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ON IRREGULAR HOLONOMIC D-MODULES

by

Bernard Malgrange

Abstract. — One proves the existence of a canonical lattice for the meromorphic
connections; as a consequence, one obtains the two following results:
First, the fact that such a connection, defined outside a set of codimension 3, can be

extended everywhere.
Then, the existence of a global good filtration for the holonomic D-modules.

Résumé(Sur les modules holonomes irréguliers). — On démontre l’existence d’un
réseau canonique pour les connexions méromorphes ; on en déduit deux résultats :
D’une part, le fait qu’une telle connexion, définie hors d’un ensemble de codimension

3, se prolonge partout.
D’autre part, l’existence d’une bonne filtration globale pour les D-modules holonomes.

I. Meromorphic connections

1. Introduction. — Let X be a complex analytic manifold of dimension n, and
let Z be an analytic hypersurface of X (i.e. a closed analytic subset of codimension
one at each of its points). We denote by OX (resp. Ωp

X) the sheaf of holomorphic
functions on X (resp. the sheaf of holomorphic p-forms on X). We denote also by
OX [?Z] the sheaf of meromorphic functions on X with poles on Z: if f = 0 is a local
equation of Z, one has, with the usual notations OX [?Z] = OX [f−1]; we put also
Ωp

X [?Z] = OX [?Z] ⊗OX
Ωp

X . Sometimes, we omit “X” and we write O, O[?Z], Ωp,
etc.

It is well know that O has noetherian fibers, and that it is coherent (i.e. the kernel
of a map Oq → Op is locally of finite type); from this follows at once that O[?Z] has
the same properties. Then, one defines a O[?Z] coherent module, in the usual way, as
being locally the cokernel of a morphism of O[?Z] modules, say O[?Z]q u−→ O[?Z]p.

Let E be a coherent O[?Z]-module. By definition a lattice of E is a coherent sub-
O-module L ⊂ E such that E = O[?Z]L. Locally, E admits always lattices (take a
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392 B. MALGRANGE

presentation u : O[?Z]q → O[?Z]p → E → 0, and multiply by fr, r � 0, to remove
the poles...). But E does not admit always global lattices, even if X is compact : see
counterexamples below, in subsection 6.

Remark. — Suppose that X is a projective manifold, i.e. a closed analytic subman-
ifold of Pn(C). Then, by a classical theorem of Chow, X “is algebraic”, i.e. there
exists a projective algebraic manifold X̃ such that X = X̃an, the analytic manifold
associated to X̃.

Now, let Z be an hypersurface of X, which is also “algebraic” in the same sense,
and let E be a coherent O[?Z]-module; then, the following assertions are equivalent:

i) E admits a lattice L

ii) E is “algebraic”, e.g. there exists a OX̃ [?Z̃]-module Ẽ such that E = Ẽan (=
Ẽ ⊗O

X̃
OX)

i) ⇒ ii) follows from “GAGA”, which asserts that the coherent OX -modules “are
algebraic”

ii) ⇒ i) follows from a standard result of algebraic geometry with asserts that
quasi-coherent sheaves on algebraic varieties which some mild finiteness assumptions
(in particular, projective algebraic varieties) are inductive limits of coherent sheaves.

Now, we come back to the general case.

Definition 1.1. — Let E be a coherent O[?Z]-module. A connection on E is defined,
in the usual way, as an operator ∇ : E → E ⊗O Ω1 verifying the following properties

i) ∇ is C-linear
ii) For φ ∈ O, e ∈ E one has ∇(φe) = e⊗ dφ + φ∇e

For such a ∇, one defines as usual its extension (denoted also ∇): E ⊗O Ωp →
E ⊗O Ωp+1. One says that ∇ is flat if ∇2 : E → E ⊗O Ω2 vanishes; in that case
∇2 : E ⊗O Ωp → E ⊗O Ωp+2 vanishes also for all p (proofs as usual in differential
geometry).

Proposition 1.2. — Let E be a coherent O[?Z]-module, with a connection ∇ (non nec-
essary flat). Then, E is locally stably free, i.e. , for every point x ∈ X, there exists p

such that Ex ⊕ Ox[?Z]p is free

The proof is similar to the proof of proposition 2.2 below (and in fact simpler!).

The main result of this chapter is the following : a coherent O[?Z]-module provided
with a flat connection admits a global lattice and actually admits a canonical lattice;
see the precise statement in section 4. To prove this result, we need the use of formal
completions, which we will study now.
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ON IRREGULAR HOLONOMIC D-MODULES 393

2. Formal completions. — Let X, Z, OX , . . . , be as before. We define, as usual,
the formal completion ÔX|Z (or Ô, if there is no ambiguity) as the sheaf on Z associ-
ated to the presheaf U → lim←−Γ(U,O/fkO) with f a local equation of Z. It is obvious
that ÔX|Z,a is contained in the formal completion of Oa with respect to the powers
of the maximal ideal Ma; in particular, ÔX|Z,a is an integral domain. Furthermore,
it is noetherian and faithfully flat over Oa; also ÔX|Z is coherent.

I shall not prove these properties here, although I have no explicit reference. To
prove that ÔX|Z,a is noetherian and that ÔX|Z is coherent one can for instance argue
as in [L-M], where a more delicate case of formal completions is treated; the main
ingredients are the “theorem of privileged neighborhoods” and the theorem of Frisch
asserting that the ring of holomorphic functions on a closed polycylinder is noetherian.
Then, the faithful flatness of Ôa onto Oa follows from the fact that they have same
completion (for the topology defined by the powers of the maximal ideal).

One defines Ô[∗Z], Ω̂p, etc. as before. If F is a coherent Ô[∗Z]-module, one defines
also a lattice of F as a coherent sub-Ô-module L such that F = Ô[∗Z]L.

Let E be a coherent O[∗Z]-module, and put Ê = E⊗O Ô; if L is a lattice of E, L̂ =
L⊗O Ô is a lattice of Ê. Note also that the natural map E → Ê is injective (use the
exact sequence 0→ Oa → Ôa → Ôa/Oa → 0 and the fact that TorOa

1 (E, Ôa/Oa) = 0).

Proposition 2.1. — The mapping L → L̂ is a bijection “lattices of E” ' “lattices of
Ê”. The inverse is the mapping M →M ∩ E (extended by E outside Z).

One proves this result as follows: as the result is local, one can suppose that one
has already a lattice L′ of E, and one equation f = 0 of Z. Then, locally, if L is a
lattice of E, one has, for some q : fqL′ ⊂ L. Similarly, if M is a lattice of Ê, one has
locally fqL̂′ ⊂M . But the lattices of E (resp. Ê) which contain fqL′ (resp fqL̂′) are
in one to one correspondence with the coherent O-sub modules of E/fqL′ (resp. with
the coherent Ô-sub modules of Ê/fqL̂′); then, the result follows from the equality
E/fqL′ ' Ê/fqL̂′.

Let now F be a coherent Ô[∗Z]-module. One defines a connection ∇ on F as
before, in the case of O[∗Z]-modules.

Proposition 2.2. — Let F be a coherent Ô[∗Z]-module provided with a connection (not
necessarily flat). Then, F is locally stably free.

To prove this proposition, we need a lemma.

Lemma 2.3. — For i > 1, one has Exti
Ô[∗Z]a

(Fa, Ô[∗Z]a) = 0 (a, a point of Z)

Denote by P one of these Exti; it is finite over Ô[∗Z]a and is a torsion module (since
it is annihilated by extension of Ô[∗Z]a to its fraction field). On the other hand, it is
naturally provided with a connection: to prove this, we take an injective resolution I

.

of Ô[∗Z]a over D̂ [∗Z]a = the ring of differential operators with coefficients in Ô[∗Z]a;
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394 B. MALGRANGE

this resolution is also injective over Ô[∗Z]a (exercise: use the fact that D̂ [∗Z]a in flat
over Ô[∗Z]a); then, one consider the obvious connection on HomÔ[∗Z]a

(Fa, Ik) and
the cohomology groups of the corresponding complex.

Take now g ∈ AnnP , and take p ∈ P ; in local coordinates, one has (∂ig)p +
g(∇∂i

p) = 0 (∂i = ∂/∂xi); therefore one has (∂ig)p = 0. Therefore Ann P is stable by
the derivations ∂i. As AnnP 6= 0, it implies that one has AnnP = Ô[∗Z]a. (Exercise:
choose a g ∈ AnnP ; multiplying it by fp, p� 0, we can suppose that g has no pole;
then, develop it in power series at a, and find a differential operator b(x, ∂) such that
b(x, ∂)g is invertible in Ôa). Therefore one has P = 0 and the lemma is proved.

Now, the proof of the proposition follows a standard line. First, note the following
facts.

i) The theorem of syzygies is true for Ôa, i.e. a finite module E over Ôa has a
free resolution of finite length (actually of length 6 n = dim X). As Ôa is local
and noetherian, a standard argument shows that it suffices to prove the result for
E = C = Ôa/M̂a (M̂a, the maximal ideal of Ôa); but this follows at once from the
same result for Oa, and the fact that Ôa is flat over Oa.

ii) From this, follows that the theorem of syzygies is also true for Ô[∗Z]a; in fact,
take E finite over Ô[∗Z]a, and choose a lattice L ⊂ E, i.e. a finite Ôa submodule
such that Ô[∗Z]aL = E; the natural mapping L ⊗Ôa

Ô[∗Z]a → E is bijective [the

surjectivity is obvious; to prove the injectivity, note e.g. that the map L⊗Ôa
Ô[∗Z]a →

E ⊗Ôa
Ô[∗Z]a is injective since Ô[∗Z]a is flat over Ôa; on the other hand, the second

term is equal to E: we leave the verification as an exercise]. Now, take a free resolution
Φ

.

of L over Ôa; then Φ
. ⊗Ôa

Ô[∗Z]a is a free resolution of E over Ô[∗Z]a; and if Φ
.

has finite length, the last one has also finite length, which proves ii).
Now, the proof of the proposition is done in two steps; take F as in the proposition

2.2, and take a ∈ Z.
i) Fa is projective; it is sufficient to prove the following result: if E is finite over

Ô[∗Z]a, then one has, for i > 1: Exti
Ô[∗Z]a

(Fa, E) = 0. One proves this result
by induction on the length of a free resolution of E. If e.g. E admits a resolution
of length `, one has an exact sequence 0 → E′ → Ô[∗Z]pa → E → 0, where E′

has a free resolution of length ` − 1; then the exact sequence of “Ext” imply that
Exti(Fa, E) = Exti+1(Fa, E′) (i > 1), and the result follows.

ii) Any projective module G of finite type over Ô[∗Z]a is stably free. This is
proved by induction on the length of a free resolution of G: if G has a free resolution
of length `, one has an exact sequence O → G′ → Ô[∗Z]pa → G→ 0, where G′ has a
free resolution of length ` − 1; G being projective, the exact sequence splits, and G′

is also projective. Then, the result follows from the induction hypothesis.

Remark. — I do not know if a stably free module of finite type over O[∗Z]a or
ÔX|Z [∗Z]a is actually free (of course, on Oa or OX|Z,a, this is true since these are
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ON IRREGULAR HOLONOMIC D-MODULES 395

local rings). If instead of O[∗Z]a, we have a ring of polynomials C[x1, . . . , xn], then
the similar statement is true according to a celebrated theorem of Quillen-Suslin. But
I do not know if their methods can be extended to the cases considered here.

3. Extension of coherent sheaves. — Let X be an analytic manifold of dimension
n, and let S be a closed analytic subset of X, of codimension > 2; we denote by i

the injection X − S → X. As before, OX denotes the sheaf of holomorphic functions
on X. Recall first the following result.

Proposition 3.1(“Hartogs property”) . — The natural morphism OX → i∗OX−S is an
isomorphism.

In other words, if a is a point of S and U an open neighborhood of a in X, then
a holomorphic function on U − S extends in a unique way to a holomorphic function
on U . When S is smooth, this follows from a classical argument of Hartogs; in
general, the result follows by using a stratification of S by smooth subvarieties, and
by an argument of decreasing induction on the dimension of the strata.

Given an OX -coherent sheaf F , we call F∨ = HomOX
(F,OX) the dual of F ; we

say that F is reflexive if the natural mapping F → F∨∨ is bijective. The following
proposition is a simple particular case of a result of Serre [Se].

Proposition 3.2. — Let F be a coherent OX−S-module, which is reflexive. Then, the
following properties are equivalent:

i) F admits a coherent extension to X (in that case, we say that “F is extendable”)
ii) i∗F is coherent.

The assertion “ii) implies i)” is obvious. Conversely, suppose that F is extendable;
then G = HomOX

(F,OX) admits also an extension, say G; I claim that G
∨

= i∗F ;
actually, one has

G
∨

= HomOX
(G, OX)

= HomOX
(G, i∗OX−S) (“Hartogs property”)

= i∗HomOX−S
(i∗G, OX−S) (adjunction)

= i∗G
∨

= i∗F

[For the adjunction formula which is purely sheaf-theoretic, we refer to the standard
literature on sheaves]

In section 5, we will see deeper results on extension of sheaves; note that one
interest of the property is the following fact : under the condition of prop. 3.2, the
fact for a sheaf to be extendable is a local property.

We will now consider similar results for formal completions; as in section 1, let
Z ⊂ X be a closed hypersurface, let S ⊂ Z be a closed analytic subset of codimension
> 2 (with respect to X). We denote j the injection Z − S → Z. The analogue of
proposition 3.1 is here the following statement.
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Proposition 3.3. — Let g∈Γ(Z, Ô[∗Z]); suppose that, on Z−S, one has g∈Γ(Z−S, Ô);
then g has no pole i.e. g ∈ Γ(Z, Ô).

The statement is local, so it is enough to prove it in the neighborhood of a point
a ∈ S. Using the fact that the map O[∗Z]/O → Ô[∗Z]/Ô is bijective, we can suppose
that, in the neighborhood of a, we have g ∈ O[∗Z]; then g is holomorphic on X − Z

and on Z − S, therefore on X − S, and we can apply Hartogs.
Now, the analogue of prop. 3.2 is the following property; we give F a coherent

Ô[∗Z]-module, which is reflexive (definition as before); on Z − S, we give a lattice L

of F ; denote by j[∗]L the sheaf of sections ` of F verifying j∗` ∈ L. Then, we have
the following result.

Proposition 3.4. — With the preceding hypotheses, suppose that L is reflexive. The
following properties are equivalent.

i) L can be extended on Z as a lattice of F (in that case, we say that “L is extend-
able”)

ii) j[∗]L is a lattice of F

The proof of “i) implies ii)” is done by biduality as in prop. 3.2. We choose L an
extension of L as a lattice of F ; then M = L

∨
is an extension of M = L∨, and this is

a lattice of F∨ (I leave this point to the reader). Now, M
∨

is an extension of L, and
a lattice of F , at it suffices to prove that M

∨
= j[∗]L.

The proof can be done in the following way: on Z×R+, one considers the sheaf Õ

which is Ô on Z × 0, and (the inverse image of) Ô[∗Z] elsewhere; on the other hand,
one considers the sheaf F̃ which is (the inverse image of) F on Z × R∗+, and L on
(Z − S)× {0}. Then, one argues as in prop. 3.2 (note also, that, instead of R+, one
could use a space of two-points, one closed, and one dense but it does not matter).

We will use the preceding properties in the following situation. Let X,Z and S be
as above. Let E be a coherent O[∗Z]-module, locally stably free (therefore locally free
on X − Z), and let L be a lattice of E on X − S, which we suppose to be reflexive;
finally denote by Ê and L̂ the formal completions of E and L along Z. As before, we
denote by i and j the injections X − S → X and Z − S → Z. One has the following
result.

Proposition 3.5. — Suppose that L is extendable; then i∗L is a lattice of E; further-
more L̂ is extendable and one has î∗L = j[∗]L̂. Conversely, if L̂ is extendable, then L

is extendable.

Suppose L extendable; then one has a natural map i∗L→ i∗i
∗E; the next lemma

shows that i∗L is a submodule of E.

Lemma 3.6. — With the preceding hypotheses on E, X, Z, S, one has an isomorphism
E → i∗i

∗E.
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As E is locally stably free, and therefore reflexive, the same argument as in prop. 3.2
will prove the result, provided we prove that one has OX [∗Z]'i∗OX−S [∗Z] (“Hartogs
property for meromorphic functions”). To prove this result, note that it is local, and
that we can enlarge S; so we can suppose that S contains the singular part of Z. Now,
let a be a point of S, U an open neighborhood of a, and take g ∈ Γ(U − S, OX [∗Z]);
let f be a local equation of Z near a; on a connected component of Z − S, frg has
no pole for r � 0; as Z has only finitely many connected components adherent to a,
we can choose r such that frg has no pole on Z − S near a; therefore (Hartogs) frg

is holomorphic near a, and the result follows.
Now, to prove that i∗L is a lattice of E, we observe that E/i∗L[∗Z] is O[∗Z]-

coherent, and has its support in S, and a fortiori in Z; but a coherent OX [∗Z]-module
F with support in Z is necessarily equal to zero (take locally a lattice M of F ; then
there exist r such that frM = 0 and the result follows). Therefore on has i∗L[∗Z] = E.

Finally, î∗L is a lattice of Ê which extends L̂; therefore L̂ is extendable, and we
have only to prove that one has î∗L = j[∗]L̂. Let M be an extension of L∨; one has

M
∨

= i∗L (cf. the proof of 3.2), and also M̂
∨

= (M̂)∨ = j[∗]L̂ (cf. proof of prop. 3.4).
Conversely, let L̂ be extendable, and let N be a lattice of Ê which extends it; then

N ∩ E (extended by E outside of Z) is an extension of L, (cf. prop 2.1). This ends
the proof.

Remark. — Actually, we will have to use the preceding results in a slightly more
general case: let S ⊂ X be a closed set (for the usual “transcendental” topology); we
say that “S has codimension > 2 in X if, in a neighborhood of each of its points,
S is contained in an analytic set of codimension > 2. Then, the proposition 3.2
is still true for S closed of codimension > 2 in the preceding sense; the proof is the
same; furthermore the extension i∗F is “independent of S” in the following sense: take
S ⊂ S′, verifying the same hypothesis, and let k and i′ be the injections X−S′ → X−S

and X − S′ → X; then, one has i′∗k
∗F = i∗F : to prove this, it is sufficient to prove

the isomorphism F ' k∗k
∗F , which is proved by the same argument as prop. 3.2

The propositions 3.4 and 3.5 are also valid with the same hypotheses on S; I leave
the details to the reader.

4. The canonical lattice of a meromorphic connection. — As in section 1,
let X be a complex analytic manifold, and Z ⊂ X a closed analytic hypersurface.
Let (E,∇) be a coherent ÔX|Z [∗Z]-module, provided with a connection ∇; here, and
in the next section, we suppose ∇ flat; for short, we call such a (E,∇) a “formal
meromorphic connection”. We will say that (E,∇) is regular if, in the neighborhood
of any point a ∈ Z, (E,∇) is equal to the formal completion (F̂ ,∇) of a regular
meromorphic connection in the sense of Deligne [De] (F,∇) [Actually, one can prove
that, in that case, (E,∇) is globally the formal completion of a regular meromorphic
connection, but we do not need it here].
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In order to simplify the notations, we will often write E for (E,∇). Let Z ′ be the
regular part of Z, and take a point a ∈ Z ′; in the neighborhood of a, the description
of regular connections is well-known: we choose local coordinates (x1, . . . , xn) at a,
with Z ′ defined by {x1 = 0}; then in the neighborhood of a, E is free over Ô[∗Z] and
admits a basis e1, . . . , em in which one has

∇ej =
dx1

x1

∑
i,j

cijei, C = (cij) ∈ End(Cm)

The matrix C is not entirely determined; only the “monodromy” is fixed, i.e. the
matrix exp(2πiC), up to conjugacy; in particular, choose a section τ of the canonical
map C

p−→ C/Z, i.e. a map τ : C/Z→ C such that p ◦ τ = id; then we can choose C

so that its eigenvalues belong to the image of τ ; in that case, C is determined up to
conjugacy (exercise). Furthermore, the lattice generated on Ô by e1, . . . , em depends
only on τ and is called the“canonical lattice associated to τ” [This is proved as follows:
if we have two bases {ei} and {e′i} having these properties, we consider the matrix S

which transforms the first base into the second one; then an elementary calculation
shows that S has no pole, and the same for S−1; therefore the two bases define the
same lattice]. Note also the following fact; the canonical lattice associated to τ is
characterized by the following property: if f1, . . . , fm is any basis of this lattice, then,
in local coordinates as above,

(i) The matrix of ∇∂i (i > 2, ∂i = ∂/∂xi) in this basis has no pole
(ii) The matrix of ∇∂1 has a simple pole, and the eigenvalues of the polar part

belong to Im(τ).
These properties are well-known in one variable; the extension to the general case

is easy, and we leave it as an exercise to the reader.
Now, we do not suppose (E,∇) regular anymore. If g is a meromorphic function

with poles on Z, i.e. g ∈ Γ(X, O[∗Z]), we define the connection eg ⊗E as the Ô[∗Z]-
module E provided with the connection φ 7→ ∇φ+dg⊗φ; in this context, it will often
be convenient to write eg ⊗ φ instead of φ. Take a ∈ Z ′, Z ′ the regular (=smooth)
part of Z. We call “admissible decomposition” of Ea a decomposition E = ⊕egi ⊗Fi,
gi ∈ O[∗Z]a, Fi regular. In such a decomposition, the gi’s are only determined modulo
Oa; therefore we can put together the terms corresponding to equivalent gi’s and we
can suppose that gi− gj has a pole for i 6= j; in that case, the factors egi ⊗Fi are well
determined [These results are well-known in dimension 1; see e.g. [Le] or [Ma2]. The
proof extends easily to the case considered here; the main point is the following; if U

is a small open neighborhood of a, for i 6= j one has Hom(U ; egi ⊗ Fi, e
gj ⊗ Fj) = 0.

Indeed this set is the set of sections on U of the connection egj−gi ⊗HomO[∗Z](Fi, Fj)
which are horizontal, e.g. killed by ∇; and, from the fact that gj−gi does have a pole,
and that the second factor is regular, one deduces easily the absence of horizontal
sections 6= 0.]

SÉMINAIRES & CONGRÈS 8
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If we have an admissible decomposition, we say that it is “good” if, for i 6= j, the
most polar part of gi−gj does not vanish at the point a; this improvement of the notion
of admissible decomposition is not necessary for the definition of the canonical lattice
but is useful for other purposes, more precisely for the theory of “Stokes structures”
in several variables. Now the first main result is the following.

Theorem 4.1. — There exists an open set Z ′′ ⊂ Z ′, with Z−Z ′′ of codimension > 2 in
the sense of section 3, having the following property: at any point a ∈ Z ′′, E admits,
after a ramification along Z, a good decomposition

“After ramification” means the following: in the neighborhood of a, one chooses
local coordinates such that Z ′ = {x1 = 0}. For p, integer > 1, one denotes φp the
map (y, x2, . . . , xn) 7→ (x1 = yp, . . . , xn) and (φ∗pE, φ∗p∇) the obvious inverse image;
then there exists p such that (φ∗pE, φ∗p∇) admits a good decomposition at φ−1

p (a). (It
is probably true that one can choose Z ′′ Zariski-open in Z; but I have no proof of this
result, which would not however improve the applications).

Now, we build a canonical lattice of E in the following way. One chooses the section
τ of C → C/Z whose image is O < Re λ 6 1. If E is decomposed in ⊕egi ⊗ Fi, one
takes in each Fi the canonical lattice associated to τ , and one takes in E their direct
sum; one verifies at once that this is independent of the choice of the gi’s (we recall
that they are only determined mod O). Now, if E is decomposed after the ramification
φp, one does the same in φ∗pE, and one takes the restriction of this lattice to E. One
verifies that the result is independent of the ramification that we have made, because
of the special choice of τ . We have therefore defined a lattice L of E on Z ′′, with
S = Z−Z ′′ closed and of codimension > 2 in X. The main result is now the following.

Theorem 4.2. — The lattice L is extendable, in the sense of proposition 3.4

Note that L is locally free, and therefore reflexive (we leave the proof as an exercise);
on the other hand, E is stably locally free everywhere, after prop. 2.2; therefore the
hypotheses of prop. 3.4 are satisfied.

Now, if F is a meromorphic (flat) connection with poles on Z, one obtains also
a canonical lattice M on Z” by applying the preceding construction to E = F̂ , and
taking M = E ∩ L, cf. 2.1. It follows from the results of section 3 that i∗M is a
lattice of E, with i the injection X − S → X, S = Z − Z ′′; we call it again “the
canonical lattice” of E; note that this lattice is also independent of the choice of S

(cf. remark 3).
For the proof of 4.1 and 4.2, we refer to [Ma4], section 4 (there, these theorems

are denoted respectively 3.2.1 and 3.3.1).

5. Applications. — We will give some applications to the meromorphic connec-
tions; I have no idea if some similar results exist or not for formal meromorphic
connections. As in section 4, they are always supposed flat.
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The first one concerns the algebraic character of projective meromorphic connec-
tions.

Theorem 5.1. — Let X be a smooth projective algebraic variety over C, and let E

be a (flat) meromorphic connection on Xan; then E is algebraic, i.e. there exists a
meromorphic connection F on X such that E = F an.

Let L be a lattice of E, e.g. the canonical one; as L is OXan-coherent, by GAGA,
there exists a coherent OX -module M such that L = Man; if we denote by Z the
hypersurface of poles of E, Z is also algebraic, and we have E = F an, with F = M [∗Z].
Finally, to prove that ∇ is also algebraic, we note that ∇ can be defined as a splitting
of the exact sequence 0 → E → j1E → Ω1 ⊗O E → 0, where j1E denote the sheaf
of principal parts of order one (this can be defined in this way: take locally a lattice
L in E, and take j1L⊗O O[∗Z]; one verifies that this is independent of the choice of
L, and of the fact that we have taken the “left” or “right” structure of O-module over
j1L). Then, we apply once more GAGA to show that this splitting is algebraic.

The next application is related with the extension problem. Let X be a complex
analytic manifold, and let S be a closed analytic subset of X; first, note the following
elementary result: if codim S > 2, then any flat connection (without pole) on X − S

extends to X, since such connections are determined by their monodromy, and there
is no monodromy around S. The same result is true for regular meromorphic con-
nections: let E be such a connection on X − S, and let Y be the hypersurface of
its poles: as codim S > codim Y a classical theorem of Remmert-Stein says that the
adherence Y of Y in X is analytic; now, we can extend E at the points of S − Y as
above, and we are reduced to the case where Z = Y is a closed hypersurface of X, and
S is contained in Z; but, then, the result follows from the solution of the “problem of
Riemann-Hilbert” (any flat connection on X−Z extends in a unique way to a regular
connection on X, with poles on Z); cf. [De]

This result is not true for irregular meromorphic connections; see a counterexample
below, in section 6. But one has the following result.

Theorem 5.2. — Let S be a closed analytic subset of X; if codimS > 3, any mero-
morphic connection on X − S extends to a meromorphic connection on X.

The uniqueness of this extension is obvious, since according to previous results,
this extension is given by the direct image (cf. lemma 3.6).

The existence follows from difficult results on extension of OX -coherent sheaves,
which we will now recall. If we have a coherent OX -module L, we call projective
dimension of L at a ∈ X the minimal length of a free resolution of La; and we
put deptha L = n − projdim La, n = dim X (the interest of the depth is that it
is not changed by closed embedding). Given an L, we denote by Sk(L) the set of
points a ∈ X where deptha L 6 k; one proves that Sk(L) is an analytic subset of
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dimension 6 k; one says that L verifies (sk) if one has

(sk) dim Sk(F ) 6 k − 2

One has the following theorem, due to Frisch-Guenot and Siu, [F-G, Si]; see also
[Do].

Theorem 5.3. — Let X be an analytic manifold, S a closed analytic subset of X, and
denote by i the injection X − S → X. Let L be a coherent O-module on X − S, and
suppose that L verifies (sk) for k 6 dim S + 2; then

i) L is extendable to X

ii) i∗L is coherent; it satisfies (sk) for k 6 dim S+2, and it is the only one coherent
extension to have this property.

Now we can prove the theorem 5.2 (the argument is close to an argument used by
Mebkhout [Me] in the regular case, to reprove the Riemann-Hilbert correspondence).
Suppose codim S > 3, and let E be a meromorphic connection on X ′ = X − S,
with poles on Z ′ ⊂ X ′. As already noted, we can suppose that there exists a closed
hypersurface Z ⊂ X with S ⊂ Z, Z ′ = Z − S.

Let L be the canonical lattice of E on X ′; to prove 5.2, it is sufficient to prove that
i∗L is coherent; then i∗L[∗Z] is the required extension of E; to extend ∇, note that, in
the neighborhood of a point a ∈ S, as Z − S has only finitely many components, one
has fr∇L ⊂ L⊗O Ω1, for some r; the extension of ∇ is then an obvious consequence
of the definition of i∗.

According to theorem 5.3, to prove that i∗L is coherent, it suffices to prove that L

verifies (sk) for k 6 n− 1, (n = dim X). Let T be the set of points of Z ′ where L is
not free; we have the following lemma.

Lemma 5.4. — codimX′ T > 3.

If we admit this lemma, we are done; if we denote by j the injection X ′ − T → X ′

we have, by the definition of L, L ' j∗j
∗L; on the other hand, j∗L is locally free on

X ′ − T , and therefore satisfies sk for k 6 n− 1; then by theorem 5.3, L satisfies the
same conditions on X ′.

Now we prove the lemma; according to the proof of prop. 3.2, and the definition
of L, L is reflexive; and it suffices to prove that the set of points where a reflexive
sheaf F is not free has codimension > 3.

In dimension 2, this means that F is locally free; take a ∈ X; write F = Hom(G, O)
and take locally near a a free presentation Oq → Op → G → 0; one has an exact
sequence

0 −→ F −→ Op
tu−−−→ Oq;

and the theorem of syzygies shows that Fa is free. In the general case, the argument
is similar: let T be the set of points where F is not free; suppose that there is a point
a ∈ T where dim T = n − 2 (or n − 1, the argument is the same), and take pa the
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ideal of a component T ′ of T at a of dimension n−2. The same argument shows that
Fa ⊗Oa

Opa
is free: but this implies that, generically on T ′ near a, F is free, which

contradicts the hypothesis. This prove the lemma and the theorem.
To end this section, we give another way to express the “Hartogs property”, and

theorem 5.2, which is interesting by itself. Let Z be a hypersurface of X, and denote
by conn(X, Z) the category of (flat) meromorphic connections on X, with poles on Z;
the “Hom” are defined in the obvious way, as morphism of OX [∗Z] modules which
commute with ∇. Let S be a closed analytic subset of Z; one has the following result.

Theorem 5.5

i) If codimX S > 2, the functor “forget” conn(X, Z)→ conn(X − S, Z − S) is fully
faithful.

ii) If codimX S > 3, this functor is an equivalence.

The assertion ii) follows from i) and theorem 5.2; therefore it is sufficient to prove i).
But, if we have two connections E and F with poles on Z, Hom(E,F ) is just the set
Γ(X,HomO[∗Z](E,F )∇), where (., .)∇ means “horizontal sections” i.e. sections killed
by ∇. Therefore, to obtain the result, it suffices to use the Hartogs property of
HomO[∗Z](E,F ) (cf. lemma 3.6).

Note also that, by extension “with parameters” of the theory of irregular singu-
larities in one variable, one has a geometric description (“Stokes structure”) of a
meromorphic connection at the generic points of Z. According to i), this gives a
geometric description of Hom(E,F ) for E,F ∈ conn(X, Z). However, a complete ge-
ometric description of the category conn(X, Z) is still missing. Roughly speaking, the
statement ii) means that we have essentially to understand what happens generically
in codimension 2.

6. Counterexamples. — They will be based on the following well-known fact,
noted in the proof of lemma 5.4: in dimension 2, a coherent reflexive sheaf is locally
free.

First, an example of a meromorphic connection E on X = C2−{0}, which cannot
be extended to C2; we cover C2−{0} by U = {x 6= 0} and V = {y 6= 0}; we take L, a
OX -module locally free of rank 1, by gluing f ∈ OU,a

and g ∈ OV,a
by g = exp(1/xy)f ;

we take Z = {x = 0}, E = L[∗Z], and ∇ is defined in U by ∇f = df ; therefore, on V ,
on has ∇g = dg−gd(1/xy); this connection cannot be extended; for L is its canonical
lattice and it is known that L cannot be extended. I reproduce here the argument
of Douady [Do]. Suppose that L could be extended; it would admit an extension
reflexive, and therefore locally free; and L itself would be free in D−{0}, D a bidisc.
But this is not the case; the class defined by 1/xy in H1(D − {0}; {U, V },O) is not
0; and its image by exp is not 0, for, in the exact sequence

H1(D − {0},Z) 2iπ−−−−→ H1(D − {0},O)
exp−−−−→ H1(D − {0},O∗),

one has H1(D − {0},Z) = 0.
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Next, an example of a coherent O[∗Z] sheaf, which has no global lattice (this
example is due to Deligne); we take X = P2(C), Z ⊂ X a smooth curve of genus
> 1, and E locally free of rank one; these E are classified by H1(X, O[∗Z]∗); one has
an exact sequence 0→ O∗ → O[∗Z]∗ → ZZ → 0, therefore an exact sequence

H1(X, O∗) −→ H1(X, O[∗Z]∗) α−−→ H1(Z,Z) −→ H2(X, O∗) −→

One has H2(X, O∗) = 0 [use the exponential exact sequence 0→ Z→ O → O∗ → 0
and the fact that H2(X, O) = 0, H3(X,Z) = 0]. Let now E be a O[∗Z]-module free
of rank one, such that its image by α is not 0; E has no lattice. In fact, if there was
such a lattice L, we could replace it by its bidual, which is locally free; but this is
impossible, since it would be defined by a class in H1(X, O∗).

Actually on has even more: E|X−Z cannot be the image by restriction to X − Z

of a class in Ktop
0 (X); otherwise the Chern class c ∈ H2(X − Z,Z) of E|X−Z would

come from a class c̃ ∈ H2(X,Z); Therefore the image of c in H3
Z(X,Z) would be zero;

but, by Thom’s isomorphism, on has H3
Z(X,Z) ' H1(Z,Z); and one verifies easily

that the class obtained in H1(Z,Z) in this way is egal, up to sign, to α[E], [E] the
class of E in H1(X, O[∗Z]∗).

Here is another example, which is related to the subject of this course; we take
first X̃ = C × P1(C) (coordinates x and t respectively); we put Z̃ = Z̃0 ∪ Z̃∞,
Z̃a = {t = a}, and we put Ẽ = OX̃ [∗Z̃]; we define now E on X = C∗ × P1(C) by
the following identifications: we identify (x, t) and (x+1, t), and we identify f ∈ Ẽx,t

and g ∈ Ẽx+1,t if g = tf . The same argument as before shows that E has no lattice
near Z0 or Z∞ (Za = {t = a}, is the image of Z̃a in X) because the class defined by
E in H1(Z0,Z) or in H1(Z∞,Z) is 6= 0.

Now, we provide Ẽ with the relative connection (for the projection (X̃ → C)
defined by ∇f = ∂f/∂t − (x/t)f ; this defines on E a relative connection which is,
actually, the space of moduli for the connections of rank one on P1(C) with regular
singularities at 0 an ∞, and no other singularity. This example, which will be used
also in the next chapter, shows that the theorem of existence of global lattices is no
longer true for relative connections (note also that here, the eigenvalues of the polar
part of the connection are no longer constant, and that this fact was basic in the
definition of the canonical lattice).

II. Filtration of holonomic modules

1. Introduction. — Let X be a complex analytic manifold of dimension n; OX

and Ωn
X have the same meaning as in chapter I. In addition, DX denote the sheaf of

linear differential operators with analytic coefficients.
Denote by T ∗X the cotangent space of X, and let T ∗X

π−→ X be the projection;
we identify X with the zero-section of T ∗X (often denoted T ∗XX). We denote as
usual, by EX (resp. ÊX) the sheaf of analytic microdifferential operators (resp. formal
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microdifferential operators on T ∗X). For the properties of EX (resp. ÊX) that we
have to use, see the appendix of [G-M] and [SKK]; we will use EX very little. If
there is no confusion, we omit X and write D , Ê ,...

For p ∈ N (resp p ∈ Z), we denote by Dp (resp Êp) the subsheaf of operators of
order 6 p of D (resp. Ê ).

Let M be a coherent D-module; by definition, a good filtration of M is an increasing
sequence {Mp} of coherent sub-O-modules of D verifying

i) ∪Mp = M

ii) DpMq ⊂ Mp+q; furthermore, for every compact K ⊂ X, there exists q0 such
that DpMq = Mp+q on K for p > 0, q > q0

These properties can be expressed in a slightly different way: call “standard” a
filtration of Dk of the form deg(a1, . . . , ak) = sup(deg ai + `i) where deg ai is the
usual order and `i ∈ N. Then, a filtration {Mp} of M is good iff, locally, it is the
quotient of a standard filtration for some surjection Dk →M → 0.

Similarly, let U ⊂ T ∗X be an open set which we can suppose homogeneous,
i.e. stable by the action of C∗ on the fibers of T ∗X

π−→ X. If M is a coherent Ê|U -
module, an increasing collection {Mp} (p ∈ Z) of Ê0-submodules is a good filtration if,
locally, it is the quotient of a standard filtration of some surjection Ê k →M → O (the
definition of “standard” is the same as above). On U −X, this implies that one has
ÊqMp = Mp+q, (p, q ∈ Z) and that M0 is a lattice of M , i.e. a coherent Ê0-submodule
such that one has Ê M0 = M ; conversely, if one has a lattice L, then ÊpL = Mp is a
good filtration.

N.B. In [Ma3], it is incorrectly stated that the Mp are coherent on Ê0, if Mp is a
good filtration of M ; this is not true at the points of X (e.g. Ê−1 is not coherent on
Ê0 at the points of X).

The aim of this chapter is to prove the following result: a holonomic D-module
admits globally a good filtration, which is canonical in the same sense as in chapter I,
i.e. it depends on a section C/Z τ−→ C of the canonical projection C→ C/Z. As in
chapter I, this implies the algebraicity of holonomic D-modules over projective smooth
algebraic varieties. We leave to the reader the precise statement and the proof, which
are similar to theorem I.5.1.

The strategy is to prove first the similar result for holonomic Ê -modules outside
of the zero-section; this is done by reducing it to the existence of lattices for formal-
meromorphic connections (theorem I.4.2). The result for D is then deduced by the
trick of “addition of a dummy variable” of [K-K]. Note also that this implies the
existence of a good filtration for a holonomic E -module (actually, if M is a coherent
E|U -module, with U ∩ X = ∅ there is a one-to-one correspondence between lattices
of M an lattices of M̂ = Ê ⊗E M ; in one sense, take L̂ = Ê0 ⊗E0 L; in the other one,
take L = L̂ ∩M . The proof is similar to prop I.2.1; one has to use here the faithful
flatness of Ê0 on E0).
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ON IRREGULAR HOLONOMIC D-MODULES 405

In the case of regular singularities, the existence of canonical good filtrations for E

and D holonomic modules was proved by Kashiwara-Kawai [K-K].
To end this section, we give an example of coherent DX -module without global

good filtration; it does not even admit a good filtration on large compact sets. We
start with the last example of section I.6, where X = C∗×P1C and E is the relative
meromorphic connection defined there; we denote by DX/C∗ the sheaf on X of relative
differential operators w.r. to the projection X → C∗ (one differentiate only in the
direction of the fibers); then, E is a DX/C∗ -module and one proves easily that it is
coherent (add a parameter in the standard argument proving that a meromorphic
connection in one variable is D-coherent). But it has no good filtration; for, if {Mp}
would be one, on every compact K ⊂ X we would have Mp[∗Z] = E for p large;
therefore Mp would be a lattice on K; but the arguments of section I.6 show that
such a lattice does not exist, e.g. for K = S ×P1C, S the unit circle of C∗.

Now, put M = DX ⊗DX/C∗ E; E is embedded in M by e 7→ 1 ⊗ e (this map is
injective since DX is free over DX/C∗); if {Mp} were a good filtration of M on K, the
same argument would prove that Mp ∩ E is a lattice of E on K for p large; but this
is impossible.

2. Holonomic E -modules. — Let M be a holonomic Ê -module on a homogeneous
open subset of T ∗X −X, and let Z be its support (or “characteristic variety”). Since
M is holonomic, Z is homogeneous and lagrangian.

Let a be a point of Z, where Z is smooth; by a homogeneous canonical transforma-
tion we can suppose that a is transformed into the point a′ : x = 0, ξ = (1, 0, . . . , 0)
and that, in the neighborhood of a, Z is transformed into Z ′ defined by the equations
x1 = ξ2 = · · · = ξn = 0 (n = dim X). Using a Maslov transformation (“Fourier inte-
gral operator”or“quantified canonical transformation”, cf. [H], [SKK]) which extends
the preceding canonical transformation to microdifferential operators, one transforms
M into a holonomic system M ′ with support on Z ′. I will always suppose that the
Maslov transformation preserves the “order” (i.e. it is of order 0 in the sense of Hör-
mander [H] or of order n/2 in the sense of [SKK]). Using the preparation theorem
for Ê , one sees that, in the neighborhood of a′, M ′ is coherent over Ê (x2, . . . , xn, ∂1),
the subsheaf of Ê of elements having a symbol depending only on (x2, . . . , xn, ∂1). De-
note by V a neighborhood in Cn−1 ×P1(C) of the point x2 = · · · = xn = 0, ξ1 =∞
and let T be the hypersurface ξ1 = ∞; by identification ∂1 → ξ1, x1 → −(∂/∂ξ1)
(“formal Fourier transform w.r. to x1”), we can identify Ê (x2, . . . , xn, ∂1) near a′ with
ÔV |T [∗T ]; with this interpretation, M ′ becomes a formal meromorphic connection
on V with poles on T ; the derivations are given by ∇∂/∂ξ1 = −x1, ∇∂/∂xi

= ∂i, i > 2.
We denote by E this connection (and we identify it with M ′|(ξ1=1)).

Now, we are in position to apply the results of section 4. We will see in a few lines
what means the theorem I.4.1 in this context. Now, let L be the canonical lattice
of E, and let L′ ⊂M ′ correspond to L; one has the following result :
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Theorem 2.1

i) L′ is in a lattice of M ′ as Ê -module.
ii) L′ is independent of the Maslov transformation chosen (of course, with the

restriction on the order indicated above).

Let T ′′ ⊂ T the set of points where E admits a good formal decomposition after
ramification, and put Z ′′ the corresponding subset of Z ′; denoting by j the injection
T ′′ → T , one has, with the notations of section I.3: L = j[∗]j

∗L; the same is true for L′

in an obvious sense. From this follows at once that it is sufficient to prove the theorem
at the points of Z ′′. Take c ∈ T ′′; near c denote by φp the map (x2, . . . , xn, η) →
(x2, . . . , xn, ηp) for a suitable p; one has a decomposition φ∗pE = ⊕egi⊗Fi, Fi regulars,
gi ∈ OṼ [∗T̃ ], with Ṽ = φ−1

p V , T̃ = φ−1
p T ; we can suppose that gi − gj has no pole,

and we can choose gi =
∑q

1 akηk, ak holomorphic in (x2, . . . , xn).
Furthermore, here, we have q < p (i.e. the gi are of degree < 1 w.r. to ξ1); this

follows from the fact that the action of x1 on M (or, equivalent ∂/∂ξ1 on E) is
“topologically nilpotent”; more precisely for any good filtration of M , one has xk

1 = 0
on grM for k � 0; therefore the “irregularity in the sense of Katz” of the connection
∂/∂ξ1 on E|x2=···=xn=cte is < 2, and this implies the required result (this is a standard
argument in the theory of formal meromorphic connections in one variable; I do not
give the details here. See e.g. such an argument in [De] or [Ma1]).

The corresponding description of M ′ at any b, with q(b) = c, q the projection
(x2, . . . , xn, ξ1) 7→ (x2, . . . , xn,∞) is as follows; we introduce the sheaf Ê (p) of formal
microdifferential operators of order multiple of 1/p (in an obvious sense; see e.g. [Ma1]
for the case of one variable); then, one has a decomposition Ê p⊗Ê M ′ = ⊕Ngi

i where
Ni is regular, and Ngi

i is equal to Ni on which Ê p acts through the automorphism
σgi

: Ê p → v defined by σgi
a = e−giaegi =

∑
(−1)k((ad gi)k/k!)a with, of course,

ad gi(a) = gia − agi (note that, since order gi < 1, this series converges). This
description has been obtained by Rodrigues [Ro], with a different argument.

Now the proof of the theorem is easy: since σgi
preserves the order (and even

the principal symbol) of microdifferential operators, the proof of i) is reduced to the
regular case, where it is obvious. The proof of ii) is also reduced to the regular case,
and follows from the fact that, in the regular case, the “order” of the sections of a
microdifferential module is preserved by Maslov transformation of the required order
(we admit this point). This proves the theorem.

Now, we come back to our original holonomic module M , with support Z ⊂ U .
On Zreg, the smooth part of Z, we have a well defined lattice by the preceding
construction; call it Lreg and call L its extension by “formal direct image” as in
chapter I, i.e. near a ∈ Z−Zreg, we take for La the sections m of M near a such that
j−1m ∈ Lreg (j the injection Lreg → L); then the final result is the following:

Theorem 2.2. — L is a lattice of M .
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It is obvious that L is an Ê0-module, and that Ê L = M . The only one point
to prove is the coherence of L over Ê0. To prove this, choose a point a ∈ Z −
Zreg; according to a lemma of Kashiwara-Kawai [K-K], there exists a homogeneous
canonical transformation φ defined near a such that φ(Z) is in “generic position” near
φ(a), i.e. one has π−1πφ(a) ∩ φ(Z) = C∗φ(a); using a Maslov transformation of the
required order which extends φ to microdifferential operators, we can suppose that Z

itself is in generic position at a.
We choose local coordinates at π(a) such that a is the point x = 0, ξ = (1, 0, . . . , 0).

Put, in the neighborhood of a: π(Z) = Y , X ′ = {x ∈ X;x1 = 0} and denote by p

(resp. q) the projection X → X ′ (resp Z → X ′ × C∗) defined by p(x1, . . . , xn) =
(x2, . . . , xn), q(x, ξ) = (p(x), ξ1).

It is well-known (and easy to prove) that Y is an hypersurface, and Z its strict
conormal bundle, i.e. the closure of the conormal bundle to Y reg; furthermore, the
projection p|Y and q are finite. Using the preparation theorem for Ê one sees that, in
the neighborhood of a, q∗M is coherent over Ê (x2, . . . , xn, ∂1).

Now, we argue as before by partial Fourier transform; V and T having the same
meaning as above, we identify in the obvious way X ′ and T , and denote r the projec-
tion X ′ ×C∗ → T ; let E be the ÔV |T [∗T ]-connection defined by M , and let Λ be its
canonical lattice; consider r−1Λ ⊂ r−1E = M . The end of the proof follows from the
lemma below.

Lemma 2.3. — One has q∗L = r−1Λ

If we admit the lemma, we have that q∗L is coherent over Ê0(x2, . . . , xn, ∂1);
as q is finite, q−1q∗L → L is surjective; therefore, L is locally of finite type over
q−1Ê0(x2, . . . , xn, ∂1), and a fortiori locally of finite type over Ê0; but as it is con-
tained in M , which is locally a direct limit of coherent Ê0-modules, L is coherent.

To prove the lemma, one look first at the points where E has a good decomposition,
and one compare this decomposition with the decomposition of M on the sheets of
the projection q (or p, which is equivalent); this gives the equality of q∗L and r−1Λ at
the generic points of X ′ ×C∗; then one proves easily that this implies also the result
at the other points.

Remark. — If one develops the last argument, one finds the following result: there is
a set T of codimension one in Z (in the sense of remark I.3) such that M admits a
good decomposition after ramification on Z − T . This improves a little bit the result
of Rodrigues, who has such a decomposition on an open dense set. As in the case of
connections, it seems to me likely that one can take for T an analytic subset, but I
have no proof of that.

3. The case of D-modules

N.B. This should replace the section (3.B) of [Ma3]
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Theorem 3.1. — Let Xbe a complex analytic manifold, and let M be a holonomic
DX-module. Then M admits a good filtration (and actually, a canonical one).

We will reduce to problem to the microlocal case, by an argument of Kashiwara-
Kawai ([K-K], appendix A); put Y = X ×C, with coordinates (x, t) and denote by
j the injection x 7→ (x, 0) into Y . Denote also by j and J the maps of the obvious

diagram T ∗Y
j←− T ∗Y ×Y X

J−→ T ∗X (J is the cotangent map).
Let M be a coherent DX -module, and let M̂ = ÊX ⊗π−1DX

π−1M be its formal
microlocalization. One takes the microlocal direct image M̂ ′ of M̂ , defined by M̂ ′ =
j∗(ÊY←X ⊗J−1EX

J−1M̂); this is equivalent to take the microlocalization of the direct
image j+M ; explicitly, at a point (x, t, ξ, τ) ∈ T ∗Y , this consists of taking the equation
of M̂ and adding the equation tm = 0. We restrict M̂ ′ to the set T̃ ∗X ⊂ T ∗Y defined
by t = 0, τ = 1; by J , T̃ ∗X is isomorphic to T ∗X; it is known (loc. cit.) that one
reconstructs M̂ from M̂ ′

|T̃∗X
by M = J∗ ker(t, M̂ ′

|T̃∗X
). In particular, one reconstructs

M by M = J∗ ker(t, M̂ ′
|X̃

), X̃ ⊂ T̃ ∗X being defined by ξ = 0.

Now, take L, the canonical lattice of M̂ ′ on T ∗Y −Y , which is defined in particular
on T̃ ∗X, and put Lk = ÊkL (here, Ê means ÊY ). According to [K-K], prop.A.8,
Mk = J∗ ker(t, Lk|X̃) (k > 0) gives a good filtration of M if one proves that one has
tL ⊂ L−1 (this point was overlooked in [Ma3]). Therefore, to prove the theorem,
the only remaining point is to prove the last assertion. Let Z be the characteristic
variety of M , i.e. the support of M̂ and let Z ′ be support of M̂ ′ (in the subset τ 6= 0
of T ∗Y ); one has Z ′ = {(x, 0, ξ, τ) | (x, ξ) ∈ Z, τ 6= 0}. It is sufficient to prove the
result at the generic points of Z ′, i.e. outside of a set of codimension one. There are
two cases to consider

i) The points (x, 0, ξ, τ) where (x, 0) ∈ Z, (x, 0) /∈ Z −X; near such a point, one
has M ' Op

X , and the result is easy.
ii) The points (x, 0, ξ, τ), ξ 6= 0, τ 6= 0 such that (x, ξ) is a smooth point of Z

where M̂ can be described by a “good decomposition after ramification” as explained
in section 2. Using again the same Maslov transformation, extended trivially to the
variables (t, τ), we are reduced to the case where Z is defined by x1 = ξ2 = ξn = 0,
and Z ′ = Z×C∗τ ; at such a point, we have M̂ ′ = M̂⊗̂ÊT δ(t) (i.e. M̂ ′ is obtained from
M̂ by adding the equation tm = 0); using ramification and the automorphisms σgi

as in section 2, and using the fact that t commutes with σgi
, we are reduced to prove

the result in the regular case; but in that case it is well known that a microdifferential
operator of degree 6 0 whose principal symbol vanishes on Z ′ reduces the order of
sections by one. This ends the proof of the statement and of the theorem.

Remark. — In fact, as δ(t) has order 1/2, the canonical filtration taken on M̂ ′ does
not induce the canonical filtration (or lattice) of M̂ ; with the convention taken here,
the canonical lattice of M̂ is the one whose elements, at the generic points, have

SÉMINAIRES & CONGRÈS 8
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order < 1/2 in the sense of [SKK] (modulo the automorphism σgi
). To recover it

we should take on M̂ ′ the lattice L whose elements have over < 1. Then, taking
Mk = J∗ ker(t, ÊkL|X̃), for k > 0, one can prove the following results :

i) The canonical lattice of M̂ on T ∗X −X is given by
∑

Ê−kMk

ii) At the points (x, 0) ∈ Z, (x, 0) /∈ Z −X, on has Mk = M , ∀ k > 0
iii) At the other points (x, 0) ∈ Z, a section m of M belongs to Mk if π−1m has

order < k + 1/2 on T ∗X −X at the generic points close to π−1(x).
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[De] P. Deligne – Équations différentielles à points singuliers réguliers, Lect. Notes in
Math., vol. 163, Springer-Verlag, 1970.

[Do] A. Douady – Prolongement de faisceaux analytiques cohérents (travaux de Traut-
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[F-G] J. Frisch & J. Guenot – Prolongement de faisceaux analytiques cohérents, Invent.
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variété algébrique complexe et le théorème d’existence de Riemann, Publ. Math. Inst.

Hautes Études Sci. 69 (1989), p. 47–89.
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