
Séminaires & Congrès
4, 2000, p. 1–16

ON THE FIRST VAFA-WITTEN BOUND
FOR TWO-DIMENSIONAL TORI

by

Nicolae Anghel

Abstract. — In this paper we explicitly compute the first Vafa-Witten bound for a
two-dimensional torus, namely the best uniform upper bound for the first eigenvalue
of the family of twisted (by arbitrary vector potentials) Dirac operators on a flat
two-torus. Starting with an arbitrary flat metric we give either an exact answer or a
precise algorithm for producing an answer. As a by-product we develop a constructive
way of implementing the projection map from the Poincaré upper half-plane onto the
standard fundamental domain for its SL(2, Z)-action.

Résumé (Sur la première borne de Vafa-Witten pour les tores de dimension deux)
Dans cet article nous calculons explicitement la première borne de Vafa-Witten

pour un tore de dimension 2, c’est-à-dire la meilleure borne supérieure pour la pre-
mière valeur propre de la famille d’opérateurs de Dirac couplés à des potentiels vec-
toriels arbitraires, définis sur un tore plat de dimension 2. Pour une métrique plate
arbitraire nous donnons soit la solution exacte de ce problème soit un algorithme
précis pour en produire une. Une conséquence de nos résultats est une réalisation
constructive de la projection du demi-plan de Poincaré sur le domaine fondamental
de l’action de SL(2, Z) sur celui-ci.

1. Introduction

Let M be a fixed compact Riemannian spin manifold with spinor bundle S and
Dirac operator �∂. For any Hermitian vector bundle E with metric connection A form
the twisted Dirac operator �∂A acting on S ⊗ E. In a remarkable paper [VW], also
[A], Vafa and Witten proved, among other things, that if the discrete eigenvalues of
�∂A are indexed by increasing absolute value,

|λ1| ≤ |λ2| ≤ . . . ,
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2 N. ANGHEL

then there is a bound C1, which depends on M but not on the twisting data (E,A),
such that

(1.1) |λ1| ≤ C1.

Subsequently, Moscovici [M] extended the inequality (1.1) to noncommutative geo-
metric spaces, in the sense of Connes [C], which have finite topological type and satisfy
rational Poincaré duality in K-theory.

Vafa and Witten [loc.cit.] also addressed the problem of finding the best bound
C1 in (1.1), if M is the d-dimensional torus Td with angular variables φ1, φ2, . . . , φd,
and flat metric ds2 =

∑
i,j gijdφ

idφj . They concluded that in this case the best C1 is

(1.2) max
a∈Rd

min
m∈Zd

√∑
i,j

gij(mi − ai)(mj − aj),

where
[
gij
]
is the inverse of the constant positive definite matrix [gij ]. For instance, if

the metric tensor is diagonal with gij = ciδ
ij , then (1.2) equals

√
c1 + c2 + · · · + cd/2.

It is certainly desirable to have an explicit formula for (1.2), in terms of the matrix[
gij
]
or its invariants. This problem becomes geometrically intuitive if one views a d-

dimensional flat torus as a quotient Rd/L, where L is a lattice in Rd of maximal rank
[MH]. If L has basis {v1, v2, . . . , vd} then the metric is given by gij = 〈vi, vj〉, where
〈, 〉 denotes the standard inner product in Rd. It turns out that for some lattices the
Vafa-Witten bound is easy to calculate while for others it is not.

To see just how this distinction arises we will look now at flat metrics on a torus
from the viewpoint of homogeneous spaces. The space Met(Td) of flat metrics on Td

can be identified with the homogeneous space GL(d,R)/O(d) [B] under the trans-
formation

(1.3) GL(d,R)/O(d) � Φ̂ −→ [gij ] ∈ Met(Td),

where if Φ ∈ GL(d,R) then [gij ] is given by

gij := 〈Φ−1ei,Φ−1ej〉,

(e1, e2, . . . , ed) being the standard basis in the Euclidean space Rd.
In other words, [gij ] =

(
Φ−1

)t Φ−1, or equivalently
[
gij
]

= ΦΦt. It follows that
under the identification (1.3) the first Vafa-Witten bound becomes

(1.4) max
a∈Rd

min
m∈Zd

√
〈Φt(m− a),Φt(m− a)〉.

It is obvious (see also Proposition 2.2, c)) that a conformal change of the metric
[gij ] by a factor r changes (1.2) by a factor of 1/

√
r. As a result, it suffices to

calculate (1.2) for metrics of fixed volume, or equivalently to replace GL(d,R)/O(d)
with SL(d,R)/ SO(d) in (1.4).
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VAFA-WITTEN BOUND FOR TORI 3

Notice now that (1.4) factors to the double coset space SL(d,Z)\ SL(d,R)/ SO(d).
Indeed, if Φ ∈ SL(d,R) and Ψ ∈ SL(d,Z) then, for a ∈ Rd,

min
m∈Zd

√
〈(ΨΦ)t(m − a), (ΨΦ)t(m− a)〉 = min

m∈Zd

√
〈Φt (m− Ψta) ,Φt (m− Ψta)〉.

In conclusion, one might be satisfied with calculating (1.2) only for metrics corres-
ponding to a fundamental domain representing the space SL(d,Z)\ SL(d,R)/ SO(d),
such as the Siegel domain [R].

This is the first in a series of two papers addressing the problem of finding an
explicit formula for the Vafa-Witten bound (1.2). In it we restrict ourselves to two-
dimensional tori and work directly with a flat metric [gij ], whose inverse is g11 = A,
g12 = g21 = B, g22 = C, where A,B,C are real numbers such that A > 0, C > 0,
and AC − B2 > 0. The computation of the Vafa-Witten bound in two dimensions
is so classical in scope that it can be handled independently within several areas of
mathematics: bilinear form theory, lattice theory, modular group theory. We choose
to treat the problem using the framework of bilinear forms simply because this is
how Vafa and Witten state their result. The lattice and modular group approaches
to flat tori do appear, but only indirectly, either in some of the proofs or in the
subsequent interpretations and comparisons. The second paper in the series, to appear
elsewhere, will be dedicated to higher dimensional tori and will deal only with metrics
corresponding to a Siegel domain.

We summarize now our main results, proven below in Theorem 2.5, Theorem 3.8,
and Theorem 4.7.

a) If min{A,C} ≥ 2|B|, then the first Vafa-Witten bound equals

1
2

√
AC(A+ C − 2|B|)

AC −B2

b) If min{A,C} < 2|B|, then the transformation (3.3) given in Section 3 below ap-
plied to the inverse of the metric tensor a certain number of times, number controlled
by the size of (AC −B2)/(min{A,C})2, reduces the problem to Case a).

c) Metrics corresponding to points in the standard fundamental domain F asso-
ciated to the action of SL(2,Z) on the Poincaré upper half plane H do satisfy the
inequality min{A,C} ≥ 2|B|, and so Case a) applies to them. Arbitrary metrics can
then be investigated by noticing that the transformation (3.3) is the basic step of an
algorithm that implements the quotient map

SL(2,R)/ SO(2) −→ SL(2,Z)\ SL(2,R)/ SO(2),

viewed as a map from H to F .
In addition, we show that the above results still hold if min{A,C} is compared to

|B| rather than 2|B| (Corollary 3.18).
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4 N. ANGHEL

2. The Particular Case min{A,C} ≥ 2|B|

Equip the two-dimensional torus T2 with a flat metric [gij ], whose inverse is g11 =
A, g12 = g21 = B, g22 = C, where A,B,C are real numbers such that A > 0, C > 0,
and AC −B2 > 0. Then the first Vafa-Witten bound λ1 = λ1(A,B,C) is given by
(2.1)
λ1 = max

(a1,a2)∈R2
min

(m1,m2)∈Z2

√
A(m1 − a1)2 + 2B(m1 − a1)(m2 − a2) + C(m2 − a2)2

In this section we will calculate λ1 explicitly in the particular case min{A,C}
≥ 2|B|. We start with some obvious properties of λ1(A,B,C).

Proposition 2.2. — If λ1(A,B,C) is defined by (2.1) then
a) λ1(A,B,C) is symmetric in A and C, i.e., λ1(A,B,C) = λ1(C,B,A).
b) λ1(A,B,C) = λ1(A, |B|, C)
c) If r > 0, then λ1(rA, rB, rC) =

√
rλ1(A,B,C)

d) The set of pairs (a1, a2) ∈ R2 where λ1(A,B,C) occurs intersects [0, 1]2 and is
symmetric with respect to the point (1/2, 1/2).

Proof. — Let fA,B,C : R2 → [0,∞), be given by
(2.3)
fA,B,C(a1, a2) := min

(m1,m2)∈Z2

(
A(m1 − a1)2 + 2B(m1 − a1)(m2 − a2) + C(m2 − a2)2

)
Then the proposition follows from the following properties of fA,B,C , respectively.

a) fA,B,C(a1, a2) = fC,B,A(a2, a1)
b) fA,−B,C(a1, a2) = fA,B,C(a1,−a2)
c) If r > 0, then frA,rB,rC = rfA,B,C

d) fA,B,C(a1 + 1, a2 + 1) = fA,B,C(a1, a2) = fA,B,C(1 − a1, 1 − a2).

Remark 2.4. — According to the above proposition in order to find λ1(A,B,C) it is
enough to assume that A ≥ C and B ≥ 0 (from a) and b)), to normalize the metric
tensor such that AC −B2 = 1 (from c)), and to look for (a1, a2) ∈ [0, 1]2 maximizing
fA,B,C only in a suitable “half” of [0, 1]2, for instance [0, 1] × [0, 1/2] (from d).

Theorem 2.5. — Assume that the torus T2 is equipped with a flat metric [gij ] ↔
(A,B,C) such that min{A,C} ≥ 2|B|. Then the first Vafa-Witten bound is given by
the formula

(2.6) λ1(A,B,C) =
1
2

√
AC(A+ C − 2|B|)

AC − B2

Proof. — By Proposition 2.2 and Remark 2.4 it suffices to prove Formula 2.6 for
A ≥ C ≥ 2B ≥ 0 and AC − B2 = 1. As a result, B2 ≤ 1/3. The theorem is then
equivalent to showing that

(2.7) max
(a1,a2)∈[0,1]×[0,1/2]

fA,B,C(a1, a2) =
AC(A + C − 2B)

4
,
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VAFA-WITTEN BOUND FOR TORI 5

where fA,B,C is the function given by Equation 2.3.
To this end fix (a1, a2) ∈ [0, 1] × [0, 1/2]. For (m1,m2) ∈ Z2,

A(m1 − a1)2 + 2B(m1 − a1)(m2 − a2) + C(m2 − a2)2

= C

(
AC −B2

C2
(m1 − a1)2 +

(
B

C
(m1 − a1) + (m2 − a2)

)2
)

=
1
C

(m1 − a1)2 + C

(
B

C
(m1 − a1) + (m2 − a2)

)2

=
1
C

(m1 − b1)2 + C

(
B

C
m1 +m2 − b2)

)2

,

where

b1 = a1 and b2 =
B

C
a1 + a2.

Thus,

(2.8) fA,B,C(a1, a2) = min
(m1,m2)∈Z2

(
1
C

(m1 − b1)2 + C

(
B

C
m1 +m2 − b2)

)2
)
.

By choosing an integer m1 such that |m1 − b1| ≤ 1/2, followed by an integer m2 such
that |BCm1 +m2 − b2| ≤ 1/2, one sees that

(2.9) fA,B,C(a1, a2) ≤
1

4C
+
C

4
.

We claim now that fA,B,C(a1, a2) occurs for (m1,m2) ∈ {(0, 0), (0, 1), (1, 0)}. Indeed,
let (m0

1,m
0
2) be an integer pair where fA,B,C(a1, a2) occurs. Then |m0

1−b1| < 1, since
otherwise (2.8) implies that

fA,B,C(a1, a2) ≥
1
C
,

which in conjunction with (2.9) gives C2 ≥ 3. But then 1 = AC − B2 ≥ 3 − 1/3, a
contradiction. Since b1 = a1 ∈ [0, 1], it follows that m0

1 ∈ {0, 1}.
If m0

1 = 0, then

fA,B,C(a1, a2) =
b21
C

+ min
m2∈Z

C(m2 − b2)2,

and so m0
2 can be chosen from {0, 1} , since b2 = B

C a1 + a2 ∈ [0, 1].
If m0

1 = 1, then

fA,B,C(a1, a2) =
(1 − b1)2

C
+ min

m2∈Z
C

(
m2 +

B

C
− b2

)2

,

and since B
C − b2 = B

C (1− a1)− a2 ∈ [−1/2, 1/2], m0
2 can be taken to be 0. The claim

follows.
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6 N. ANGHEL

Maximizing fA,B,C on [0, 1] × [0, 1/2] becomes now a very geometric problem.
Rewriting (2.8) as

fA,B,C(a1, a2) = C min
(m1,m2)∈Z2

∣∣∣∣m1

(
1
C
,
B

C

)
+m2(0, 1)−

(
1
C
b1, b2

)∣∣∣∣2 ,
we see that, up to a constant, fA,B,C(a1, a2) minimizes the square distance from(
1
C b1, b2

)
=
(
1
C a1,

B
C a1 + a2

)
to the lattice spanned by the vectors

(
1
C ,

B
C

)
and (0, 1).

The claim just proved amounts to the fact that this minimum can be attained only
for three points on the lattice, O(0, 0), U

(
1
C ,

B
C

)
, and V (0, 1) (see Fig.1), for all

(a1, a2) ∈ [0, 1] × [0, 1/2].
Noticing further that under the transformation (a1, a2) →

(
1
C a1,

B
C a1 + a2

)
the

rectangular region [0, 1] × [0, 1/2] is mapped onto the parallelogram region spanned
by the vectors

(
1
C ,

B
C

)
and (0, 1/2) (the shaded area in Fig.1), it becomes obvious

that fA,B,C is maximized at the point in [0, 1] × [0, 1/2] corresponding to the point
M in the parallelogram region equidistant from O, U , and V (see Fig.1). Thus M
has coordinates

(
A−B
2 , 1/2

)
, as the intersection point of the bisector lines of the sides

OU and OV in the triangle OUV , with respective equations
1
C

(
x− 1

2C

)
+
B

C

(
y − B

2C

)
= 0 and y =

1
2
.

M U

V

O

Figure 1

It is not hard to see that under the various hypotheses on A, B, and C, the point
M
(

A−B
2 , 12

)
does belong to the shaded parallelogram region. In conclusion,

max fA,B,C = C

((
A−B

2

)2

+
(

1
2

)2
)
.

The theorem follows.

Remark 2.10. — It is clear why the method of proof employed in Theorem 2.5 does
not extend to arbitrary metrics. In general, it is difficult to single out the lattice
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VAFA-WITTEN BOUND FOR TORI 7

points necessary to calculate fA,B,C on [0, 1] ×
[
0, 12

]
. Instead, we will pursue an

algorithmic way for computing the Vafa-Witten bound.

3. The General Case

In this section we are going to consider the case of an arbitrary flat metric [gij ] ↔
(A,B,C) on T2. It turns out that Theorem 2.5 still holds if min{A,C} ≥ |B|, while
if min{A,C} < |B| the metric transformation (3.3) below will reduce the problem to
one where Theorem 2.5 is applicable.

Now write |B|/min{A,C} uniquely as

(3.1)
|B|

min{A,C} =
[

|B|
min{A,C}

]
+
{

|B|
min{A,C}

}
,

where
[

|B|
min{A,C}

]
is a non-negative integer and

{
|B|

min{A,C}

}
is a real number such

that −1/2 <
{

|B|
min{A,C}

}
≤ 1/2.

Definition 3.2. — With the above notations define the transformation A → Ã, B →
B̃, C → C̃, by

(3.3) Ã = min{A,C}, B̃ =
∣∣∣∣{ |B|

min{A,C}

}∣∣∣∣min{A,C}, C̃ =
AC −B2 + B̃2

min{A,C}

Remark 3.4. — The transformation given by (3.3) preserves the determinant quantity
AC − B2. This follows from the expression of C̃. Also, Ã ≥ 2B̃ and B̃ = |B| if (and
only if) min{A,C} ≥ 2|B|.

Theorem 3.5. — For the torus T2 with an arbitrary flat metric [gij ] ↔ (A,B,C) the
transformation A → Ã, B → B̃, C → C̃, given by Definition 3.2, yields a new flat
metric [g̃ij ] ↔ (Ã, B̃, C̃), and the two metrics have the same first Vafa-Witten bound,
that is

(3.6) λ1(Ã, B̃, C̃) = λ1(A,B,C)

Proof. — [g̃ij ] is a flat metric on T2 if Ã > 0, and ÃC̃ − B̃2 > 0. This is obvious,
since from (3.3), Ã = min{A,C} and ÃC̃ − B̃2 = AC −B2, cf. Remark 3.4.

Now, λ1(A,B,C) = λ1(C,B,A) = λ1(A, |B|, C), so there is no loss of generality
in assuming that B ≥ 0 and A ≤ C, i.e., min{A,C} = A. With this assumption we
will prove (3.6) by showing that for any (a1, a2) ∈ R2,

(3.7) fA,B,C(a1, a2) = fÃ,B̃,C̃

(
a1 +

[
B

A

]
a2, εa2

)
,
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8 N. ANGHEL

where
[

B
A

]
,
{

B
A

}
, are given by (3.1) and ε =

{
1 , if

{
B
A

}
≥ 0

−1 , if
{

B
A

}
< 0.

Indeed, since

A(m1 − a1)2 + 2B(m1 − a1)(m2 − a2) + C(m2 − a2)2

= A

(
(m1 − a1) +

B

A
(m2 − a2)

)2

+
AC −B2

A
(m2 − a2)2

= A

((
m1 +

[
B

A

]
m2 − a1 −

[
B

A

]
a2

)
+
{
B

A

}
(m2 − a2)

)2

+
AC −B2

A
(m2 − a2)2,

we have,

fA,B,C(a1, a2) = min
(m1,m2)∈Z2

A(m1 − a1)2 + 2B(m1 − a1)(m2 − a2) + C(m2 − a2)2

= min
(m1,m2)∈Z2

(
A

((
m1 +

[
B

A

]
m2 − a1 −

[
B

A

]
a2

)
+
{
B

A

}
(m2 − a2)

)2

+
AC −B2

A
(m2 − a2)2

)
= min

(m1,m2)∈Z2

(
A

((
m1 − a1 −

[
B

A

]
a2

)
+ ε

∣∣∣∣{BA
}∣∣∣∣ (m2 − a2)

)2

+
AC −B2

A
(m2 − a2)2

)

= min
(m1,m2)∈Z2

Ã((m1 − a1 −
[
B

A

]
a2

)
+
B̃

Ã
(εm2 − εa2)

)2

+
ÃC̃ − B̃2

Ã
(εm2 − εa2)2

)

= min
(m1,m2)∈Z2

Ã((m1 − a1 −
[
B

A

]
a2

)
+
B̃

Ã
(m2 − εa2)

)2

+
ÃC̃ − B̃2

Ã
(m2 − εa2)2

)

= min
(m1,m2)∈Z2

(
Ã

(
m1 − a1 −

[
B

A

]
a2

)2

+ 2B̃
(
m1 − a1 −

[
B

A

]
a2

)
(m2 − εa2)

+ C̃(m2 − εa2)2
)

= fÃ,B̃,C̃

(
a1 +

[
B

A

]
a2, εa2

)
.

Two things may happen when transforming (A,B,C) into (Ã, B̃, C̃):
a) either, min{Ã, C̃} ≥ 2B̃, in which case Theorem 2.5 and Theorem 3.5 combine

to give λ1(A,B,C), or
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b) min{Ã, C̃} < 2B̃, in which case one can apply the metric transformation again
to (Ã, B̃, C̃) and hope to land in Case a). Notice that in Case b) min{Ã, C̃} = C̃,
since from (3.3), Ã ≥ 2B̃.

The nice thing is that by applying the metric transformation (3.3) over and over
sufficiently many times one reaches a metric for which Theorem 2.5 holds. The
bad thing is that the required number of tries varies with the expression (AC −
B2)/(min{A,C})2, and so an exact formula for λ1 in terms of A,B,C is unavailable.
The rest of this section will be devoted to substantiating these claims.

Theorem 3.8. — Starting with an arbitrary flat metric [gij ] ↔ (A,B,C) on T2 define
the sequence of flat metrics

[
kgij

]
↔ (Ak, Bk, Ck), k ≥ 0, inductively by

(A0, B0, C0) = (A,B,C) and (Ak+1, Bk+1, Ck+1) = (Ãk, B̃k, C̃k), k ≥ 0.

Assume that min{A,C} < 2|B|, and let n be the least non-negative integer such that

(3.9)
AC −B2

(min{A,C})2
≥ 3

4
1
9n

.

Then min{An+1, Cn+1} ≥ 2Bn+1, and therefore

λ1(A,B,C) =
1
2

√
An+1Cn+1(An+1 + Cn+1 − 2Bn+1)

AC −B2
.

Proof. — Again, without loss of generality we may assume that A ≥ C and B ≥ 0.
Notice that if min{Ak, Ck} ≥ 2Bk for some k, then (3.3) implies that

Ak+1 = min{Ak, Ck}, Bk+1 = Bk, and Ck+1 = max{Ak, Ck},

and so min{Ak+1, Ck+1} ≥ 2Bk+1.
Assume now, by contradiction, that min{An+1, Cn+1} < 2Bn+1. From the hypo-

thesis, the above observation, and Remark 3.4, it follows that

(3.10) Ck = min{Ak, Ck} < 2Bk, for all 0 ≤ k ≤ n+ 1.

Since Ck+1 = (AC−B2)+B2
k+1

Ck
, Equation 3.10 implies that

(3.11) AC −B2 < 2Bk+1Ck −B2
k+1, for all 0 ≤ k ≤ n.

However,

(3.12) Bk+1 =
∣∣∣∣{Bk

Ck

}∣∣∣∣Ck ≤ 1
2
Ck,

and so 2Bk+1Ck −B2
k+1 ≤ 3

4C
2
k . This, combined with (3.11) gives

(3.13) AC −B2 <
3
4
C2

k , for all 0 ≤ k ≤ n.

We claim that in fact (3.13) implies that AC − B2 < 3
4

1
9nC

2, which contradicts the
hypothesis (3.9). We will prove this claim by means of the following lemma:
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10 N. ANGHEL

Lemma 3.14. — The hypothesis being the same as in Theorem 3.8, if for some k,
1 ≤ k ≤ n and for some α, 0 < α ≤ 3

4 , AC −B2 < αC2
k , then AC −B2 < α

9C
2
k−1.

Proof of Lemma 3.14. — The formula Ck = (AC−B2)+B2
k

Ck−1
, in conjunction with Bk ≤

1
2Ck−1, which follows from (3.12), yields the inequality

(3.15) Ck ≤
(AC −B2) + 1

4C
2
k−1

Ck−1
.

Since by hypothesis,
√

AC−B2√
α

< Ck, (3.15) implies that

(3.16) (AC −B2) − Ck−1√
α

√
AC −B2 +

1
4
C2

k−1 > 0.

We can look at Equation 3.16 as a quadratic polynomial

P (t) := t2 − Ck−1√
α
t+

1
4
C2

k−1

which for t =
√
AC −B2 takes a positive value. The roots of this quadratic polyno-

mial are

t1,2 =
Ck−1

2
√
α

(1 ±
√

1− α).

As a result, either
√
AC −B2 < Ck−1

2
√

α
(1−

√
1 − α) or

√
AC − B2 > Ck−1

2
√

α
(1+

√
1 − α).

We will show that
√
AC −B2 > Ck−1

2
√

α
(1 +

√
1 − α) cannot happen. Indeed, if this

happened then a use of (3.13) would give
√
3
2 > 1

2
√

α
(1+

√
1 − α). However, it is easy

to see that if 0 < α ≤ 3
4 then the opposite inequality holds:

√
3
2 ≤ 1

2
√

α
(1 +

√
1 − α).

Thus, √
AC −B2 <

Ck−1

2
√
α

(1 −
√

1 − α)

which for 0 < α ≤ 3
4 implies

√
AC −B2 <

√
α
3 Ck−1, or equivalently AC − B2 <

α
9C

2
k−1.

Going back to the proof of Theorem 3.8, since AC −B2 < 3
4C

2
n, a repeated use of

Lemma 3.14 gives AC −B2 < 3
4

1
9nC

2, a violation of (3.9).

Remark 3.17. — Theorem 3.8 shows that for arbitrary metrics, λ1(A,B,C) can be
calculated in at most n + 1 steps, where n is given by (3.9). In practice, fewer
steps are required, and in fact we will show in the following corollary that λ1 can be
calculated in p steps, if p is the least integer such that min{Ap, Cp} ≥ |Bp|.

Corollary 3.18. — Let [gij ] ↔ (A,B,C) be an arbitrary flat metric on the torus T2.
a) If min{A,C} ≥ |B|, then the first Vafa-Witten constant is given by

λ1(A,B,C) =
1
2

√
AC(A + C − 2|B|)

AC −B2
.
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b) If min{A,C} < |B|, define the sequence of flat metrics
[
kgij

]
↔ (Ak, Bk, Ck),

k ≥ 0, on T2 by

(A0, B0, C0) = (A,B,C), (Ak+1, Bk+1, Ck+1) = (Ãk, B̃k, C̃k), k ≥ 0.

There is a (least) integer p such that min{Ap, Cp} ≥ Bp, and then

λ1(A,B,C) =
1
2

√
ApCp(Ap + Cp − 2Bp)

AC − B2

Moreover, p ≤ n+ 1, where n is the least integer such that

(3.19)
AC −B2

(min{A,C})2
≥ 1

2
1

11n
.

Proof. — The point of a) is that one can extend Theorem 2.5 at no cost from the
case min{A,C} ≥ 2|B| to the broader case min{A,C} ≥ |B|. To this end, assume
that 2|B| > min{A,C} ≥ |B|, which becomes 2B > C ≥ B if we require, as we may,
B ≥ 0, A ≥ C. Define now the sequence (Ak, Bk, Ck)∞k=0 as in Theorem 3.8. Then
2B > C ≥ B implies that A1 = C, B1 = C −B, and C1 = A+ C − 2B. Notice that

min{A1, C1} ≥ B1 and A1C1(A1 + C1 − 2B1) = AC(A+ C − 2B).

By repeating this argument we conclude that

min{Ak, Ck} ≥ Bk and AkCk(Ak + Ck − 2Bk) = AC(A + C − 2B), k ≥ 0.

By Theorem 3.8, for k = n + 1, with n given by (3.9), we have min{An+1, Cn+1} ≥
2Bn+1, and then

λ1(A,B,C) =
1
2

√
An+1Cn+1(An+1 + Cn+1 − 2Bn+1)

AC −B2
=

1
2

√
AC(A+ C − 2B)

AC −B2

b) For the proof of b) we can use theorem 3.8, since min{A,C} < |B| is merely
a subcase of min{A,C} < 2|B|. Being mindful of a) we can adjust the proof of
Theorem 3.8 so that we stop the iterations after reaching an index k satisfying the
weaker inequality min{Ak, Ck} ≥ Bk. The net gain is a slightly better a priori
stopping condition than (3.9), namely (3.19).

It is natural to ask whether or not the stopping index p of Corollary 3.18, b)
is independent of the metric. The answer is no, as demonstrated by the following
example.
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Example 3.20. — The stopping index p of Corollary 3.18,b) can be arbitrarily large.
For any non-negative integer m the assignment (am, bm, cm) given by

am =
2 +

√
2

4
(3 + 2

√
2)m +

2 −
√

2
4

(3 − 2
√

2)m

bm =
√

2
4

(3 + 2
√

2)m −
√

2
4

(3 − 2
√

2)m

cm =
2 −

√
2

4
(3 + 2

√
2)m +

2 +
√

2
4

(3 − 2
√

2)m

(3.21)

defines a metric for which the stopping index is exactlym. Moreover, λ1(am, bm, cm) =√
2/2.

Proof. — Although it may not look so, the assignment (3.21) is the simplest example
with the property that

(3.22) (ãm, b̃m, c̃m) = (am−1, bm−1, cm−1) and min{am, cm} < bm, for m ≥ 1.

Indeed, according to the transformation (3.3), ãm = min{am, cm}, which for con-
venience can be taken to be cm, for all m. Thus, (3.22) gives cm = am−1. Also,
b̃m =

∣∣∣{ bm

cm

}∣∣∣ cm, since bm must be positive. Thus,

(3.23)
∣∣∣∣{ bm

am−1

}∣∣∣∣ am−1 = bm−1,

and (3.23) will certainly hold if

(3.24)
bm
am−1

= 2 +
bm−1

am−1
, or bm = 2am−1 + cm−1.

(The simpler choice of integer, 1 instead of 2, in (3.24) will not work, since (3.22)
requires bm ≤ 2am). Finally, the invariance of the quantity amcm − b2m under the
transformation (3.3) suggests that one might want to set amcm − b2m = 1, which gives
am = 4am−1 + 4bm−1 + cm−1. Therefore, we obtain the linear recurrent system, for
m ≥ 1,

am = 4am−1 + 4bm−1 + cm−1

bm = 2am−1 + bm−1

cm = am−1

(3.25)

We want to subject the above system to a simple initial condition (a0, b0, c0) for
which min{a0, c0} ≥ b0, for instance (a0, b0, c0) = (1, 0, 1). Then the solution of
system (3.25) with this initial condition is precisely (3.21).

Indeed, the matrix of this system,

M =

4 4 1
2 1 0
1 0 0

 ,
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having eigenvalues −1, 3± 2
√

2, with eigenvectors (−1, 1, 1), (1±
√

2, 1,−1±
√

2), is
diagonalizable and M = P∆P−1, where

P =

−1 1 +
√

2 1 −
√

2
1 1 1
1 −1 +

√
2 −1 −

√
2

 and ∆ =

−1 0 0
0 3 + 2

√
2 0

0 0 3 − 2
√

2

 .
Therefore, the solution of the system (3.25) isam

bm
cm

 = P∆mP−1

1
0
1

 ,
which amounts exactly to (3.21). The first five triples (am, bm, cm) are (1, 0, 1),
(5, 2, 1), (29, 12, 5), (169, 70, 29), and (985, 408, 169).

4. The Homogeneous Space Viewpoint

In this section we interpret our previous results by looking at flat metrics on
T2 the homogeneous way, as objects in GL(2,R)/O(2). As indicated in the In-
troduction it suffices to analyze metrics of determinant 1, i.e., elements of the space
SL(2,R)/ SO(2).

Recall first some classical results about SL(2,R) [L, T]. SL(2,R)/ SO(2) can be
identified canonically with the Poincaré upper half plane H := {z ∈ C | �(z) > 0},
via the transformation

(4.1) SL(2,R)/ SO(2) �
[̂
a b

c d

]
−→ ai+ b

ci+ d
∈ H.

Iwasawa decomposition in SL(2,R) [L] shows that the inverse of (4.1) is

(4.2) H � z = x+ iy −→
̂[

y1/2 xy−1/2

0 y−1/2

]
∈ SL(2,R)/ SO(2).

Under these identifications the natural left action of SL(2,Z) on SL(2,R)/ SO(2)
translates to the following action of SL(2,Z) on H ,

(4.3) SL(2,Z) ×H �
([

α β

γ δ

]
, z

)
−→

[
α β

γ δ

]
· z :=

αz + β

γz + δ
∈ H.

Thus SL(2,Z)\ SL(2,R)/ SO(2) identifies with SL(2,Z)\H . Recall now that the
standard fundamental domain for the action of SL(2,Z) on H is (see Fig.2)

F := {z ∈ H | −1/2 < �(z) ≤ 1/2, |z| ≥ 1, and if |z| = 1, then �(z) ≥ 0}.
From (4.2) and the discussion preceding (1.4) we see now that for a ‘metric’ z =
x+ iy ∈ H the inverse of the metric tensor is given, with the notations from Section
2, by the quantities

(4.4) A = y + x2y−1, B = xy−1, C = y−1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000



14 N. ANGHEL

1/2

i

0–1/2

F

S(F)

Figure 2

Equivalently,

(4.5) x =
B

C
, y =

1
C
.

Therefore, the first Vafa-Witten bound defines an automorphic form λ1 on H , given
by

(4.6) λ1(z) =

max
a∈R2

min
m∈Z2

√
(y + x2y−1)(m1 − a1)2 + 2xy−1(m1 − a1)(m2 − a2) + y−1(m2 − a2)2,

z = x+ iy ∈ H

Theorem 4.7. — a) When restricted to the fundamental domain F the automorphic
form λ1 given by Equation 4.6 admits the explicit expression

λ1(z) =
1
2y

√
(x2 + y2) ((|x| − 1)2 + y2)

y
, z = x+ iy ∈ F.

b) If
[
α β

γ δ

]
∈ SL(2,Z) and z = x+ iy ∈ F , then

λ1

(
αz + β

γz + δ

)
=

1
2y

√
(x2 + y2) ((|x| − 1)2 + y2)

y
.

Proof. — a) follows immediately from Theorem 2.5 and Equation 4.4, if we show that
for z = x+ iy ∈ F , min{y+x2y−1, y−1} ≥ 2|x|y−1, or equivalently min{x2 + y2, 1} ≥
2|x|. But the latter inequality is obvious, since on F , x2 + y2 ≥ 1 and |x| ≤ 1

2 .
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b) is a simple consequence of a), (4.3), and the fact, noted in the Introduc-
tion, that the first Vafa-Witten bound is invariant under the action of SL(2,Z) on
SL(2,R)/ SO(2).

Remark 4.8. — The automorphic form λ1 is also invariant under the transformation
z → −z of H , which clearly does not come from the SL(2,Z) action on H .

We conclude the paper by explaining how the transformation (3.2), (A,B,C) →
(Ã, B̃, C̃), implements the map H → F , induced by the projection SL(2,R)/ SO(2) →
SL(2,Z)\ SL(2,R)/ SO(2). Strictly speaking it does not, since in our desire to work
with a nonnegative B̃ we incorporated in (3.2) an operation foreign to SL(2,Z),
namely the one mentioned in Remark 4.8. But one can easily redefine (3.2) to stay
inside SL(2,Z).

Definition 4.9. — If (A,B,C) is as in Section 2, redefine the transformation A → Ã,
B → B̃, C → C̃ of (3.3) by

(4.10) Ã = min{A,C}, B̃ = −
{

B

min{A,C}

}
min{A,C}, C̃ =

AC −B2 + B̃2

min{A,C} .

Clearly, in (3.3) and (4.10) Ã and C̃ remain the same, while the B̃’s may differ
by at most a sign. Therefore, all the results in Section 3 remain valid if one replaces
(3.3) with (4.9).

For the purpose of stating the next result let us introduce two transformations on
H induced by elements of SL(2,Z):

S(z) = −1
z

=
[

0 1
−1 0

]
· z and T (z) = z + 1 =

[
1 1
0 1

]
· z.

Algorithm 4.11. — The map φ : H → F , given by φ(z) = w iff z ∈ H, w ∈ F , and

there is
[
α β

γ δ

]
∈ SL(2,Z) such that

αz + β

γz + δ
= w, can be constructed according to

the following algorithm:
Step 1. If z = x+ iy satisfies min{x2 + y2, 1} ≥ 2|x|, then exactly one of z, S(z),

T (z), or TS(z) belongs to F . Call it w.
Step 2. If min{x2+y2, 1} < 2|x|, make sure that x2+y2 ≥ 1, eventually by replacing

z with S(z) to achieve that. Then, replace the new z with
−(x− n) + iy

(x − n)2 + y2
= ST−n(z),

where n is the unique integer such that x = n+ ε, for some −1/2 < ε ≤ 1/2.
Step 3. Repeat Step 2 for the new z until one gets a z = x+ iy such that min{x2 +

y2, 1} ≥ 2|x|. This can be achieved in at most p + 1 steps of type 2, where p is the
least integer such that for the original z from Step 1,

y

min{x2 + y2, 1} ≥
√

3
2

1
3p
.

Then, apply Step 1 to this last z.
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Proof. — To justify Step 1, notice first that min{x2 + y2, 1} ≥ 2|x| is equivalent with
|x| ≤ 1/2, (x − 1)2 + y2 ≥ 1, (x + 1)2 + y2 ≥ 1 (Fig.2). Thus, z ∈ F ∪ S(F ). The
conclusion then follows by looking at what S, T do to F \F , and the fact that S2 = I.

Step 2 is precisely an implementation of the transformation (4.10) at the level of
points in H , via (4.4) and (4.5).

Finally, Step 3 is the translation of Theorem 3.8 to points of H , again based on
the dictionary provided by Equations 4.4 and 4.5.

Remark 4.12. — In the literature, the map φ : H → F is proven to exist, in connection
with showing that F is a fundamental domain. We are not aware of any place which
gives a constructive definition of it.

Remark 4.13. — Studying the expression of the automorphic form λ1 given in The-
orem 4.7, a) one concludes that the first Vafa-Witten bounds associated to variable
metrics of determinant 1 admit an absolute minimum of

√
2/ 4

√
27, corresponding to

x = ±1/2 and y =
√

2/2, or A = C = 2
√

3/3, B = ±
√

3/3. The lattice spanned by
the vectors

(
1
C ,

B
C

)
and (0, 1) is in this case the hexagonal lattice, which provides the

thinnest lattice covering of the plane [CS].
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