.7.1) we can prove the following
results which are similar as well as the proofs to those in 1.7 and 1.8.1.

Lemma 2.5.4. — Let P be an element of An. Then mp<lex
(P ) is in An,k if and only

if P is in An,k.

Theorem 2.5.5. — Let I be a left ideal of An and k an integer such that 0 6 k 6 2n.
Let G be a standard basis of the ideal I relative to the lexicographic ordering. Let
Gk = G ∩An,k. Then we have:

(1) If Gk = ∅ then Ik = (0).
(2) If Gk 6= ∅ then Gk is a standard basis of the ideal Ik relative to the lexicographic

ordering.

Let I, J be two left ideals of An. Let θ be a new indeterminate. We denote by Ie

(resp. Je) the extension of the ideal I (resp. J) to the ring An[θ] (here θ is a central
element). If h is an element of k[θ] we denote by hIe (resp. hJe) the product of the
ideals(10) (h) and Ie (resp. (h) and Je). With these notations we have:

Theorem 2.5.6. — Let I, J be two left ideals of An. Then I∩J = (θIe+(1−θ)Je)∩An.

Remark. — The theory of standard bases can be easily generalized to the case of
sub–modules of RN , see [14]. For that purpose we only have to adapt the notions
of ordering and of privileged exponents to exponents in N2n × {1, . . . , N}. By apply-
ing this to the calculation of a standard basis of ker(ϕ) and then of the successive
kernels, we build a free resolution of any R-module M of finite presentation, whence
for example a realization of the complex of solutions and of the De Rham complex

RH omR(M ,O) and Ωn
L
⊗ M . This is algorithmic in the algebraic case.

2.6. An example: The characteristic cycle of O[1/f ] for a quasihomo-
geneous f in two variables.— In this example we are dealing with the form
L2(i, j) = i + j. In this case and more generally in the case of the diagonal form
L2 on Qn, we refer to [25, 19] for the definition of the multiplicity at a point of
the cotangent space. The characteristic cycle of a coherent D-module is the linear

(10)these are ideals of the ring An[θ]
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combination of the irreducible components of the characteristic variety, each counted
with its multiplicity at a generic point.

Let f ∈ C[x, y] be a quasi-homogeneous polynomial. We denote by w1 and w2 the
weights of variables and by χ the Euler vector field:

χ = w1x∂x + w2y∂y

We have χ(f) = f . We verify that O[1/f ] = D · 1
f , because the Bernstein polynomial

of f has no 6 −2 integer root (see [31]). It is easier to deal with the quotient O[1/f ]/O
and we find that the annihilator ideal of its generator c`( 1

f ) is the ideal generated by
the following three operators:

• P1 = f ′y∂x − f ′x∂y
• P2 = w1x∂x + w2y∂y + 1(= χ+ 1)
• P3 = f

Let us first consider the case

f = yp + c1x
q1yp−p1 + · · ·+ ckx

kq1yp−kp1 + · · ·

with q1 > p1 > 1, p = 0 or 1(mod p1) and w2 = 1/p, q1w1 = p1w2.
In this situation we verify by computing the semisyzygies that {P1, P2, P3} is a

standard basis for the ordering (of series type) associated with L(j, i, β, α) = j + i+
α+β the monomial with the same L-order being further ordered by y > x > ∂y > ∂x.

The privileged exponents are respectively: (p− 1, 0, 0, 1), (0, 1, 0, 1), (p, 0, 0, 0).
By applying 1.9 we can compute the multiplicity at the origin of O[1/f ]/O which is

therefore (p−1)+0+p+0+0+0 = 2p−1. The characteristic cycle has the following
form: sT ∗0 (C2) + 1.T ∗f−1(0)(C

2) for some integer s. The multiplicity of f−1(0) at the
origin being p we get from this 2p− 1 = s+ 1.p, or: s = p− 1.

For the case f = x · g, where g is a polynomial as in the previous case we refer
to [9].

3. Generalized division theorems. The calculation of slopes

The reference for this chapter is [2] for the case of the Weyl algebra. We denote
by R any of the rings An, Dn or D̂n.

3.1. Orders and filtrations with respect to a smooth hypersurface.

Let Y be a hypersurface of Cn defined by x1 = 0. Given a linear form L(a, b) =
pa + qb on Q2 (with non negative and relatively prime integer coefficients p, q), we
define the L-order along Y of P = P (x, ∂) in R denoted by ordL(P ), as the maximum
of L(|β| , β1 −α1) for (α, β) in the Newton diagram of P . To shorten we write here x
instead of X and ∂ instead of ∂.
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Notice that here L is a linear form on Q2 whereas in the previous chapters this
letter was used to denote a linear form on Q2n whose part is now taken by:

L̃(α, β) = L(|β| , β1 − α1) = (p+ q) |β| − q(β2 + · · ·+ βn + α1).

Let FL,•(R) be the filtration induced by the L-order on R i.e. FL,k is the set of
operators P such that ordL(P ) 6 k. Let F (resp. V ) denote the filtration associated
with the linear form L(a, b) = a (resp. L(a, b) = b). By extension we also write F
(resp. V ) for the corresponding linear forms. If L 6= F, V the graded ring associated
with this filtration

grL(R) =
⊕
k∈Z

FL,k(R)/FL,k−1(R)

is isomorphic to one of the graded commutative rings C[x, ξ] = C[x1, . . . , xn, ξ1, . . . , ξn]
or C{x2, . . . , xn}[x1, ξ1, . . . , ξn] or C[[x2, . . . , xn]][x1, ξ1, . . . , ξn] where the degree of the
monomial xαξβ is L(|β| , β1 − α1). If L = F , the filtration FL,• is the filtration by
the order of operators. The graded ring grV (R) is isomorphic to one of the rings An,
C{x2, . . . , xn}[x1, ∂1, . . . , ∂n] or C[[x2, . . . , xn]][x1, ∂1, . . . , ∂n] where the degree of the
monomial xα∂β is β1 − α1.

Given an ideal I of R let grL(I) be the graded ideal associated with the filtration
induced by FL,• on I. The ideal grL(I) is generated by the set {σL(P ) | P ∈ I} where
σL(P ) is the principal symbol of P with respect to L. By definition, if L 6= V ,

σL(P ) =
∑

L(|β|,β1−α1)=ordL(P )

pα,βx
αξβ .

If L is the form V , the symbol of P with respect to V is the differential operator

σV (P ) =
∑

β1−α1=ordV (P )

pα,βx
α∂β .

Notice that for L 6= V , (α, β) → L(|β| , β1 − α1) is a linear form whose coefficients
on the βi are all strictly positive. What follows works in the same way for any
family of linear forms of this type for which the variables αi having non-positive
coefficients are fixed and for which ordL([P,Q]) < ordL(P )+ordL(Q) whence grL(R)
is commutative. We shall not write this generalization. In the case of an ideal of An,
the following lemma shows how to deal with the ideal generated by I in Dn (or in
D̂n) and conversely:

Lemma 3.1.1. — Let I be an ideal in An. Then grL(DnI) = grL(Dn) grL(I).
More precisely, if F = {P1, . . . , Pr} is a system of generators of I such that
G = {σL(Pi)}ri=1 generates grL(I), then G generates grL(DnI) over grL(Dn).

Remark. — We shall see later that such a family F can be calculated effectively
starting from a system of generators of the ideal I.

Proof. — See [2]. The same result is valid in D̂n.
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3.2. Privileged exponents. — As in 2.3 let < be a well ordering, compatible with
the sum, in N2n (i.e. a well ordering such that (α+ α′′, β + β′′) < (α′ + α′′, β′ + β′′)
if and only if (α, β) < (α′, β′)) and let Λ be a linear form on Q2n with non negative
coefficients and such that Λ2 := Λ|{0}×Qn have strictly positive coefficients. We shall
use the ordering <Λ (2.3) in the following definition.

Definition 3.2.1. — Let L be a linear form on Q2, with non negative integer coeffi-
cients. We define on N2n the total ordering (denoted <L) by:

(α, β) <L (α′, β′) ⇐⇒


L(|β| , β1 − α1) < L(|β′| , β′1 − α′1)

or
{
L(|β| , β1 − α1) = L(|β′| , β′1 − α′1)
and (α, β) <Λ (α′, β′)

Remark. — Because of <Λ this definition must be read in a different way for An and
for Dn or D̂n.

For any d ∈ Z, the restriction of <L to the set {(α, β) | L(|β| , β1 − α1) = d} is a
well ordering in the case of An and this is not the case for Dn or D̂n.

Definition 3.2.2. — Let L be a linear form on Q2 with non-negative coefficients, and
P ∈ R. The element of N2n max<L

{N (P )} (where N (P ) is the Newton diagram of
P ) is called the L-privileged exponent of P ∈ R (and we denote it by expL(P )). We
write exp(P ) when no confusion is possible.

The privileged exponent of P ∈ An seen as an element of Dn (or of D̂n) is different
from the one first defined. This second definition gives quotients and remainders
which are elements of Dn even when starting from elements of An in the division
theorems that we are going to state.

We can also remark that in any case expL(P ) = expL(σL(P )), where the second
privileged exponent is taken in the sense of polynomials or of power series in the
variables (x, ξ) for a convenient ordering.

We have again:

Lemma 3.2.3. — Let Q,P be elements of R. We have:

(1) exp(Q · P ) = exp(Q) + exp(P ).
(2) If exp(Q) 6= exp(P ) then exp(P +Q) = max<L

{exp(P ), exp(Q)}.
(3) If exp(Q) = exp(P ) and if c(P ) + c(Q) 6= 0 then exp(P + Q) = exp(P ) and

c(P +Q) = c(P ) + c(Q).
(4) If exp(Q) = exp(P ) and if c(P ) + c(Q) = 0 then exp(P +Q) <L exp(P ).

Let I be an ideal of R. We denote the set {expL(P ) | P ∈ I} by EL(I) (or simply
by E(I) when no confusion is possible). By 3.2.3, EL(I) + N2n = EL(I).
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Definition 3.2.4. — Let I be an ideal of R. A family {P1, . . . , Pr} of elements of I is
called a standard basis (relative to the order <L, or an L-standard basis) of I if

EL(I) =
r⋃
i=1

(expL(Pi) + N2n).

Unlike what happens in Chapters I and II, a standard basis of an ideal I of R is
not necessarily a system of generators of I. However we have the following result:

Lemma 3.2.5. — Let F = {P1, . . . , Pr} be a system of generators of an ideal I of R.
If F is an L-standard basis of I then :

(1) {σL(P1), . . . , σL(Pr)} is a system of generators of grL(I).
(2) If, furthermore EV (grL(I)) = ∪ri=1(expV (σL(Pi)) + N2n) (resp. EF (grL(I)) =

∪ri=1(expF (σL(Pi))+N2n)), then the family {σV (σL(Pi))}ri=1 (resp. {σF (σL(Pi))}ri=1)
generates grV (grL(I)) (resp. grF (grL(I))).

Proof. — By definition we have

EL(I) = EL(grL(I)) = E<Λ(grL(I))

because, for any P ∈ R we have in fact expL(P ) = expL(σL(P )) = exp<Λ
(σL(P )).

Thus the first part of the lemma follows from the commutative case of 2.4.3 applied
to <Λ.

3.3. Homogenisation. Orderings in N2n+1 and division theorems in R[t]

Following the idea of the preceding lemma we can write a division step P ′ =
P −

∑r
i=1QiPi −R such that the L-order of the operator P ′ is strictly smaller than

the order of P . But the degree of P ′ with respect to the derivatives can increase. Thus
if we continue this process we have not only to face the question of the convergence of
power series but also the fact that we cannot stay in the frame of finite order operators.
To avoid this problem we introduce a division process on appropriate homogeneized
operators which allows the construction of an L-standard basis for an ideal I in R.

We set R[t] = R ⊗C C[t]. If P =
∑
α,β pα,βx

α∂β (resp. P =
∑
β fβ∂

β) is an

element of An, (resp. Dn or D̂n) we call the integer max{|α| + |β| | pα,β 6= 0}
(resp. max{|β| | fβ 6= 0}) the total order of P (resp. order of P ), and we denote it by
ordT (P ) (resp. ord(P )) .

In the same way as for R we define the notion of the Newton diagram of an operator
in R[t].

Definition 3.3.1. — Let P =
∑
α,β pα,βx

α∂β ∈ An. Then the differential operator

h(P ) =
∑
α,β

pα,βt
ordT (P )−|α|−|β|xα∂β ∈ An[t],

is called the homogenisation of P .
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Definition 3.3.2. — Let P =
∑
β fβ∂

β ∈ Dn or D̂n. Then the differential operator

h(P ) =
∑
β

fβt
ord(P )−|β|∂β ∈ Dn[t] (or D̂n[t])

is called the homogenisation of P .

We define an ordering on N2n+1 denoted by ≺L, in the following way:

• In the case of An[t]

(k, α, β)≺L(k′, α′, β′) ⇐⇒


k + |α|+ |β| < k′ + |α′|+ |β′|

or
{
k + |α|+ |β| = k′ + |α′|+ |β′| and
(α, β) <L (α′, β′)

This ordering on N2n+1 is a well ordering compatible with sums.
• In the case of Dn[t] or D̂n[t]

(k, α, β)≺L(k′, α′, β′) ⇐⇒


k + |β| < k′ + |β′|

or
{
k + |β| = k′ + |β′| and
(α, β) <L (α′, β′)

We can again define the notion of a privileged exponent and the usual properties
hold.

Definition 3.3.3. — Let H =
∑
k,α,β hk,α,βt

kxα∂β be an element of R[t]. Then the
greatest element, with respect to the total order ≺L, of the Newton diagram of H
is called the privileged exponent of H relative to ≺L and is denoted by exp≺L

(H).
The monomial of H whose exponent is equal to the privileged exponent is called
the initial monomial of H and is denoted by In≺L

(H). The coefficient of the initial
monomial of H is called the initial coefficient of H and is denoted by c≺L

(H). We
write exp(H), In(H) and c(H) when no confusion is possible.

Lemma 3.3.4. — For all Hi in R[t], P and Q in R, the following relations hold (where
exp denotes the exponent either for ≺L or for <L):

(1) exp(H1H2) = exp(H1) + exp(H2).
(2) If exp(H1) 6= exp(H2) then exp(H1 +H2) = max≺L

{exp(H1), exp(H2)}.
(3) If exp(H1) = exp(H2) and if c(H1) + c(H2) 6= 0 then exp(H1 +H2) = exp(H1)

and c(H1 +H2) = c(H1) + c(H2).
(4) If exp(H1) = exp(H2) and if c(H1)+c(H2) = 0 then exp(H1+H2)≺L exp(H1).
(5) exp(h(QP )) = exp(h(Q)h(P )).
(6) π(exp(h(P ))) = exp(P ), where π : N2n+1 = N2n × N → N2n is the natural

projection.

Given an r-uple (P1, . . . , Pr) of Rr we define as usual a partition of N2n+1:

∆1 = (exp(h(P1)) + N2n+1, ∆i = ((exp(h(Pi)) + N2n+1) r (
⋃i−1
j=1 ∆j) if 2 6 i 6 r

∆ = N2n+1 r (
⋃r
j=1 ∆j).
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Theorem 3.3.5. — Let (P1, . . . , Pr) be in Rr. Let {∆1, . . . ,∆r,∆} be the partition of
N2n+1, associated with (exp(h(P1)), . . . , exp(h(Pr))). Then, for any H ∈ R[t] there
exists a unique element (Q1, . . . , Qr, R) in R[t]r+1 such that:

(1) H = Q1h(P1) + · · ·+Qrh(Pr) +R.
(2) exp(h(Pi)) + N (Qi) ⊂ ∆i and exp(Qih(Pi))�L exp(H) for 1 6 i 6 r.
(3) N (R) ⊂ ∆ and exp(R) �L exp(H).

Proof. — In the case of An[t] the proof is standard since ≺L is then a well ordering.
In the case of Dn[t] or D̂n[t], we notice that exp(H) is equal to the privileged

exponent of the total symbol σT (H) of H, associated with the filtration by the order
T = k+ |β|. The graded ring associated with this filtration is C{x}[ξ][t] or C[[x]][ξ][t].
In this ring we can carry out the division of σT (H) by the σT (h(Pi)) = h(Pi). In
fact, this is a division in the ring of power series C{x, ξ, t} or C[[x, ξ, t]], but it is T -
homogeneous and so polynomial over the variables (ξ, t). We can lift the quotients and
the remainders to operators Q(1)

i , R(1) having the required properties with respect to
the partition of N2n+1 so that we find H ′ = H −

∑
Q

(1)
i h(Pi) − R(1) of total order

smaller than the one of H. We obtain the existence of the division by an induction
on the total order. Uniqueness is treated as before.

3.4. Semisyzygies and a criterion for standard bases

Definition 3.4.1. — Let G1, G2 be elements of R[t]. Let S(G1, G2) = M1G1 −M2G2

be the operator, defined up to a multiplicative constant c ∈ C∗ and characterized by
the following conditions:

(1) Mi is a monomial with exponent νi
(2) µ = ν1 + exp≺L

(G1) = ν2 + exp≺L
(G2)

(3) Any µ′ having the two properties above is in µ+ N2n+1

(4) exp≺L
(S(G1, G2))≺L µ.

We call it the semisyzygy relative to (G1, G2).

Theorem 3.4.2. — Let F = {P1, . . . , Pr} be a system of generators of the ideal I
of R such that, for any (i, j), the remainder of the division of S(h(Pi), h(Pj)) by
(h(P1), . . . , h(Pr)) is equal to zero, modulo (t − 1)R[t]. Then F is an L-standard
basis of I.

Proof. — We shall only sketch the proof by referring to [2] where the case of An is
treated and explain what happens for Dn or D̂n. Let ∆ =

⋃r
i=1(exp(Pi) + N2n). We

have to prove that EL(I) ⊂ ∆. Let P ∈ I. We write it P =
∑r
i=1QiPi. Let us set:

• di = ordT (QiPi), d = maxi=1,...,r{di}, δ = ordT (P ) 6 d,
• µi = exp≺L

(h(Pi)), νi = exp≺L
(h(Qi)h(Pi)),

• (α0, β0) = maxi=1,...,r{expL(QiPi)}.
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Let {i0, . . . , is} be the indices i at which the maximum (α0, β0) is reached. If s = 0
then exp(P ) = exp(Qi0Pi0) ∈ ∆. Therefore we can assume s > 1. By writing

td−δh(P ) =
r∑
i=1

td−dih(Qi)h(Pi) mod.(t− 1)R[t],

and by using the division of S(h(Pi0), h(Pi1)), without a remainder modulo (t − 1),
we find a new decomposition of P : P =

∑r
i=1Q

′
iPi, where the Q′

i have the following
properties:

(1) max<L
{expL(Q′

iPi) | i = 1, . . . , r} 6L (α0, β0)
(2) expL(Q′

i0
Pi0) <L (α0, β0)

The proof goes then by an induction, after remarking that |α|+ |β| in the case of An[t]
or |β| in the case of Dn[t] (or D̂n[t]) is bounded for (α, β) in the Newton diagrams of
the successive Qi. The case of An[t], treated in [2], is then immediate.

The case of Dn[t] (or D̂n[t]) is slightly more complicated: Since |β| is bounded,
say by K, α1 cannot increase indefinitely with a constant L(|β| , β1 − α1), in the
transformation of the decomposition of P described above. Therefore when we repeat
the process a sufficient number of times we can obtain for any N ∈ N a decomposition
of P where the coefficients of Qi of L-order equal to L(

∣∣β0
∣∣ , β0

1−α0
1)−ordL(Pi), are in

the ideal (x2, . . . , xn)N of C{x2, . . . , xn}. By applying the theorem of Krull (see e.g. [5,
Corollary 10.18]) to the C{x2, . . . , xn}-module generated by the operators xα1

1 ∂βPi,
for i = 1, . . . , r, |β| 6 K and L(|β| , β1−α1) = L(

∣∣β0
∣∣ , β0

1 −α0
1)−ordL(Pi), we obtain

a new decomposition of P where the L-order has strictly decreased, in the case where
ordL(P ) > L(

∣∣β0
∣∣ , β0

1 −α0
1). When we have the equality ordL(P ) = L(

∣∣β0
∣∣ , β0

1 −α0
1),

the same argument allows us to end at the case where expL(P ) = (α0, β0).

According to the theorem 3.4.2 one might try to build a standard basis in the
following way: If P1, . . . , Pr are generators of I and if Hi = h(Pi), assume that
there is a S(Hi,Hj) which gives, in a division by H1, . . . ,Hr, a remainder R 6= 0
(mod (t − 1)R[t]). One might expect by adding the new element R|t=1 = P of I to
the list of generators, to start a process of constructing a standard basis.

The trouble is that R is not homogeneous in general and therefore is different
from h(P ). Possibly h(P ) does not create a new exponent in N2n+1. We solved this
problem in [2] by using a technical trick. We divide again h(P ) by H1, . . . ,Hr and
by iterating this we get at the end either a new exponent in N2n+1 or a remainder
in (t − 1)R[t]. This gives an algorithm for constructing an L-standard basis by an
appropriate modification of the theorem 3.4.2.

As L.Narváez pointed out to us, there is another way to get an algorithm. We put
on R[t] another structure given by [∂i, xi] = t2 for An[t] and [∂i, a(x)] = (∂a/∂xi)t for
Dn[t] which is the Rees ring for the Bernstein or for the order filtration. We denote
this ring by R̃[t]. There exists a non commutative graded division on this ring [3]
and [4]. We get a standard basis of I directly from a standard basis of

∑
R̃[t]h(Pi).
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Remark. — In some cases (see in particular the examples below), it may happen that
the semisyzygies in R, give a finite division process without having to homogenize.
In this case if the remainders of all the divisions are zero we can again apply the same
result and assert that we have an L-standard basis in the following situation: It is
enough to verify that for a convenient choice of an order <, each privileged exponent
of an element of the basis is, among the monomial of maximal L-order, one of those
which have the highest degree |α|+|β| or |β| according to the case under consideration.

3.5. The determination of slopes. — As explained in the introduction, the slopes
of a D-module, defined algebraically by Y. Laurent in [22] (see also below) are closely
related to the irregularity sheaf of this module. The slopes are, according to Laurent
and Mebkhout [23], the degrees of the non zero graded parts of this filtration. We may
also remark that these slopes control the growth rates of the exponential parts of the
solutions. The calculation of the slopes is therefore an important aspect of an effective
approach to D-module theory. This was the aim of the paper [2] whose results we
recall below, at the same time as we develop some examples in the subsequent section.

The ring grL(R) if L 6= F, V has a graduation with respect to F and another with
respect to V .

Definition 3.5.1(After Y. Laurent [22]). — Let I be an ideal of R and let L 6= F, V

be a linear form as before. We say that L is a slope of Dn/I if the ideal
√

grL(I)
is not (F, V )-bihomogeneous. We call the variety defined by the ideal grL(I) the
L-characteristic variety of R/I and we denote it by CharL(R/I).

Definition 3.5.2. — With I as above, if grL(I) is not (F, V )-bihomogeneous we say
that L is an idealistic slope of I.

Remark. — There are idealistic slopes which are not slopes in the sense of Laurent:
see example 1 below. In [2] only the idealistic slopes are treated which is the hard
part of the algorithm that follows.

The determination of slopes can be done in the same way in An Dn or D̂n. We
refer to the paper [2], for the details, and simply recall here some points.

Lemma 3.5.3. — Let I be an ideal of R, and L 6= V (resp. L 6= F ). Then, there exists
a linear form L(1) (resp. L(2)), such that for any linear form L′ having an interme-
diate slope, i.e. slope(L) < slope(L′) < slope(L(1)) (resp. slope(L) > slope(L′) >
slope(L(2))) we have grL

′
(I) = grV (grL(I)) (resp. grL

′
(I) = grV (grL(I))).

By a compactness argument this implies the finiteness of the number of idealistic
slopes. An L-standard basis of I still remains to be determined in order to write the
equations σL(Pi)(x, ξ) = 0 of the L-characteristic variety and then equations of the
reduced variety. This allows us to determine among these L those which are slopes
in the sense of Y. Laurent.
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Recall, to end this chapter, the process which allows us to determine these idealistic
slopes. Of course this is an algorithm only in the case of An.

• We determine an L-standard basis {P1, . . . , Pr} of I where L is F or a previously
determined slope. We make sure that it is also a V -standard basis of grL(I).

• We determine the form L(1) with minimal slope > slope(L) such that one of the
σL

(1)
(Pi) is not bihomogeneous. Precisely L(1) is the linear form with smallest slope

greater than slope(L) appearing in the (F, V )-Newton diagram of the operators Pi.
• By a finite division process we can decide whether one of the bihomogeneous

components of one of the σL
(1)

(Pi) is not an element of grL
(1)

(R). In this case L(1) is
a new idealistic slope. In the other case we can modify Pi in order to eliminate L(1),
and obtain a basis which is standard for L and for L(1). We prove in [2] that this
type of cancellation can happen only a finite number of times before we come upon a
new slope or upon V .

3.6. Examples of calculations of slopes

Example 1. — In this example we consider the direct image of the DC-module
DCe

1/vk

, by an immersion in C2 and the slopes relative to a hypersurface tangent
to the support. The advantage of this example is that we can carry out all the
calculations in many cases and that it shows idealistic slopes which are not slopes.
For k ∈ N we write:

M = DCe
1/vk

' DC

DC(vk+1∂v + 1)
, N = i+M ' DC2

DC2(vk+1∂v + 1) + DC2u

where i is the immersion C → C2 given by i(v) = (0, v). We want to calculate the
slopes of N along the curve vm + u = 0.

We carry out the change of variables: u = x− ym, v = y. We have: ∂u = ∂x, ∂v =
∂y +mym−1∂x. We then find that N is the quotient of DC2 by the ideal I generated
by the following operators:

• P ′
1 = yk+1∂y +myk+m∂x + 1

• P2 = ym − x

We then have to look at the slopes along x = 0. In what follows we say that the slope
is −p/q if L(a, b) = pa+ qb.

Subexample 1.1: m = 1. — We find the slope −k. We are in the same situation as
for the calculation of the slope of N along v = 0. This is also a particular case of the
following.

Subexample 1.2: k = mp. — We then find the slope −p. We have:

P ′
1 = ymp+1∂y +mym(p+1)∂x + 1 = (y∂y −mp)ymp +m∂xx

p+1 + 1

= (y∂y −mp)xp +mxp+1∂x +m(p+ 1)xp + 1 (mod DP2)

This gives the presentation of N :
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• P1 = mxp+1∂x + xpy∂y +mxp + 1
• P2 = ym − x

We choose the ordering <F for which the variables are ordered as follows: ∂x > ∂y >

y > x. We then find that (P1, P2) is an F -standard basis. Indeed the remainder of
the division of:

S(P1, P2) = ymP1 −mxp+1∂x

by {P1, P2} is zero. In this standard basis the privileged exponent of Pi is also the
privileged exponent of σV (σF (Pi)), so that by looking at P1 we can say that the −p
is an idealistic slope. For that we verify that σL(P1) = mxp+1ξ + xpyη + mxp + 1
is not bihomogeneous (11). This last result comes for example from the fact that
1 /∈ grV (grF (I)) (N 6= 0).

There is no other slope because for any L′ of slope > −p, grL
′
(I) = (1).

Subexample 1.3: m = 2 and k = 2n− 1. — By changing P ′
1 = y2n∂y + 2y2n+1∂x + 1

modulo P2 = y2 − x, as in the preceding subexample, we find I = DP1 + DP2, with:
P1 = 2xny∂x + xn∂y + 1.

The first semisyzygy S(P1, P2) = yP1 − 2xn∂xP2 divided by {P1, P2} gives a re-
mainder P3 whence the following generators for I:

• P1 = 2xny∂x + xn∂y + 1
• P2 = y2 − x

• P3 = 2xn+1∂x + xny∂y + y + 2xn

We find that the remainders of the divisions of S(P1, P3) = xP1 − yP3 and
S(P2, P3) = −2xn+1∂xP2 + y2P3 by {P1, P2, P3} are zero. Thus this is an F -standard
basis which is also as in the preceding subexample a V -basis of grF (I). Let L be the
linear form corresponding to the first eventual slope, the slope −n.

We have σL(P3) = 2xn+1ξ+xnyη+y. It is impossible that y ∈ grV (grF (I) because
I would contain the two elements of order 0, y2 − x and y + xφ(x, y) and N would
be supported by the origin.

Thus we have pointed out an idealistic slope of the ideal I. It is not a slope of
DC2/I because the equations of the L-characteristic variety are:

• σL(P1) = 2xnyξ = 0
• σL(P2) = y2 = 0
• σL(P3) = 2xn+1ξ + xnyη + y = 0

and the associated reduced variety is bihomogeneous with equations y = xξ = 0. Let
us set Fi = σL(Pi) and look for a V -standard basis of grL(I).

Let us remark that the privileged exponent of F3 has changed and is now the
monomial y. The semisyzygy S(F1, F3) = −F1 + 2xnξF3 gives the remainder: F4 =
4x2n+1ξ2 + 2x2nyξη, and we find that all the other remainders are zero, so that

(11)Here L is the linear form of slope −p
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{F1, F2, F3, F4} is a V -standard basis of grL(I). We can lift the preceding semisyzygy
in D , as −P1 + 2xn∂xP3, and this gives the operator:

P4 = 4x2n+1∂2
x + 2x2ny∂x∂y + 4(n+ 2)x2n∂x + 2nx2n−1y∂y − xn∂y + 4nx2n−1 − 1.

The family {P1, P2, P3, P4} is therefore a system of generators of I which gives a
standard basis of grV (grL(I)) and by P4 we point out the linear form L′ of slope
−(n−1/2). By the algorithm above, it is enough to verify that σL

′
(P4) = 4x2n+1ξ2 +

2x2nyξη− 1 is not in grV (grL(I)), which amounts to find out that 1 /∈ grV (grL(I)) =
(2xnyξ, y2, y, 4x2n+1ξ2 + 2x2nyξη).

Finally, there is no other slope because for any form L′′ of slope > −(n− 1/2) we
have 1 = −σL′′(P4) ∈ grL

′′
(I).

Example 2: De1/(y
p−xq) (with G.Brevet). — To apply our algorithm to the determi-

nation of the slopes of the D-module generated by e1/(y
p−xq), it is necessary to know

the annihilator in D of the function e1/(y
p−xq). The answer to this last question was

given by J. Briançon and Ph. Maisonobe in [12] in the more general case where f is
quasi-homogeneous with an isolated singularity. The annihilator is:

D(fχ+ 1) + D(
∂f

∂x

∂

∂y
− ∂f

∂y

∂

∂x
)

where χ is a vector field such that χ(f) = f . Thus we have:

I = AnnD(e1/(y
p−xq)) = D(P1, P2)

with

P1 = pyp−1∂x + qxq−1∂y, P2 = qyp+1∂y − pxq+1∂x − 2qxqy∂y + pq

Furthermore, we take as an L-ordering (where L is a linear form on Q2 with rational
positive coefficients) the ordering on N4 defined as follows:

(i, j, α, β)<L(i′, j′, α′, β′) ⇐⇒



L(α+ β, α− i) < L(α′ + β′, α′ − i′)
or L(α+ β, α− i) = L(α′ + β′, α′ − i′) and
i+ j > i′ + j′

or


L(α+ β, α− i) = L(α′ + β′, α′ − i′),

i+ j = i′ + j′

and (α, β, j, i)<lex(α′, β′, j′, i′)

1. The calculation of a standard basis of I for the form L = F . — If q > p, we have:
mpF (P1) = pyp−1∂x and mpF (P2) = qyp+1∂y. Let us set then ∆1 = (0, p−1, 1, 0)+N4

and ∆2 = ((0, p + 1, 0, 1) + N4) r ∆1. The syzygy relative to P1 and P2 is equal to:
S(P1, P2) = qy2∂yP1 − p∂xP2. The remainder of the division gives a third operator

P3 = p2xq+1∂x
2 + 2pqxqy∂x∂y + q2xq−1y2∂y

2

+ p2(q + 1)xq∂x + q2(p+ 1)xq−1y∂y − p2q∂x.

Proposition 3.6.1. — For 2 6 p < q, {P1, P2, P3} is an F -standard basis of I.
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Proof. — We have mpF (P3) = p2xq+1∂x
2 and ∆3 = ((q+1, 0, 2, 0)+N4)r (∆1∪∆2).

We then have to prove that the remainders of the divisions by (P1, P2, P3) of the
semisyzygies S(P1, P3) and S(P2, P3) are zero.

We find first:

S(P1, P3) = pxq+1∂xP1 − yp−1P3

= (p2xq+1yp−1∂x
2 + pqx2q∂x∂y + pq(q − 1)x2q−1∂y)

−
(
p2xq+1yp−1∂x

2 + 2pqxqyp∂x∂y + q2xq−1yp+1∂y
2 + p2(q + 1)xqyp−1∂x

+ q2(p+ 1)xq−1yp∂y − p2qyp−1∂x
)

= · · · = ((pq − 2q − p)xq − 2qxqy∂y + pq)P1 − qxq−1∂yP2.

Let us denote by Q1 = (pq − 2q − p)xq − 2qxqy∂y + pq the quotient relative to P1 in
this division.

We must now deal with the semisyzygy S(P2, P3) = p2xq+1∂x
2P2 − qyp+1∂yP3.

Instead of directly applying the division algorithm we are going to use the above
equalities:

yp−1P3 = Q1P1 + qxq−1∂yP2

p∂xP2 = (qy2∂y − (p− 1)qy)P1 − P3

and we denote by Q′
1 = qy2∂y − (p− 1)qy the quotient relative to P1.

Thus we have on one hand:

qy2(∂yyp−1 − (p− 1)yp−2)P3 = (qy2∂y − (p− 1)qy)yp−1P3

= (qy2∂y − (p− 1)qy)(Q1P1 + qxq−1∂yP2)

and the obtained quotients for P1 and P2 are allowed for the division. We have, on
the other hand:

p2xq+1∂2
xP2 = pxq+1∂x(Q′

1P1 − P3)

and the obtained quotients are allowed for the division. This shows that S(P2, P3)
has by division a zero remainder.

2. The calculation of the slopes. — Let us draw first the Newton polygons associated
with the operators P1, P2, P3:

6V

-F(1,0)
•

(1,−q+1)•

N (P1)

6V

-F(1,0)
••

(1,−q)•

N (P2)

6V

-F

(1,1)

B
B
B
B

•

(2,−q+1)• •

N (P3)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004



124 F.J. CASTRO-JIMÉNEZ & M. GRANGER

Since {P1, P2, P3} is an F -standard basis of I and a system of generators of I, the
ideal grF (I) is generated by the principal symbols

σF (P1) = pyp−1ξ + qxq−1η

σF (P2) = qyp+1η − pxq+1ξ − 2qxqyη

σF (P3) = p2xq+1ξ2 + 2pqxqyξη + q2xq−1y2η2

Proposition 3.6.2. — (σF (Pi))16i63 is a V -standard basis of grF (I).

Proof. — We have mpV (σF (P1))=pyp−1ξ, mpV (σF (P2))=qyp+1η and mpV (σF (P3))=
p2xq+1ξ2. The divisions by σF (P1), σF (P2), σF (P3) give:

S(σF (P1), σF (P2)) = qy2ησF (P1)− pξσF (P2) = σF (P3) ≡ 0,

S(σF (P1), σF (P3)) = pxq+1ξσF (P1)− yp−1σF (P3)

= −2q2xqyησF (P1)− qxq−1ησF (P2) ≡ 0,

S(σF (P2), σF (P3)) = p2xq+1ξ2σF (P2)− qyp+1ησF (P3))

= −2q2xqy3η2σF (P1)− q2xq−1y2η2σF (P2)− pxq+1ξσF (P3) ≡ 0.

This proves the proposition.

We now have to consider the linear form L(L < F ) with the greatest possible slope
such that one of the principal symbols of one of the Pi is not bihomogeneous. We
have: L(a, b) = qa+ b (slope equal to −q).

Proposition 3.6.3. — The D-module De1/(y
p−xq) has only the slope −q along the hy-

persurface x = 0.

Proof
First step: −q is a slope. We know (see [2]) that if L < Λ < F , then grΛ(I) =
grV (grF (I)). If grL(I) was bihomogeneous, then it would also be equal to grV (grF (I)).
But by the previous proposition, we have:

grV (grF (I)) = (σV (σF (P1)), σV (σF (P2)), σV (σF (P3)))C{y}[x, ξ, η]

= (pyp−1ξ, qyp+1η, p2xq+1ξ2 + 2pqxqyξη + q2xq−1y2η2)C{y}[x, ξ, η]

Since σL(P3) = σV (σF (P3)) − p2qξ and σV (σL(P3)) = −p2qξ it is therefore enough
to prove that ξ 6∈ grV (grF (I)): this can be seen by writing ξ as a linear combination
of σV (σF (Pi)) then by evaluating at x = y = 0 (we find then ξ ≡ 0!).

Second step: there is no other slope. Take V < L′ < L. Let us show that L′ is not a
slope. We have:

(σL
′
(P1), σL

′
(P2), σL

′
(P3))C{y, x}[ξ, η] ⊂ grL

′
(I)
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EXPLICIT CALCULATIONS IN RINGS OF DIFFERENTIAL OPERATORS 125

that is (yp−1ξ, yp+1η, ξ) ⊂ grL
′
(I) and so CharL

′
(De1/(y

p−xq)) ⊂ {y = ξ = 0} ∪ {η =
ξ = 0}. Thus this characteristic variety is of dimension 2 and:√

grL′(I) = (ξ, y) or (ξ, η) or (ξ, yη).√
grL′(I) is therefore bi-homogeneous and L′ is not a slope.

Remark. — The arguments given do not allow one to deal directly with the case p = q

because the F -standard basis of I which we build does not then give a V -standard
basis of grV (grF (I)). For p > q it works in a similar way, with a suitable order.
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la Facultad de Matemáticas de la Universidad de Sevilla, no 36, June 1997.

[17] J. L. D. Cox & D. O’Shea – Ideals, Varieties and Algorithms, U.T.M., Springer-Verlag,
New York, 1992.
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SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004



128 F.J. CASTRO-JIMÉNEZ & M. GRANGER
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Ph.D. Thesis, University of Sevilla, 1999.

[36] , Computation of the slopes of a D-module of type Dr/N , in Ring theory and
algebraic geometry (León, 1999), Lecture Notes in Pure and Appl. Math., vol. 221,
Dekker, New York, 2001, p. 311–324.

[37] U. Walther – Algorithmic computation of local cohomology modules and the local co-
homological dimension of algebraic varieties, J. Pure Appl. Algebra 139 (1999), p. 303–
321, Effective methods in algebraic geometry (Saint-Malo, 1998).

[38] , Algorithmic computation of de Rham cohomology of complements of complex
affine varieties, J. Symb. Comput. 29 (2000), p. 795–839, Symbolic computation in
algebra, analysis, and geometry (Berkeley, CA, 1998).

[39] , Algorithmic determination of the rational cohomology of complex varieties via
differential forms, in Symbolic computation: solving equations in algebra, geometry, and
engineering (South Hadley, MA, 2000), Contemp. Math., vol. 286, Amer. Math. Soc.,
Providence, RI, 2001, p. 185–206.

[40] , Computing the cup product structure for complements of complex affine va-
rieties, J. Pure Appl. Algebra 164 (2001), p. 247–273, Effective methods in algebraic
geometry (Bath, 2000).

[41] , D-modules and cohomology of varieties, in Computations in algebraic geometry
with Macaulay 2, Algorithms Comput. Math., vol. 8, Springer, Berlin, 2002, p. 281–323.
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