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Abstract. — We discuss conjectured relations between twistor theory and superstring
theory, built around the idea that time asymmetry is crucial. In the context of a
simple example, a number of techniques are described, which should shed light on
these conjectures.

Résumé (Dynamique du cône de lumière). — Nous étudions des relations conjecturées
entre la théorie des twisteurs et la théorie des supercordes, construites autour de l’idée
que l’asymétrie du temps est cruciale. Dans le cadre d’un exemple simple, un certain
nombre de techniques sont décrites qui devraient éclaircir ces conjectures.

1. Introduction

The twistor theory associated to flat spacetime may be summarized as follows [1–
5]. First the geometry. We start with a complex vector space T , called twistor space,
of four complex dimensions, equipped with a pseudo-hermitian sesquilinear form K

of signature (2, 2). For 1 ≤ n ≤ 4, denote by Gn the Grassmannian of all subspaces
of T of dimension n. Then we have a decomposition Gn =

⋃
p+q+r=n G(p,q,r), where

for each V ∈ Gn, p, q and r are non-negative integers such that p + q + r = n

and p ≤ 2 is the maximal dimension of a subspace of V on which K is positive
definite, whereas q ≤ 2 is the maximal dimension of a subspace of V on which K is
negative definite. Each G(p,q,r) is an orbit of the natural action of the pseudo-unitary
group U(K), associated to K, acting on Gn (U(K) is isomorphic to U(2, 2)). When
n = 1, we put PT = G1, PT + = G(1,0,0), P T− = G(0,1,0) and P N = G(0,0,1),
so PT = PT + ∪ P T− ∪ PN . PT is a complex projective three-space and P T±

are open submanifolds of P T , separated by the closed submanifold PN , which has
real dimension five. In the language of CR geometry, PN is the hyperquadric in
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complex projective three-space, with Levi form of signature (1, 1). When n = 2, the
decomposition of the four complex dimensional space CM = G2 has six pieces. Three
are open submanifolds: M++ = G(2,0,0), M−− = G(0,2,0) and M+− = G(1,1,0).
Another is a closed subset, of real dimension four: M = G(0,0,2). The other two,
M+ = G(1,0,0) and M− = G(0,1,0) each have real dimension seven and have M as
their boundary. The boundary of M++ is M+ ∪ M , of M−− is M− ∪ M and of
M+− is M+∪M−∪M . Each point of CM is a projective line in PT . Then M++,
M−−, M+−, M± and M are, respectively, the spaces of projective lines that lie
entirely in PT +, lie entirely in PT−, cross from PT + to P T−, touch PN at one
point and otherwise lie in PT±, lie entirely inside PN . G3 is isomorphic to dual
projective twistor space, the projective dual of PT and has three pieces, G(2,1,0),
G(1,2,0) and G(1,1,1).

The Klein correspondence embeds CM as a quadric hypersurface in the projective
space of Ω2T , the exterior product of T with itself. As such it inherits a natural
conformally flat complex holomorphic conformal structure. Two points of CM are
null related if and only if their corresponding lines in P T intersect. Then CM is
the complexification of M and the conformal structure of M is real and Lorentzian.
M is a conformal compactification of real Minkowski spacetime. If a specific point
I of M , is singled out, then on the complement MI of the null cone of I, M has
a canonical flat Lorentzian metric, and MI (of topology R4) may be regarded as
Minkowski spacetime.

With respect to the real Minkowski space MI , the imaginary part y, of the position
vector of a finite point of CM , is canonical. Then M++, M−−, M+−, M+ and
M− are the sets of all points of CM , for which y is respectively, past pointing
and timelike, future pointing and timelike, spacelike, past pointing and null, future
pointing and null.

Each point of P T (called a projective twistor) may be represented as a completely
null two-surface in CM . This surface intersects M , if and only if the projective
twistor lies in PN and then the intersection is a null geodesic. The induced mapping
from PN to the space of null geodesics in M turns out to be a natural isomorph-
ism, yielding the key fact that the space of null geodesics in M is naturally a CR

manifold, such that there is a one-to-one correspondence between points of M and
Riemann spheres embeddded in the CR manifold. The null cone of I, called scri, is
an asymptotic null hypersurface for the Minkowski spacetime. There are now three
different kinds of null cones: the null cone of a finite point (a point of MI), scri
itself, which has no finite points and the null cone of a point of scri, distinct from I.
This latter kind of cone intersects scri in a null geodesic and intersects MI in a null
hyperplane.

Analytically, we find that the information in solutions of certain relativistic field
equations on M or on CM is encoded in global structure in PT : for example, the
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first sheaf cohomology group of suitable domains in PT with coefficients in the sheaf
of germs of holomorphic functions on PT corresponds to the space of solutions of the
anti-self-dual Maxwell equations on the corresponding domain in CM . In particular
for the domains PT + and PT−, the solutions are global on M++ and M−− respect-
ively. For solutions in M only we use instead CR cohomology on subsets of PN .
This has the key advantage that non-analytic solutions are encompassed. If we pass
to suitable vector bundles over PT , or over PN , then we encode the information of
solutions of the anti-self-dual Yang-Mills equations. Also each holomorphic surface
in PT intersects PN in a three-space. This space gives rise to a shear-free null con-
gruence in Minkowski spacetime and all analytic shear free congruences are obtained
this way. Non-analytic shear-free null congruences can be constructed. In general,
they appear to be represented by holomorphic surfaces in either PT +, or PT−, that
extend to the boundary PN , but no further: such surfaces are said to be one-sided
embeddable.

Given this elegant theory for flat spacetime, it is natural to ask to extend the theory
to curved spacetime. Here a fundamental obstacle immediately arises, even for real
analytic spacetimes. The twistors in flat spacetime are interpreted as completely
null two-surfaces and it is easy to prove that such surfaces can exist, in the required
generality, if and only if the spacetime is conformally flat. In the language of the
Frobenius theorem, the twistor surfaces are described by a system of one-forms and
the integrability of the system forces conformal flatness. Penrose realized that if the
dimension was reduced by one, then the integrability problem would be overcome
and a twistor theory could then be constructed [3]. Specifically, the curved analogue
of the twistor distribution is integrable when restricted to the spin bundle over a
hypersurface in spacetime, so each hypersurface in spacetime has an associated twistor
theory.

If the spacetime is asympotically flat, then there are attached to the spacetime,
two asymptotic null cones, one in the future and one in the past, called scri plus and
scri minus, respectively. Newman and Penrose were able to completely analyze the
twistor structures of these spaces, called H-spaces [6, 7, 8, 10, 12]. Each projective
twistor is represented in the surface by an appropriate complex null geodesic curve (if
pa is tangent to the curve and if na is the normal to the surface, then necessarily the
outer product p[anb] is either self-dual or anti-self-dual; for twistors this outer product
must be anti-self-dual; the self-dual alternative gives the “dual” or “conjugate” twistor
space; the information in each space is the same). Then the space of such curves is
three complex dimensional, as in the flat case. The space is fibered over a complex
projective one-space (a Riemann sphere) and in favorable circumstances, there is a
four complex parameter set of sections of the fibering (so each section is a Riemann
sphere embedded in the projective twistor space) [21]. This gives a curved analogue
of the space CM of flat twistor space. Just as for flat space, a complex conformal
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structure is determined by the incidence condition for the holomorphic sections and
a preferred holomorphic metric may be defined in this conformal class. This metric is
then shown to be vacuum and to have anti-self-dual Weyl curvature. Finally there is
a non-projective twistor space obtained by propagating a spinor along the projective
twistor curve and this non-projective space has a pseudo-Kähler structure, K, whose
associated metric is Ricci flat. We then have curved analogues of some of the various
spaces G(p,q,r) discussed above. In particular, the vanishing of K determines a CR

hypersurface in the twistor space, which, in turn, may be interpeted as the bundle of
null directions over the asymptotic null hypersurface of the spacetime.

The success of the asymptotic twistor theory of Newman and Penrose raises the
question of extending the theory to the finite realm. Here one notes that the asymp-
totic twistor theory is still rather special in that first, scri is a null hypersurface
and secondly, that it is shearfree. For a null hypersurface the hypersurface twistor
curves are complex null geodesics in the surface, if and only if the surface is shearfree.
Geometrically, shearfreeness amounts to the fact that the complexification of scri is
foliated by a one complex parameter set of completely null two-surfaces, which can-
not exist away from infinity except for certain hypersurfaces in algebraically special
spacetimes. Nevertheless one might anticipate that some sort of deformation of the
Newman-Penrose theory is required. Indeed, for twistor spaces associated to spacelike
hypersurfaces, this is the case, if analyticity is assumed [9].

In recent seminars, I have suggested that the Newman-Penrose picture breaks
down, at least, for the properly constructed twistor spaces of finite null cones [17–
20], the mechanism for the breakdown being provided by the Sachs equations [32].
These ideas are detailed in the appendix here. Instead I suggest that the twistor
spaces of these null cones will be complex manifolds more like those that appear in
string theory and that these twistor spaces will then provide a link between the string
theory and spacetime theory. Specifically in string theory, complex manifolds with
isolated compact Riemann spheres (or surfaces of higher genus) play an important
role. Essentially, I am saying that the spheres of string theory are to be identified
conceptually and theoretically with isolated spheres in the null hypersurface twistor
spaces. String theorists assert that their theory incorporates gravity. To the limited
extent that I understand their theory, I would respond that they may well have
gravitational degrees of freedom in the theory, in the sense for example that they
consistently construct models of gravitating particles, but they do not yet incorporate
all the subtleties of the Einstein theory and that it may be that a more complete
theory will require a unification of string-theoretic, twistor-theoretic and other ideas.
In the new theory, time asymmetry would be natural. Also even “local” physics would
depend via the structure of null cone hypersurface twistor spaces on the global past of
the locality. This would apparently mean that there would be very subtle deviations
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from PCT invariance in local physics, the main point here being that the global
structure of past null cones differs from that of future null cones.

In trying to analyze whether or not these conjectures are in any way sensible, we
should be careful to frame the discussion properly. Also we should realize that we
are in a no-lose situation. Any progress in this analysis, whether positive or negative,
relative to these conjectures, will result in substantial gains in knowledge. Certainly
global questions come into play; for example C3 and complex projective three-space
differ only at “infinity”, but the former has no embedded Riemann spheres, whilst
the latter has a four-parameter set. Also, as in flat space, there are many kinds
of null cone hypersurfaces; the theory of each kind will have its own flavor. The
list includes the past and future null cones of a finite point; null cones avoiding
singularities, null cones of points in or on horizons; cosmological null cones; “virtual”
null cones: scri plus, scri minus, horizons, null cones of singular points, of points
of scri, of points beyond scri. Unfortunately, when trying to construct examples,
one is practically forced to use analytic spacetimes, whereas the key to the Einstein
theory is its hyperbolic nature, which truly can be exposed only in a non-analytic
framework. So one must instead adopt the following philosphical schema: when
working with analytic spacetimes, avoid any construction that has no hope of a non-
analytic analogue; also avoid bringing in any information which in a non-analytic
situation would violate causality. In particular, this entails that we should emphasize
the role of the CR twistor manifolds at every opportunity.

The present work gives the first example of the twistor theory of null hypersurfaces,
for the case of a shearing null hypersurface. Even in the very simple case, discussed
here, the computations are somewhat non-trivial and at various steps were aided
by the Maple algebraic computing system. The title of this work refers to the idea
prevalent in quantum field theory that dynamics proceeds along the null cone, progress
in a timelike direction being made as a zigzag along various null cones, alternately
future and past pointing. If my conjectures have any sense, the analogous idea in
string theory is chains or ensembles of manifolds of Calabi-Yau type, connected by
webs of mirror symmetries. Here I confine myself to working out some of the relevant
formulas of the twistor theory. In particular an example of twistor scattering is
constructed, I believe for the first time in the literature. The scattering in question
depends essentially on the spacetime not being conformally flat. Two null cones
intersect in a two-surface. A twistor curve of one cone meets the two-surface at one
point. The attached spinor to the curve then naturally gives rise to a new twistor
curve on the second null cone. This gives rise to a local diffeomorphism between the
two twistor spaces, this diffeomorphism being the Zitterbewegung.

It seems possible, although I do not yet have a proof, that this scattering will
be feasible even in the non-analytic case, at least for suitable spacetimes and thus
be consistent with my overall philosophy. This would entail that the twistor CR
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structures of these null cones, even in the non-analytic case, would be at least one-
sided embeddable: the null twistors of cones intersecting a given cone, coming from
the domain of dependence of the given cone, would provide the non-null twistors for
the one-sided embedding of the CR structure associated to the given hypersurface.

The metric studied here is the metric 2(dudv− (dx)2 − u−1(dy)2). This is non-flat
of type N and although it is not vacuum, it is conformal to vacuum, which is all
that the twistor theory really needs. It is perhaps the fact that it is only conformal
to vacuum that explains why I and other twistor theorists have not examined this
metric in detail before. Rather strangely, the conformal factor to take the metric to
vacuum is transcendental in u, involving the factor u

√
10/2. In section two below,

the connection and curvature of the metric are obtained. In sections three and four,
the geodesic equations are solved and the null cones are constructed. In section five,
spinors are introduced and the spin connection and curvature are obtained. In section
six, it is shown how to rescale the metric to obtain a vacuum metric. In section seven,
the Cartan conformal connection is obtained and in that language, it is again shown
how the metric is conformal to vacuum.

In section eight, the spin connection is lifted to the spin bundle and the Fefferman
conformal structure of the hypersurface twistor structures is found. It is a key fact that
the structure of each surface is controlled by the tensor of equation (8.5), restricted
to the hypersurface. In section nine, the restriction of the tensor to the spin bundle
above any null cones is given and it is shown how the tensor blows up as the spinor
points up the null cone. In section ten, the vector field defining the twistor structure of
each null cone is written down and the vector field is shown to be explicitly integrable.
However at this point a snag arises, in that the final integrals (for the quantities X
and Y of equation (10.4)) are elliptic. To avoid dealing with these elliptic integrals at
this stage, we restrict our investigations to asymptotic null cones: these are the limits
of ordinary null cones as the u-co-ordinate of the vertex goes to zero. They form a
space of co-dimension one in the space of all null cones, so are similar in nature to
the null cones of points of scri in Minkowski space.

The remaining sections deal only with these limiting null cones. This has the
drawback that any two of these cones have the same time orientation, so that their
intersection is never compact. We have yet to find a calculable example where two
shearing null cones intersect in a compact region.

In section eleven, the twistor space is studied in detail and it is shown that a six-fold
covering of the twistor space may be realized as the compact algebraic hypersurface
TW 6 + G7 − Z2H5 = 0, in the complex four-dimensional projective space, with
co-ordinates given by the ratios of the quantities (T,W,Z,G,H). This is the first
main result of this work. So at the complex level, we are now able to examine every
aspect of the usual twistor constructions in this space: sheaf cohomology, coherent
sheaves, etc. However our main concern is with the CR aspects of this space. So, in
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section twelve, we calculate the pseudo-Kähler scalar of the twistor space, following
the prescription of Penrose [3]. The corresponding Kähler metric is explicitly given.
The Ricci curvature of the metric is calculated and found to be non-zero. This is
perhaps unexpected in that, in all previously known cases, the metric was found to be
Ricci flat. However it is in line with an, as yet unpublished, difficult calculation of the
author and Lionel Mason: we showed that the Fefferman-Graham obstruction of the
Fefferman conformal structures of general twistor hypersurface structures is non-zero
and is the magnetic part of the Weyl curvature evaluated on the hypersurface [35].
It remains to understand the meaning of the Ricci curvature. In the formula for the
Kähler scalar, transcendental powers with exponent

√
10 again arise, indicating that

the scalar stores the information that the spacetime metric is conformal to vacuum.
This is not too surprising, since the formula uses the Cartan conformal connection,
which is sensitive to the Ricci tensor.

Finally, in section thirteen, the Zitterbewegung is calculated explicitly. It is shown
that given the twistor and its scattered twistor, their twistor curves intersect at a
unique point and, for this example, the scattering equations are completely algeb-
raic. Summarizing, we have constructed explicitly a complex manifold that should
contain a hypersurface of dimension nine in the projective “twistor-string space”, or
equivalently a hypersurface of dimension eleven of the non-projective “twistor-string
space”, or from the real point of view, a hypersurface of dimension eight of the nine-
dimensional space of projective null cone hypersurface twistors, or of dimension ten
of the eleven-dimensional space of non-projective null cone hypersurface twistors. Ul-
timately by studying the elliptic integrals of section ten we should be able to extend
these constructions off the hypersurface.

2. The metric and its curvature

We consider a spacetime (M , g), where the manifold M is topologically R4, with
co-ordinates (u, v, x, y) ∈ R4 (where u > 0) and with metric, g:

g = 2(dudv − (dx)2 − u−1(dy)2) = 2(ln− ξ2 − η2),

l = du, n = dv, ξ = dx, η = u−1/2dy.(2.1)

For the exterior derivatives of the tetrad forms, (l, n, ξ, η), we have:

(2.2) dl = dn = dξ = 0, dη = −(2u)−1lη.

The tetrad vector fields are given as follows:

(2.3) l∗ = ∂v, n
∗ = ∂u, ξ

∗ = −2−1∂x, η
∗ = −2−1u1/2∂y.

The Levi-Civita connection, d, associated to the metric is given as follows:

(2.4) dla = 0, dna =
1
u
ηηa, dξa = 0, dηa =

1
2u
ηla.
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Here and in the following, we use abstract tensor (or spinor) indices. Also d is the
covariant exterior derivative. This connection is metric preserving:

dgab = 2d(l(anb) − ξaξb − ηaηb) = 0

and is manifestly torsion-free, so it is the Levi-Civita connection. Applying d to
equation (2.4), we get:

(2.5) d2la = 0, d2na = − 3
2u2

lηηa, d
2ξa = 0, d2ηa = − 3

4u2
lηla.

In general, we have d2va = −Rabv
b, where the curvature two-form Rab is given as

follows:

(2.6) Rab = − 3
u2

(lηl[aηb]).

Introduce the canonical one-form:

(2.7) θa = lna + nla − 2ξξa − 2ηηa.

Then the torsion-free condition is expressed by the formula dθa = 0. Dually, introduce
the derivation of forms δa, such that δaθb = δb

a, where δb
a is the Kronecker delta tensor.

Then we have the Ricci form Rb = δaRab and the Ricci scalar, R = δbRb given as
follows:

(2.8) Rb = δaRab =
3
4u2

llb, R = 0.

The Weyl two-form is Cab = Rab − θ[aRb] + R
6 θaθb. It obeys the trace-free condition

δaCab = 0. Here Cab is given as follows:

(2.9) Cab =
3
2u2

(lξl[aξb] − lηl[aηb]).

3. The geodesic spray

The canonical one-form α on the cotangent bundle of the spacetime may be written:
α = ql + rn + sξ + tη, where (q, r, s, t) ∈ R4 are fibre co-ordinates for the cotangent

bundle. Then the symplectic form ω = dα = −ldq − ndr − ξds − ηdt − t

2u
lη. The

Poisson form, P , which inverts ω is given as follows:

(3.1) P = n∗∂q + l∗∂r − 2ξ∗∂s − 2η∗∂t −
t

2u
∂q∂t.

The Hamiltonian for the geodesic spray is the function H = qr − s2

4
− t2

4
. The

Hamiltonian vector field giving the geodesic spray is the vector field H∗ = P (dH)
and is given as follows:

(3.2) H∗ = ql∗ + rn∗ + sξ∗ + tη∗ +
t

4u
(2r∂t + t∂q).
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The geodesic equations are then as follows:

q̇ =
t2

4u
, ṙ = 0, ṡ = 0, ṫ =

rt

2u
,

u̇ = r, v̇ = q, ẋ = −s
2
, ẏ = − tu

1/2

2
.(3.3)

Generically, we may take r �= 0 and u as parameter. The solutions of the geodesic
equations then follow:

x = x0 −
s

2r
(u− u0), y = y0 +A0(u2 − u2

0),

v = v0 + 2A2
0(u

2 − u2
0) + (u− u0)(

H

r2
+

s2

4r2
),

q = 4A2
0ru+

H

r
+
s2

4r
, t = −4A0ru

1/2.(3.4)

Here u0, v0, x0, y0, A0, r, s and H are constants. For timelike geodesics, H > 0 and
for null geodesics, H = 0. The special case when r = 0 is also easily solved, with
the following result: u, r, s and t are necessarily constant. If t �= 0, then H < 0 so
the geodesic is necessarily spacelike; the variable q may be used as a parameter along
the geodesic and we have v = v0 + (8u)−1t2(q2 − q20), y = y0 − 2t−1u3/2(q − q0) and
x = −2ust−2(q − q0) + x0, where q0, v0, x0 and y0 are constants. If t = 0, but s �= 0,
again the geodesic is spacelike; also q and y are constant and x may be used as a
parameter. Then v = −2qs−1(x − x0) + v0, with v0 and x0 constant. If s = t = 0,
but q �= 0, then v is arbitrary and we have q, x and y constant; the geodesic is null.
Finally if q = s = t = 0, the geodesic reduces to a point.

4. The null cones

Consider the collection of all null geodesics passing through the point (u0, v0, x0, y0),
where u0 > 0. These are given by equation (3.4), with H = 0. Eliminating the quant-
ities A0 and s/r from the equations for x, y and v, we obtain the following equation
for the null cone:

(4.1) 0 = (u− u0)(v − v0)− (x − x0)2 − 2
(y − y0)2

u+ u0
.

Note that from the discussion following equation (3.4), the only null geodesic through
(u0, v0, x0, y0) that is not described by equation (3.4) is the geodesic with u = u0,
x = x0, y = y0 and v arbitrary. Clearly this geodesic lies on the hypersurface given
by equation (4.1), so equation (4.1) does describe the complete null cone. Note that
the formal limit as u0 → 0 makes sense in equation (4.1), even though the the “null
cone” has no vertex in this case (since the metric is not defined when u = 0). For later
work, it is more convenient to divide this equation by u− u0 and write the equation
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in the form: N = 0, where the function N is given for any 0 < u �= u0 by the formula:

(4.2) N = v − v0 −
(x− x0)2

u− u0
− 2

(y − y0)2

u2 − u2
0

.

The differential of this equation gives the equation of the normal dN of the null cone:

dN = n+ l(B2 + C2) + 2Bξ + 2Cη,

B = −x− x0

u− u0
, C = −2u

1/2(y − y0)
u2 − u2

0

.(4.3)

Again we may take the limit formally as u0 → 0, showing that the hypersurface given
by the following equation is everywhere regular and null:

(4.4) 0 = v − v0 − u−1(x− x0)2 − 2u−2(y − y0)2.

This hypersurface is topologically R3: it resembles the space obtained by deleting a
generator from the top half of a null cone. The hypersurface twistor spaces of the
hypersurfaces of (4.4) will be constructed below.

5. The spin connection

We pass to spinors by introducing a spin basis oA and ιA and a conjugate spin
basis oA′ and ιA′ , related to the tetrad (la, na, ξa, ηa) as follows:

(5.1) oAoA′ = la, ιAιA′ = na, oAιA′ = ξa + iηa, ιAoA′ = ξa − iηa.

We have oAιB − oBιA = εAB = −εBA and oA′ιB′ − oB′ιA′ = εA′B′ = −εB′A′ ,
where the spinor symplectic forms εAB and εA′B′ are related to the metric by the
formula: gab = εABεA′B′ . We raise or lower spinor indices according to the scheme:
vAεAB = vB, vBε

AB = vA, vA′
εA′B′ = vB′ and vB′εA′B′

= vA′
, for any spinors vA

and vA′
. Note that oAι

A = 1 and oA′ιA
′
= 1. The spin connection is now given as

follows:

doA = 0, dιA = − i

2u
ηoA, doA′ = 0, dιA′ =

i

2u
ηoA′ ,

d2oA = 0, d2ιA =
3i
4u2

lηoA, d2oA′ = 0, d2ιA′ = − 3i
4u2

lηoA′ .(5.2)

The spinor curvature two-forms, RAB and RA′B′ are determined by the equations
d2vA = RABv

B and d2vA′ = RA′B′vB′
, for any spinors vA and vA′

. From equation
(5.2), they are given as follows:

(5.3) RAB =
3i
4u2

lηoAoB, RA′B′ = − 3i
4u2

lηoA′oB′ .

The curvature two-form is given in terms of the spinor curvature forms by the formula:
Rab = εABRA′B′ + εA′B′RAB. The Ricci spinor form is given by the formula

−δBA′RB
A = − 3i

4u2
oAo

BδBA′(lη) =
3i
4u2

loAo
BηBA′ =

3
8u2

lla.
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ZITTERBEWEGUNG 287

The Weyl spinor form CAB is given by the decomposition CB
A = RB

A + θBB′
PAB′ ,

where the (indexed) one-form Pa is chosen such that δbCB
A = 0. Then CAB and Pa

are as follows:

(5.4) CAB =
3
8u2

oAoB(lξ + ilη), Pa =
3
8u2

lla.

The spinor decompositions of the one-form θa and of the two-form θaθb are as follows:

θa = lιAιA
′
+ noAoA′ − (ξ − iη)oAιA

′ − (ξ + iη)ιAoA′
,

θaθb = εABΣA′B′
+ εA′B′

ΣAB, εA′B′θaθb = 2ΣAB = 2ΣBA,

ΣAB = (ξn− iηn)oAoB − (ln+ 2iξη)o(AιB) + (lξ + ilη)ιAιB.(5.5)

We have CAB = CABCDΣCD, where the Weyl spinor CABCD is given by the formula:

CABCD =
3
8u2

oAoBoCoD.

In particular this shows that the metric is everywhere of type N . Note that 2l[aξb] +
2il[aηb] = oAoBεA′B′ and that Cab = CABεA′B′ + CA′B′εAB, where CA′B′ is the
complex conjugate of CAB .

6. The conformal field equations

Consider a conformally related spin connection, D, of the following form:

(6.1) DvA = dvA + γoAoB′θbvB , DvA′ = dvA′ + γoA′oBθ
bvB′ .

Here the real-valued function γ depends only on the variable u. Then Dθa = 0, so D
is torsion-free and if ρ is a (non-zero) function of u only, we have

ρ2D(ρ−2gab) = 2(γ − ρ′

ρ
)lgab,

so D is the Levi-Civita connection of the conformally rescaled metric ρ−2gab, where
ρ′ = γρ. We have D2vA = d2vA + oA(γ′ + γ2)loB′θbvB , so the new curvature spinor
SAB is given by the formula

SAB = RAB + oA(γ′ + γ2)loB′
θB′B

= RAB − 2oA(γ′ + γ2)loB′
(ξξBB′ + ηηBB′)

= RAB + oAoB(u−1γ′ + γ2)l(ξ − iη).

The new Ricci spinor is then given by the formula lla
( 3
8u2

−γ′−γ2
)
. In particular, for

a suitable choice of γ, the conformally rescaled metric is Ricci flat. In fact, putting

γ = ρ′/ρ, we need ρ′′ − 3
8u2

ρ = 0. This linear equation has the general solution

ρ = au(2+
√

10)/4 + bu(2−
√

10)/4, where a and b are constants. In particular we have
established that the given metric g is conformally related to a Ricci flat metric, albeit
with a strange conformal factor. We can confirm this result explicitly as follows.
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For real a �= 1/2, consider the conformally related metric h = 1
2u

−2ag. Make the
co-ordinate transformation: u �→ u1/(1−2a), v �→ 2(1− 2a)v+ au−1x2 +(a+ 1

2 )u
−1y2,

x �→ xua/(1−2a) and y �→ yu(2a+1)/2(1−2a). Then we find:

(6.2) h=2dudv−(dx)2−(dy)2+
(
a(a−1)x2+

(
a+

1
2
)(
a−3

2
)
y2

)( du

(1−2a)u
)2
.

In this form, the conformally rescaled metric is recognizable as a standard null solution
of the vacuum Einstein equations, provided the last term is harmonic in the variables
x and y, so provided the last term is a multiple of x2 − y2. This gives the condition
on a: 0 = a(a− 1) + (a+ 1

2 )(a−
3
2 ) = 2((a− 1

2 )
2 − 5

8 ). So if a = 2±
√

10
4 , the rescaled

metric is vacuum, in agreement with the above discusion. Note that the new metric
is nowhere flat, since the Weyl curvature never vanishes.

7. The Cartan conformal connection

The Cartan conformal connection may be formulated conveniently in terms of local
twistor transport. In a fixed conformal frame, a local twistor zα is represented by a
pair of spinors, zα = (zA, zA′). Denote by D the local twistor connection and by
d the trivial extension of the spinor connection to the local twistor bundle, so that
dzα = (dzA, dzA′). Then we have:

Dzα = dzα − Γα
βz

β = (dzA − iθAB′
zB′ , dzA′ + iPBA′zB),

ΓA
B = 0, ΓB′A = iθB′A, ΓB′

A′ = 0, ΓBA′ = −iPBA′ .(7.1)

Note that D preserves twistor conjugation, which sends the twistor zα to its conjugate
zα = (zA, z

A′
). This conjugation is pseudo-hermitian of type (2, 2). The group

of the connection is a subgroup of SU(2, 2), which is the spin group for SO(2, 4),
which in turn is the group relevant for the traditional construction of the Cartan
conformal connection in relativity. The curvature twistor Tα

β is given by the formula:
D2zα = Tα

β z
β. If we write d2zα = Sα

β z
β, then we have Tα

β = Sα
β − dΓα

β −Γγ
βΓ

α
γ . Here

SA
B = RA

B , S
B′A = 0, SBA′ = 0 and SB′

A′ = −RB′

A′ . Then TA
B = RA

B + θAB′
PBB′ = CA

B ,
so Tα

β is given as follows:

TA
B = CA

B , TB′A = 0, TBA′ = idPBA′ , TB′

A′ = −CB′

A′ .(7.2)

For the present metric, using equation (5.4), we find dPa = 0, so we have:

Dzα = (dza − iθAB′
zB′ , dzA′ +

3i
8u2

oA′ loBz
B),

D2zα =
3
8u2

((lξ + ilη)oAoBz
B, (lξ − ilη)oA′oB′

zB′) = Tα
β z

β,

TA
B =

3
8u2

(lξ + ilη)oBo
A = −TA′

B′ , TB′A = 0, TBA′ = 0.(7.3)

Note that the curvature Tα
β is pseudo-hermitian and tracefree. Using the local twistor

connection, the conformal field equations boil down to the existence, or otherwise, of
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a suitable skew twistor Iαβ = −Iβα, such that DIαβ = 0. Here we may put IAB =
pεAB, IB

A′ = iqoA′oB and IA′B′ = 0, where p and q are real functions of the variable
u only. Note that IαβIαβ = 0. Then the condition DIαβ = 0 gives the relations:
p′ = q and q′ = 3

8u
−2p, with the general solution p = au(2+

√
10)/4 + bu(2−

√
10)/4 and

q = p′, where a and b are arbitrary constants, showing, in particular that the metric
is conformal to vacuum, in agreement with the results of the previous section.

8. The spin bundle

We pass to the spin bundle, where a point of the (primed) spin bundle is labelled
by its co-ordinates s and t relative to the spin basis (oA′ , ιA′). The canonical section
πA′ and its differential dπA′ are then given as follows:

(8.1) πA′ = soA′ + tιA′ , dπA′ =
(
ds+

i

2u
tη

)
oA′ + (dt)ιA′ .

Dually we have the horizontal vector field ∂a on the spin bundle, which are required
to annihilate dπA′ and dπA (where πA represents the complex conjugate of the spinor
πA′). In terms of the co-ordinates s and t, the vector field ∂a is given explicitly by
the formula:

(8.2) ∂a = lan
∗ + nal

∗ − 2ξaξ∗ − 2ηaη
∗ − i

2u
ηa(t∂s − t∂s).

Here the tetrad vector fields (l∗, n∗, ξ∗, η∗) are given in equation (2.3). There are also
canonical vertical vector fields, ∂A′

and its conjugate ∂A, such that ∂A′
πB′ = δA′

B′ and
∂A′

πA = 0. Explicitly, we have the formulas:

(8.3) ∂A′
= −oA′

∂t + ιA
′
∂s, ∂A = −oA∂t + ιA∂s.

The contact form of the cotangent bundle pulled back to the spin bundle is the one-
form:

(8.4) θaπA′πA = ssl + ttn+ st(ξ − iη) + ts(ξ + iη).

The contact form and its exterior derivative are killed by the vector field πA′
πA∂a,

which is the spinor version of the null geodesic spray and by the vector field i(πA′∂A′−
πA∂

A), which generates spinor phase transformations, leaving the vector πA′πA in-
variant. Finally, we introduce the Fefferman tensor, F , which is a symmetric covariant
tensor of rank two on the spin bundle, which, when restricted to the spin bundle over
each hypersurface in spacetime, determines the twistor CR structure of that hyper-
surface. We have:

(8.5) F = −iθa(πAdπA′ − πA′dπA).

The tensor F is annihilated by the vector fields πAπA′
∂a and πA′∂A′

+ πA∂
A.
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9. The null cone spinor geometry

Using spinors, the null cone differential of equation (4.3) is written as follows:

(9.1) dNa = αAαA′ , αA = ιA + (B − iC)oA, αA′ = ιA′ + (B + iC)oA′ .

Here the functions B and C are as given in equation (4.3). Note that oAα
A = 1.

Restricted to the null cone, we have θaαAαA′ = 0, whence θaαA = θαA′
and θaαA′ =

θαA, where θ is a one-form. Explicitly we have on the null cone:

(9.2) θ = θaαAoA′ = l(B − iC) + ξ − iη.

Computing the derivative of αA′ we have:

(9.3) dαA′ = oA′γ, γ =
1

4u(u2 − u2
0)
(θ(u− u0)2 − θ(u2

0 + 2u0u+ 5u2)).

Using equations (5.3), (9.2) and (9.3), we find the following exterior derivatives:

dγ = RA′B′αA′
αB′

= − 3i
4u2

lη,

dθ = −lγ =
lξ

u− u0
− i

lη(u2
0 + 3u2)

2u(u2 − u2
0)
.(9.4)

Using the form θ, we may write out the canonical one-form θa on the null cone as
follows:

(9.5) θa = lαAαA′
− θoAαA′

− θαAoA′
.

The Fefferman conformal structure for the spin bundle over the null cone is given by
the formula:

F = 2	(θaπAdπA′) = 2	(lp(dp− qγ)− θq(dp− qγ)− θpdq)).

Here we have put p = πA′αA′ �= 0 and q = πA′oA′
. Now restrict to |p|2 = 1 and put

q = tp and dp = ipdz, with z real and t complex. Then we have

F = 2(l− tθ − tθ)dz + 2	(−ltγ + θttγ − θdt).

To make this formula more explicit, we first introduce new co-ordinates X and Y ,
defined, for u �= u0:

(9.6) X =
x− x0

u− u0
, Y =

y − y0
u2 − u2

0

.

Then θ and γ are expressed in these co-ordinates simply as follows:

(9.7) θ = (u−u0)dX− i

u1/2
(u2−u2

0)dY, γ = − dX− i

2u3/2
(u2

0+3u2)dY.

Next write t = r + is, with r and s real numbers. Then F may be written out
explicitly:

F = 2dudz − 4r(u − u0)dXdz + 4su−1/2(u2 − u2
0)dY dz

+ 2sdudX + ru−3/2(u2
0 + 3u2)dudY − (r2 + s2)u−3/2(u− u0)3dXdY

− 2u−1/2(u2 − u2
0)dY dr − 2(u− u0)dXds.(9.8)
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The limiting metric, when u0 → 0, will be denoted F0. We have:

F0 = 2dudz − 4rudXdz + 4su3/2dY dz + 2sdudX + 3ru1/2dudY

− (r2 + s2)u3/2dXdY − 2u3/2dY dr − 2udXds.(9.9)

Note that for each of these metrics, the metric coefficients depend only on the variables
u, r and s, so the vector fields ∂z, ∂X and ∂Y are Killing vectors. Also, by inspection,
the vector field X∂X + Y ∂Y − r∂r − s∂s is a fourth Killing vector. The metric F0

always has signature (3, 3). The metric F also has signature (3, 3), unless u = u0,
when the signature drops to (1, 1). The restriction of the metric F to the subspace
spanned by the Killing vectors has signature (2, 2) unless u = u0 or r = s = 0. The
parameter t should be allowed to go to infinity, since the limit as t→ ∞ corresponds
to the vanishing of the co-ordinate p. We can see the behaviour of the metric as
t → ∞ by making co-ordinate replacements r �→ r/(r2 + s2) and s �→ −s/(r2 + s2).
Then

F �−→ 1
r2 + s2

(
2dudz − 4r(u − u0)dXdz − 4su−1/2(u2 − u2

0)dY dz

− 2sdudX + ru−3/2(u2
0 + 3u2)dudY − u−3/2(u− u0)3dXdY

− 2u−1/2(u2 − u2
0)dY dr + 2(u− u0)dXds

+ 4u−1/2(u2 − u2
0)dY

r2dr + rsds

r2 + s2
− 4(u− u0)dX

rsdr + s2dr

r2 + s2

)
.

Even as a conformal structure the metric coefficients blow up as (r, s) → (0, 0); but
if we make a co-ordinate change to polar co-ordinates r = m cosφ and s = m sinφ,
with m ≥ 0, then we have

m2F = 2dudz − u−3/2(u− u0)3dXdY

+ 2dm
(
u−1/2 cosφ(u2 − u2

0)dY − 2 sinφ(u − u0)dX
)

+m cosφ
(
− 4(u− u0)dXdz + u−3/2(u2

0 + 3u2)dudY + 2(u− u0)dXdφ
)

+m sinφ
(
− 4u−1/2(u2 − u2

0)dY dz − 2dudX + 2u−1/2(u2 − u2
0)dY dφ

)
.

Putting m = 0 in this latter expression we arrive at the metric

2dudz − u−3/2(u− u0)3dXdY + 2dm(u−1/2 cosφ(u2 − u2
0)dY − 2 sinφ(u − u0)dX).

So now the conformal structure is smooth atm = 0, but degenerate in the φ direction.
These pathologies reflect the degeneration of the twistor CR structure as the co-
ordinate p goes to zero, so as πA′ becomes proportional to the spinor tangent to the
null cone.

10. The twistor structure

The vector field defining the twistor structure of each null cone is the complex
vector field T = αAπA′

∂a, where αA (given by equation (9.1)) is the tangent spinor
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to the null cone, ∂a (given by equation (8.2)) is the horizontal vector field representing
the connection on the spin bundle and πA′ (given by equation (8.1)) is the tautological
indexed function on the spin bundle. Combining these various quantities gives the
following formula for T :

T =(ιA + (B − iC)oA)(soA′
+ tιA

′
)∂a = s(B − iC)l∗ + tn∗ + s(ξ∗ − iη∗)

+
1
4u

(s−Bt+ iCt)(t∂s − t∂s) + t(B − iC)(ξ∗ + iη∗)

=t∂u−s∂x+s(B−iC)∂v+
1
4u

(s−tB+itC)(2u∂x+2iu3/2∂y+t∂s−t∂s).(10.1)

We check that T is tangent to the null cone: then using co-ordinates (u, x, y) for the
null cone, we may drop the terms involving ∂v from T . Then the integral curves are
the solutions of the following differential system:

ṡ =
t

4u
(s− tB + itC), ṫ = 0, u̇ = t,

ẋ =
1
2
(−s− tB + itC), ẏ =

i

2
u1/2(s− tB + itC).(10.2)

To solve this system, define new variables X , Y and S, as follows:

(10.3) X =
x−x0

u−u0
, Y =

y−y0
u2−u2

0

, S = s−tB−itC = s+tX+2itu1/2Y.

The rationale for introducing X , Y and S is that they are constant along the gener-
ators of the null cone (lifted to the spin bundle in the case of S). Also S = πA′αA′

, so
S vanishes when the spinor πA′ points up the null cone. Then the system of equation
(10.2) simplifies to the following system:

ṫ = 0, Ṡ = tS
( 1
4u

− 1
2(u− u0)

− u

(u2 − u2
0)

)
,

u̇ = t, Ẋ = − S

2(u− u0)
, Ẏ =

iu1/2S

2(u2 − u2
0)
.(10.4)

Note that two independent obvious solutions of this system are (X,Y, S) = (1, 0, 0)
and (X,Y, S) = (0, 1, 0). However the third independent solution has

S = S0u
1/4(u+ u0)−1/2(u− u0)−1,

with S0 a non-zero constant. Inserting this expression into the other equations leaves
us with elliptic integrals for the quantities X and Y . These equations will not be
analyzed further here.

11. A limiting twistor space

We consider the simplified space obtained by putting u0 = 0 in equation (10.4).
Thus we analyze the following differential system, giving the twistor curves for the
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ZITTERBEWEGUNG 293

hypersurface of equation (4.4):

(11.1) ṫ = 0, u̇ = t, Ṡ = −5tS
4u

, Ẋ = − S

2u
, Ẏ =

iS

2u3/2
.

Here the co-ordinates are complex and we have to decide how to handle the square root
of u. One approach is to restrict to regions such that u is always close to being real
and positive. An alternative, which we adopt, is to introduce a co-ordinate change,
writing p = u−1/4. In the physical regime where u and p are real and positive these
co-ordinates are equivalent. Finally, we rescale the parameter along the curve by a
factor of 4, for convenience. Thus we study the system:

(11.2) ṫ = 0, ṗ = −tp5, Ṡ = −5tp4S, Ẋ = −2p4S, Ẏ = 2ip6S.

First we assume that t �= 0. Then we may take p �= 0 as a parameter for the curve
and we have the following constants of the motion:

(11.3) T = t, Z =
S

35p5
, G =

S

35
− t

X

14
, H =

Sp2

35
+ t

Y

10i
.

Here (G,H,Z, T ) ∈ C4 are complex parameters specifying the twistor curve and the
attached spinor πA′ = SoA′+tαA′ (more accurately: a local twistor (0, πA′), parallelly
propagated along the twistor curve, by the Cartan connection). The differentials of
the functions (G,H,Z, T ) are independent if and only if T �= 0, as is easily seen. So
provided T �= 0,these parameters also serve as local co-ordinates for the twistor space.
They are redundant for the description of the twistor curve only, which gives a point
of the projective twistor space and requires only the co-ordinate ratios (g, h, z) =
(G/T,H/T, Z/T ): scaling T by a non-zero complex number gives the same curve.
The degeneracy at T = 0 is also seen by putting T = 0 in equation (11.3). We then
have the relation Z2H5 −G7 = 0, so the surface T = 0 is not a hypersurface in the
parameter space. To construct co-ordinates which are valid around T = 0, we take
S �= 0 and either X or Y as a parameter and we study twistor curves defined near
X = X1 for some fixed X1, or near Y = Y2, for some fixed Y2.

Introduce the auxiliary functions q(X,S, t) and r(Y, S, p, t) defined by the formulas:

(11.4) q =
(
1− 5t

2S
(X −X1)

)1/5
, r =

(
1− 7it

2Sp2
(Y − Y2)

)1/7
.

Here q is holomorphic in (X,S, t) (with S �= 0) and is fixed by the requirement that
q takes the value 1 whenever X = X1, whereas r is holomorphic in (Y, S, p, t) (with
S �= 0) and is fixed by the requirement that r takes the value 1 whenever Y = Y2.
The domain of q is the set UX1 of all triples (X,S, t) ∈ C3, such that S �= 0 and

1 − 5t
2S

(X −X1) is not a non-positive real number. The domain of r is the set VY2

of all triples (Y, S, p, t) ∈ C4, such that Sp2 �= 0 and 1 − 7it
2Sp2

(Y − Y2) is not a

non-positive real number. On UX1 , we have | arg(q)| < π/5 and on VY2 , we have
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| arg(r)| < π/7. When X is the parameter, we have the following constants of the
motion:

s1 =
S

35
q5, p1 = pq, c1 = 35

t

S
q−5,

y1 =
Y

10i
+ p2(X −X1)

(q6 + q5 + q4 + q3 + q2 + q + 1)
14(q4 + q3 + q2 + q + 1)

.(11.5)

Here the twistor parameters are (s1, p1, c1, y1), with s1 �= 0 and p1 �= 0. Also
(p1, c1, y1) are the projective co-ordinates. The numbers s1, p1 and y1 are respect-
ively just the values of S/35, p and Y/10i at X = X1. Alternatively, with y as the
parameter, the constants are as follows:

s2 =
Sp2

35
r7, p2 = pr, d2 =

35t
Sp2

r−7,

x2 = −X

14
+ ip−2(Y − Y2)

(r4 + r3 + r2 + r + 1)
10(r6 + r5 + r4 + r3 + r2 + r + 1)

.(11.6)

Here the twistor parameters are (s2, p2, d2, x2), with s2 �= 0 and p2 �= 0. Also
(p2, d2, x2) are the projective co-ordinates. The numbers s2, p2 and x2 are respect-
ively just the values of Sp2/35, p and −X/14 at Y = Y2. We may compare these
co-ordinates with the co-ordinates given by equation (11.3) above. We have:

T = c1s1 = c2s2, Z = s1p
−5
1 = s2p

−7
2 ,

G = s1
(
1− c1X1

14
)
= s2(p−2

2 + c2x2),

H = s1(p2
1 + c1y1) = s2

(
1− i

c2Y2

10
)
.(11.7)

Now if T = 0, then c1 = 0; still we have the relation Z2H5 − G7 = 0, but in the
(s1, p1, y1, c1) co-ordinates, c1 = 0 is an ordinary hypersurface: the vanishing of c1
imposes no constraints on the other three co-ordinates. Given (T, Z,G,H), we may
solve equation (11.7) for s1, c1, p1 and y1 with the following result:

s1 = G+
TX1

14
, c1 =

T

G+ TX1
14

,

p1 =
(G+ TX1

14

Z

)1/5

, y1 =
H −

(
G+ TX1

14

)
p2
1

T
.(11.8)

This solution is valid provided T �= 0, G �= −TX1/14 and Z �= 0. Note that there
are then five solutions, such that if (s1, c1, p1, y1) is one solution, then all solutions
are (s1, c1, ρp1, y1 +

p2
1

c1
(1 − ρ2)), where ρ5 = 1 and ρ �= 1. This corresponds to the

fact, as seen from equation (11.3) that a twistor curve generically attains the same
x-value at five different points along the curve. We may also see this Z5 structure
directly in equation (11.4) above. Using the formulas of (11.4) but with q everywhere
replaced by ρkq also gives constants of the motion, for any integer k (but only for
k a multiple of five are the constants finite when q = 1). A similar story holds for
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the (s2, p2, x2, d2) co-ordinates. To understand the global nature of the twistor space,
we return to our original conserved quantities (T, Z,G,H) and add a new conserved
quantity, U , given as follows:

U =
S6

356

(
− iY

2p2
+
X

2

)
+
S5t

355

(
− Y 2

10p4
− 3X2

28

)
+

5S4t2

354

( 2iY 3

103p6
+

7X3

143

)

+
5S3t3

353

( Y 4

104p8
−7x4

144

)
−S

2t4

352

( iY 5

105p10
−21X5

145

)
−St

5X6

5(146)
+
t6X7

147
.(11.9)

Note that U is a homogeneous polynomial in the variables (s, t) of degree six. That
U is conserved follows immediately from equation (11.3) and the algebraic identity,
an immediate consequence of equation (11.9):

(11.10) Ut =
( S

35p5

)2(Sp2

35
− i

tY

10

)5

−
( S
35

− tX

14

)7

.

Now given a twistor curve, we may assign to the curve the five co-ordinates

(U, T, Z,G,H),

giving a map from the twistor space to the space C5. But the five co-ordinates are
related by the algebraic relation implied by equations (11.3) and (11.9):

(11.11) 0 = TU +G7 − Z2H5.

When T �= 0, these co-ordinates clearly suffice to parametrize the twistor curve. But
if T = 0, we have

Z =
S

35p5
, G =

S

35
, H =

Sp2

35
, U =

S6

356p2

(
− i

Y

2
+
Xp2

2

)

and as long as Z is not also zero, these co-ordinates again suffice to parametrize the
curve uniquely. Thus away from the set Z = T = 0, the twistor space is given by the
algebraic variety in C5 of equation (11.11). When both Z and T vanish, the attached
spinor πA′ of the twistor curve vanishes, which entails a separate treatment for the
twistor structure. This will not be analyzed further here. Finally we note that the
co-ordinates (U, T, Z,G,H) are homogeneous in the variables (s, t) (and therefore in
the spinor πA′ of degrees (6, 1, 1, 1, 1) and with those weights, the surface of (11.11) is
homogeneous of total degree seven. Therefore the projective twistor space is the hy-
persurface with equation (11.11), in the weighted four-dimensional complex projective
space of weights (6, 1, 1, 1, 1): the quotient of C5 with the origin deleted by the action
(U, T, Z,G,H) �→ (λ6U, λT, λZ, λG, λH) for all non-zero complex numbers λ. Note
that we may also picture the twistor space in an ordinary projective space: namely as
the algebraic hypersurface in CP 4, with homogeneous co-ordinates (W,T,Z,G,H)
and equation TW 6+G7−Z2H5 = 0, except that one should quotient by the obvious
action of the group of integers modulo six on the variable W .

The null twistor space is the set of curves that contain a real point: i.e for which
X , Y and u are real. Put g = G/T , h = H/T and z = Z/T , whenever T �= 0. We
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then have

p5 =
g − g

z − z
and p7 =

h+ h

z + z
,

so the null (projective) twistor space is the real hypersurface in C3 given by the
equation

(g − g

z − z

)7

=
(h+ h

z + z

)5

.

Clearing denominators, we find the following real polynomial equation of total degree
twelve for the hypersurface:

(11.12) M = i(g − g)7(z + z)5 − i(z − z)7(h+ h)5 = 0.

Using the co-ordinates (U, T, Z,G,H) and equation (11.10) and clearing denomin-
ators, the surface is given by a polynomial of degree twenty-two in the weighted
projective space. This should be contrasted with the standard hypersurface of flat
twistor space which is the hyperquadric and is described by a quadratic polynomial
in the twistor variables. The complexity of the present hypersurface is remarkable,
considering the simplicity of the original spacetime. Note that this surface has a high
degree of degeneracy when z = 0 is approached. This corresponds to the breakdown
of the twistor CR structure, when πA′ points along the null cone.

12. The Kähler scalar and its curvature

In the complexified spacetime, we consider the equation of parallel propagation of a
local twistor up the generators of the null cone. From section six above, the required
propagation equation is the restriction to the relevant generator of the equations
dzA = iθAB′

πB′ , dzA′ = − 3i
8u2 loA′oBz

B. But the restriction of θa to a generator
is proportional to αAαA′

, θa = ραAαA′
, for some ρ. By contracting this equation

with oA and oA′ , we deduce that ρ = du. Also along a generator, the pairs of spinors
(oA, αA) and (oA′ , αA′) are both parallely propagated and form normalized spin bases:
oAα

A = oA′αA′
= 1. Put zA = FoA +GαA and zA′ = HoA′ + JαA′ . Then we have

dzA = (dF )oA + (dG)αA = iθAB′
zB′ = iαAαB′

πB′du = iHαAdu

and

(dH)oA′ + (dJ)αA′
= dzA′ = − 3i

8u2
loA′oBz

B = − 3i
8u2

oA′Gdu.

The vector field L = αAαA′
∂a obeys L(X) = L(Y ) = L(u) − 1 = 0, so in the co-

ordinate system (u,X, Y ), we have L = ∂u. So in the co-ordinate system (u,X, Y ),
the quantities X and Y are fixed on a generator and all quantities only depend on
the variable u. Then the transport equations are as follows:

(12.1) dF = 0, dG = iHdu, dH =
−3i
8u2

Gdu, dJ = 0.
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So F and J are constant, H = −iG′ and G obeys the equation G′′ = 3
8u2G, where

a prime denotes differentiation with respect to u. Solving this equation gives G as
a linear combination of uα and uβ, where α = 2+

√
10

4 and β = 2−
√

10
4 . We choose

initial conditions so that at u = u1, we have (zA, zA′) = (0, πA′), where for the twistor
Z1 = (G,H,Z, T ) = t(g, h, z, 1) (with T = t), we have πA′ = SoA′ + tαA′ and S is
given in equation (11.3). The local twistor (0, πA′) is parallelly propagated along the
twistor curve with respect to the Cartan connection. Then the complete solution at
any point (u,X, Y ) of the generator is as follows:

zA =
i

α− β
πB′αB′

αA(uαuβ
1 − uβuα

1 ),

zA′ = πA′ +
1

α− β
πB′αB′

oA′(α(u−βuβ
1 − 1)− β(u−αuα

1 − 1)).(12.2)

In equation (12.2) it is understood that all spinors are parallelly propagated with
respect to the Levi-Civita connection along the generator to the relevant point (i.e.
their components are constant in the frames (oA, αA) and (oA′ , αA′)).

A dual twistor curve,W2, with parameters (G′, H ′, Z ′, T ′) = t′(g′, h′, z′, 1), is given
by formally conjugating equation (11.3), so is as follows:

S′ = 35z′t′u−5/4, X =
x− x0

u
= 14(−g′ + z′u−5/4),

Y =
y − y0
u2

= −10i(h′ − z′u−7/4).(12.3)

The local twistor associated to the dual twistor along its curve is the (dual) twistor
(πA, 0), where πA = S′oA + t′αA. To find the Kähler scalar K(Z1,W2) for the twistor
Z1 and the dual twistor W2, we find a common generator for the curves of Z1 and
W2, parallelly propagate the local twistor of Z1, (0, πA′), from the curve for Z1, along
that common generator, to the curve for W2, using the local twistor connection, and
then take the dual pairing of the local twistor that results with the twistor (πA, 0).
Here, if Z1 and W2 share the generator labelled by (X,Y ), with Z1 at u = u1 and W2

at u = u2, then at u = u2, we pair the dual local twistor (πA, 0) with the twistor of
equation (12.2) evaluated at u = u2. This gives the following formula for K(Z1,W2):

(12.4) K(Z1,W2) = πAz
A= 245i

√
10zz′tt′(u1u2)−5/4(uα

2u
β
1−u

β
2u

α
1 ).

Then p = u
−1/4
1 and p′ = u

−1/4
2 are related by the following equations, derived from

equations (11.3) and (12.3):

−X

14
= g − zp5 = g′ − z′p′

5
,

−i Y
10

= h− zu
−7/4
1 = −h′ + z′u

−7/4
2 ,

p′ = (z′)−1(zp5 − g + g′)3(zp7 − h− h′)−2,

0 = (zp5 − g + g′)7 + (z′)2(zp7 − h− h′)5.(12.5)
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In particular p obeys an equation of degree thirty-five in the projective twistor and
dual projective twistor variables!

Finally we specialize to the case that W2 is the pseudo-hermitian conjugate of Z1.
Then we obtain the real Kähler scalar K(Z1) of twistor space, summarized as follows,
where we have put λ = T/T , A = p

√
10 and B = A:

K(Z1) = 245i
√
10ZZ(pp)3

A2 −B2

AB
,

0 = (Zp5 −G+ λG)7 + (λZ)2(Zp7 −H − λH)5,

p = (λZ)−1(Zp5 −G+ λG)3(Zp7 −H − λH)−2.(12.6)

Using the Maple computing system, the pseudo-Kähler metric M , corresponding to
the scalar K, may be calculated. It is given explicitly as follows:

M =
4i(A2 +B2)	(M1 +M2 +M3)

ABzzp7p7(p2 + p2)3

+
2(A2 −B2)
(N1 +N2 +N3 +N4)√

10ABzzp7p7(p2 + p2)3
,

M1 = 35z2zp10p5(p2 + p2)2(5p7tdtdz + 7p2p5tdtdz

−2p7tdzdt+ 7p2tdgdt− 7p2tdtdg − 5tdhdt− 5tdtdh),

M2 = z2ttp10(p− p)(p+ p)(−7p2dg + 5dh+ 2p7dz)

(5p7dz + 7p2p5dz − 7p2dg − 5dh),

M3 = −zzttp5p7(175p3p4dzdh+ 147p5p4dzdg

+440p5p2dzdh− 78p7p7dzdz + 225p7dzdh

−70p9p5dzdz + 245p9dzdg + 448p7p2dzdg

−140p2dgdh− 50dhdh− 98p2p2dgdg),

N1 = 1225z2z2p10p10(p2 + p2)3dtdt

N2 = 70z2zp5p10(p2 + p2)2(20p7tdtdz + 14p2p5tdtdz

+6tp7dzdt+ 21p2tdtdg − 21p2tdgdt+ 15tdhdt+ 15tdtdh)

N3 = 4z2ttp10(2p2 − p2)(5dh+ 2p7dz − 7p2dg)

(5dh− p5dz(5p2 + 7p2) + 7p2dg)

N4 = −2zzttp5p5(p2 + p2)(2p7p7dzdz + 70p9p5dzdz

−98p2p2dgdg − 560p5p2dzdh− 504p7p2dzdg − 770p9dzdg

−690p7dzdh+ 100dhdh+ 35p2dhdg − 35p2dgdh).(12.7)

Although this formula is somewhat fearsome, it is not difficult to check that the
restriction of this metric to the null twistor space (when K vanishes and p is real)
exactly agrees with the Fefferman metric F0 of equation (9.9). Lastly, the Ricci
curvature is given by the quantity ∂∂ ln(det(M)), where M is regarded as a 4 × 4
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pseudo-hermitian matrix. We find that the Ricci curvature is non-zero, with det(M)
given as follows:

(12.8) det(M) = 76105zz(tt)3(pp)2
(A4 + 38A2B2 +B4)
A2B2(p2 + p2)2

.

Here B = A and A = p
√

10, as before.

13. Twistor scattering

We consider the twistor spaces T0 and T1 associated to the limiting cones C0

and C1, with (u, v, x, y) co-ordinates for the vertices (0, v0, x0, y0) and (0, v1, x1, y1),
respectively. Let these cones (complexified) intersect in the region C01. Each element
of the primed spin bundle over C01 gives the initial spinor for a twistor curve of each
space, and for each space, the ensemble of such curves is an open subset of the whole
space. Thus the intersection region gives rise to a local holomorphic diffeomorphism
from one space to the other. We shall endeavour to calculate the scattering formula,
which expresses this local diffeomorphism in terms of co-ordinates.

The cones C0 and C1 have the following equations (with u replaced by p−4, as in
section 10 above) :

C0 : 0 = v − v0 − p4(x− x0)2 − 2p8(y − y0)2,

C1 : 0 = v − v1 − p4(x− x1)2 − 2p8(y − y1)2.(13.1)

Subtraction gives the following formula for the intersection region C01:

(13.2) 0 = V −Xp4(2x− x0 − x1)− 2Y p8(2y − y0 − y1).

Here and in the following we write V for v1−v0, X for x1−x0 and Y for y1−y0. The
twistor curves of C0 and C1, with parameters (T0, Z0, G0, H0) and (T1, Z1, G1, H1),
respectively, are given as follows:

T0 = t,

35Z0 = sp−5 + tp−1(x− x0) + 2itp(y − y0),

70G0 = 2s− 3tp4(x− x0) + 4itp6(y − y0),

70H0 = 2sp2 + 2tp6(x− x0)− 3itp8(y − y0),

T1 = t,

35Z1 = sp−5 + tp−1(x− x1) + 2itp(y − y1),

70G1 = 2s− 3tp4(x− x1) + 4itp6(y − y1),

70H1 = 2sp2 + 2tp6(x− x1)− 3itp8(y − y1).(13.3)
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Henceforth take t �= 0, x1 �= x0 and y1 �= y0 (so X �= 0 and Y �= 0) and introduce the
following nomenclature:

a = X = x1 − x0, b = Z =
35
t
(Z1 − Z0), c = 2iY = 2i(y1 − y0),

q = p−1, G =
70
t
(G1 −G0), H =

70
t
(H1 −H0),

r = b2 = Z2 =
1225
t2

(Z1 − Z0)2,

w = −ac = −2iXY = −2i(x1 − x0)(y1 − y0),

ξ = p4(2x− x0 − x1), ψ = ip6(2y − y0 − y1), ζ =
35
t
(Z0 + Z1),

γ =
70
t
(G0 +G1), η =

70
t
(H0 +H1), σ = 2

s

t
.(13.4)

Then by subtracting and adding the corresponding equations of equation (13.3), we
must solve the following equations (where we have included also equation (13.2)):

P1 : 0 = aq2 + bq + c,

P2 : 0 = Gq6 + 3bq + 5c,

P3 : 0 = 2Hq8 − 4bq − 7c,

Q1 : 0 = ζq−5 − σ − ξ − 2ψ,

Q2 : 0 = γ − 2σ + 3ξ − 4ψ,

Q3 : 0 = ηq2 − 2σ − 2ξ + 3ψ,

R1 : 0 = V −Xξ + 2iY ψq−2.(13.5)

We first solve simultaneously the polynomial equations P1, P2 and P3. Introduce the
variables T and U defined as follows:

T = Gc5 + r3 +
15
2
r2w + 15rw2 + 5w3,

U = Hc7 − 1
4
(3r4 + 28r3w + 84r2w2 + 84rw3 + 14w4).(13.6)

Then by direct calculation using the Maple algebraic computing program on a Macin-
tosh computer, we find that the resultants P12 of P1 and P2 and P13 of P1 and P3 are
given as follows:

c4P12 = T 2 − r

4
(r + 4w)3(2r + 3w)2,

c6P13 = U2 − r

16
(r + 4w)3(3r2 + 10rw + 6w2)2.(13.7)

When the resultants P12 and P13 vanish, we find by polynomial division that the
common root q1 of P1 and P2 and the common root q2 of P1 and P3 are given,
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generically, as follows:

q1 = − b

2a
− T

ab(r + 4w)(2r + 3w)

q2 = − b

2a
+

2U
ab(r + 4w)(3r2 + 10rw + 6w2)

.(13.8)

Finally by polynomial division, we find that generically all three polynomial equations
P1, P2 and P3 have a common root if and only if q1 and q2 are equal, which gives a
linear relationship between T and U :

(13.9) T (3r2 + 10rw + 6w2) = −U(4r + 6w).

The non-generic cases are the cases when b = 0, r + 4w = 0, 2r + 3w = 0, or
3r2+10rw+6w2 = 0. These may be solved to give a collection of linear equations for
Z in terms of (suitable roots of)XY . They will not be analyzed further here. However
we should note that the equation obtained by squaring both sides of equation (13.9) is
always a valid equation, since it follows from the required vanishing of the resultants
P12 and P13 (see equation (13.7)). The three equations (13.9) and P12 = P13 = 0 give
all but two of the scattering equations. They effectively determine G and H in terms
of Z, X and Y . We also have the trivial relations T1 = T0 = t, leaving us needing one
further equation for the quantity Z. This we do by solving equations Q1, Q2 and Q3

and inserting the result into equation R1. The system of equations Q1, Q2 and Q3 is
linear with the following solution:

(13.10) (σ, ξ, ψ) =
1
35

(ζq−5 + 7γ + 10ηq2, 14ζq−5 − 7γ, 10ζq−5 − 5ηq2).

Here it is understood that q = q1 = q2. Using equation (13.10), equation R1 becomes
the following equation:

(13.11) 0 = q71(35V + 7γX − 10iηY ) + ζ(14Zq1 + 48iY ).

Generically (i.e. provided 14Zq1 +48iY is invertible, so provided r �= 0 and r+4w �=
0), this equation gives a formula for ζ, and hence the last piece of the scattering
information, thus completing the required local diffeomorphism of the twistor spaces.

This approach to the scattering formulas has the virtue that it shows that given
the pair of the twistor and its scattered counterpart, then the two twistors meet at
exactly one point. A more straightforward procedure is to solve equations P1, P2, P3,
Q1, Q2 and Q3 regarding q as given, with the result that all the scattering is given
in terms of rational functions in the variable q. Then the final equation R1 gives a
polynomial relation for q, or for p = q−1. This polynomial relation is then as follows:

(13.12) 0 = 2Y 2tp8 + 40iY Z0p
7 − 28XZ0p

5 + p4tX2 + V t+ 28XG0 − 40iY H0.
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The scattering point is as follows:

s = p−2(Z0p
7 + 14G0p

2 + 20H0),

v = v0 −
4
t2p8

(Z2
0p

14 + 98Z0G0p
9 − 100H0Z0p

7 − 49G2
0p

4 + 50H2
0 ),

x = x0 +
14
tp4

(Z0p
5 −G0),

y = y0 −
10i
tp8

(Z0p
7 −H0).(13.13)

Then the twistor scattering is as follows:

T1 = T0 = t, G1 = G0 +
t

70
(3Xp4 − 4iY p6),

H1 = H0 −
t

70
(2Xp6 − 3iY p8),

Z1 = Z0 −
t

35p
(X + 2iY p2).(13.14)

For the validity of this solution, we need only that p �= 0 and t �= 0.

14. Appendix: On Time Asymmetry

14.1. Introduction. — A common experience is that time flows in only one dir-
ection. It is suggested in this note that there is a deep lying chiral asymmetry in the
universe, which may be responsible for the flow of time: specifically the future null
and past null cones of spacetime events are to be understood to have the opposite
chiralities. Concretely this asymmetry is expressed in the language of twistor theory
[1–10]. Twistors come in two mutually dual types, each inherently chiral, of opposite
chirality [1]. If twistors are used to describe future null cones, then dual twistors will
be used to describe past null cones.

14.2. Ghosts. — Twistors typically form complex analytic spaces of either three or
four complex dimensions, the former usually being a projective version of the latter.
For the purposes of this note it will suffice to consider only the three-dimensional
case.

A ghost is by definition a complex analytic variety of three complex dimensions,
containing exactly two disjoint holomorphic compact Riemann spheres. It is suggested
that in a non-flat vacuum asymptotically flat space-time, the null cone hypersurface
twistor spaces of Penrose, for either a future, or past null cone, are ghosts [5, 14, 15].
One of the holomorphic spheres of the ghost represents the vertex of the cone. The
other represents the vertex of the null cone at infinity. The fact that it is even
conceivably possible to have such ghosts requires overcoming the Kodaira theorems
that in perturbations of conformally flat spacetimes tend to provide an overabundance
of holomorphic curves [21]. The key physics here lies in the famous null geodesic
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deviation equations of Sachs [32], which, in particular, show that, in the presence of
Weyl curvature, there is decoherence of pencils of light rays along a null cone, vis á vis
the situation in (real) conformally flat or (complex) conformally self-dual spacetimes.
In terms of the Cauchy-Riemann structure of null hypersurface twistor space [5, 14],
this decoherence is associated with the degeneration of the structure along the light
rays of the cone. These features, which might be regarded as pathological from
the point of view of flat or self-dual space-time, allow the twistor spaces for null
hypersurfaces of real spacetimes to be depleted of their usual supply of holomorphic
curves.

When the ghost space of a future null cone meets that of a past null cone, one finds
on the overlap that there is a natural correspondence between the twistor curves of one
hypersurface and the dual twistor curves of the other surface. This correspondence
yields the chirality and the time asymmetry: twistor spaces are used for each future
cone and dual twistor spaces for each past cone; one can then consistently term the
future-pointing spaces ghosts and the past-pointing anti-ghosts.

The mathematical source for ghost and anti-ghost spaces is the genre of (open
subvarieties of) Calabi-Yau manifolds [22, 23]. When ghosts and anti-ghosts meet,
we have apparently arrived at the situation envisaged in the theory of mirror manifolds
and the associated conjectures of Yau [33, 34]. Then the act of passing to a mirror
corresponds to interchanging past and future. Slight discrepancies in the structures
of these spaces relative to their mirrors account for the difference between past and
future.

The ideas sketched here are a natural consequence of the author’s proposed unifica-
tion of a triad of powerful theories: twistor theory, superstring theory and the theory
of “dessins d’enfants”, based on their common themes of quasi-conformal analysis
and sheaf theory [3, 24, 30, 31]. The realization of such a unification has been a
long-standing objective of the author [16]. The overall philosophy has been sketched
in four recent talks [17–20]. The feasibility of the aspect of unification discussed here
results from an astounding numerical coincidence: that ten is the sum of six and four.
Ten is the usual dimension of the arena of superstring theory, six is the real dimension
of projective twistor space and four is the dimension of space-time.

It is to be hoped that a thorough development of the ideas contained here will lead
to an understanding of the fundamental role of irreversibility and thermodynamics in
physics. For this one will have to link with the groundbreaking work of Bekenstein
and Hawking [25, 26]. A step towards such a link will be a deep analysis, in the
present language, of the Schwarzschild and Kerr solutions of general relativity, which,
in their global structure, already encode the essence of temperature, as was shown
convincingly by Hawking and his colleagues [26, 27, 28, 29]. For a fuller theory,
one will suitably extend the concept of ghost to include, for example, cosmic anti-
ghosts and singular ghosts, associated to cones terminating at the big bang and at
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a singularity, respectively. Then Penrose’s proposed Weyl Curvature Hypothesis,
which may be equivalent to the Second Law of Thermodynamics, would boil down to
comprehending the difference between these various kinds of ghosts [13].
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