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Abstract
Noncommutative algebraic geometry studies a certain quotient category R-

qgr of the category of graded R-modules which for commutative R is equivalent
to the category of quasi-coherent sheaves by a famous theorem of Serre. For a
large class of graded algebras, the so-called schematic algebras, we are able to
construct a kind of scheme such that the coherent sheaves on it are equivalent
to R-qgr. We give a brief survey on the results so-far on schematic algebras and
include some new results on cohomological properties of Auslander-Gorenstein
algebras which might be useful in determining the strength of the schematic
property.

Résumé
En géométrie algébrique noncommutative on étudie un certain quotient

R-qgr de la catégorie des R-modules gradués, qui pour R commutatif, est
équivalente à la catégorie des faisceaux quasi-cohérents par un théorème bien
connu de Serre. Pour une grande classe d’algèbres, les algèbres schématiques,
nous pouvons construire une sorte de schéma sur lequel les faisceaux cohérents
forment une catégorie équivalente à R-qgr. Nous rappelons les résultats connus
sur les algèbres schématiques et donnons quelques résultats nouveaux sur les
propriétés cohomologiques des algèbres de Auslander-Gorenstein.

1 Preliminaries and introduction

Let k be an algebraically closed field of characteristic zero and consider a k-algebra
R of the following kind : R is connected (i.e. R is positively graded and R0 = k),
Noetherian and generated in degree 1. The category of graded R-modules will be
denoted by R-gr and the two-sided ideal ⊕i≥1Ri by R+. A graded R-module M

is said to be torsion if each of its elements is annihilated by some power of R+ :
∀m ∈ M ∃n ∈ � : (R+)

nm = 0. The set {(R+)n : n ∈ �} is an idempotent
filter (cf. [11]). Hence we have a localization functor Qκ+ available. Moreover, the
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corresponding kernel functor κ+ (the one which sends a graded R-module to its
torsion submodule : κ+(M) = {m ∈ M | ∃n ∈ � : (R+)

nm = 0}) is stable, i.e.
the injective envelope of a torsion module is again torsion. The quotient category
(R, κ+)-gr consists of all κ+-closed graded R-modules, i.e. those graded R-modules
which satisfy M ∼= HomR((R+)n,M) for all n. More details about the quotient
category may be found in [11] or in [6], but we will provide an alternative description
in the next section.

If R is commutative, then algebraic geometry is a very powerful tool for studying
R. Whence the question arises whether one can do something similar for a non-
commutative R. The answer is positive if R is a PI-algebra, since the method of the
prime spectrum generalizes well ([13]). The recent discovery of interesting algebras
not possessing enough prime ideals (like the so-called Sklyanin algebras ([8, 9, 5, 4]))
motivated us to start from a rather unusual description of the projective scheme
of a commutative algebra, not stressing the prime ideals but the complementary
multiplicatively closed sets.

The projective scheme associated to a commutative algebra R is a pair (X,�X),
X being a topological space and �X a sheaf of graded rings on X . Each homogeneous
element f of R defines an open set X(f). Open sets of this kind form a basis and a
finite number of them suffices to cover X . There is a functor F from the category
of graded R-modules R-gr to the category of quasi-coherent sheaves on X such that
F (R) = �X and the sections of F (M) (M any graded R-module) on the open set
X(f) is just the localization of M at the multiplicatively closed set {fn : n ∈ �}.
The global sections-functor G maps a quasi-coherent sheaf � to its sections on the
total space X : G(�) = Γ(X,�). The composition F ◦ G is the identity, but the

functor Γ def= G ◦ F is merely left exact. An important theorem of Serre ([7]) states
that these two functors induce an equivalence between the category of quasi-coherent
sheaves on X and the quotient category R-qgr of R-gr in which graded R-modules
are being identified if there is a map between them whose kernel and cokernel are
torsion.

If M is graded R-module, then F (M) being a sheaf implies that Γ(M) may be
described as the inverse limit of the sections of F (M) on a cover of X . In particular,
if f1, . . . , fn are homogeneous elements of R such that UiX(fi) = X , then Γ(M) is
isomorphic to{(

mi

fnii

)
i

∈ ⊕ni=1Mfi :
fnij mi

(fjfi)ni
=

f
nj
i mj

(fifj)nj
in Mfifj = Γ(X(fi) ∩X(fj), F (M))

}

The functor Γ = G ◦ F has an entirely module-theoretical description coming from
torsion theory ([11]) :

Γ(M) = lim
−→
n

HomR((R+)
n,M)
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Moreover, the above mentioned quotient category also makes sense if R is not
commutative and Serre’s Theorem justifies the idea that R-qgr is the fundamental
object to study in noncommutative geometry ([1, 3]).

Suppose now that R is non-commutative. We want to describe the objects of
R-qgr by means of localizations of ordinary graded R-modules in the same way as
above. However, in a non-commutative algebra, one needs Ore-sets for localizing and
consequently, their existence is not guaranteed. Thus we have to confine to algebras
possessing “enough” Ore-sets; these are the schematic algebras :

Def inition — R is schematic if there exists a finite number of two-sided homoge-
neous Ore-sets of R, say S1, . . . , Sn, such that

∀(si)i=1,... ,n ∈
n∏
i=1

Si, ∃m ∈ � : (R+)
m ⊆

n∑
i=1

Rsi

The origin of this definition lies in the commutative case : we have that the “Ore-
sets” generated by homogeneous elements fi of R satisfy the above rule if and only
if ∪iX(fi) = X .

Besides the commutative algebras, many interesting graded algebras are
schematic ([14]) :

– algebras which are finite modules over their center.

– homogenizations of enveloping algebras and Weyl-algebras.

– 3-dimensional Sklyanin-algebras.

– several algebras of quantum-type.

Finding counterexamples is easy after noting that for a schematic algebra R all
ExtnR(kR, RR) are torsion (cf. [15]). For instance, the subalgebra S of k < x, y >

/(yx − xy − x2) generated by y and xy is not schematic since Ext1S(kS , SS) is not
torsion (cf. [10]).

If we suppose that R is schematic, then our aim seems to be close at hand : since
the multiplicatively closed set S ∨ T generated by two Ore-sets S and T is again an
Ore-set, one might think that

Γ(M) ∼=

{(
mi

si

)
i

∈ ⊕iS
−1
i M :

mi

si
=

mj

sj
in (Si ∨ Sj)

−1M

}

Unfortunately, this statement is not true, mainly because two subsequent Ore-
localizations do not commute : S−1i R ⊗R S−1j R is not necessarily isomorphic to
S−1j R⊗RS−1i R. The solution to this problem is a refinement of the inverse system :
indeed we do have that Γ(M) is isomorphic to the set of those tuples (misi )i in
⊕iS

−1
i M such that

1⊗
mi

si
=
1

sj
⊗

mj

1
in S−1j (S

−1
i M) and

1

si
⊗

mi

1
= 1⊗

mj

sj
in S−1i (S

−1
j M)
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If one wants to state a precise analogue of Serre’s Theorem, then either one has
to work with a strange Grothendieck topology (the “intersection” of two open sets
depending on the ordering) or either the sections of F (M) get more complicated.
In both cases, one can define sheaves, specify quasi-coherent sheaves and obtain the
desired equivalence between the category of quasi-coherent sheaves and R-qgr ([16]).
We prefer the former approach since it is useful in cohomology.

2 Cohomology in the quotient category

Let R be any Noetherian connected k-algebra. Define a category � with the same
objects as R-gr, the category of graded R-modules. We will write π(M) when
considering the graded R-module M as an object of �. Morphisms in � are defined
as follows :

Hom�(π(M), π(N)) = lim
−→
M′

HomR-gr(M
′, N/κ+(N))

where M ′ runs over the category of submodules of M such that M/M ′ is torsion.
Consequently, π is an exact functor from R-gr to �. Moreover, π has a right adjoint
ω : �→ R-gr, in the sense that for all � ∈ �

HomR-gr(M,ω(�)) ∼= Hom�(π(M),�)

These two functors establish an equivalence between � and the quotient category
(R, κ+)-gr. Since � has enough injectives, we may define Hi, the i-th right derived
functor of Hom�(π(R),−). In order to calculate Hi(π(M)), we should start with
an injective resolution of π(M) in �, apply the functor Hom�(π(R),−) and take
homology on the i-th place. We get an injective resolution of π(M) in � if we apply
the functor π to an injective resolution E• of M in R-gr. Moreover, since

Hom�(π(R), π(E
i)) ∼= HomR-gr(R,ωπ(Ei)) ∼= (ωπ(Ei))0

we get that Hi(π(M)) ∼= hi(ωπ(E•)0) ∀i ∈ �. If one defines the shifted module
M [n] as the module M with gradation (M [n])p = Mn+p, one obtains the graded
cohomology-groups by :

Hi(π(M))
def
= ⊕n∈�H

i(π(M [n]))

In particular, H0(π(M)) ∼= ωπ(M) ∼= Qκ+(M). These graded cohomology groups
are again graded R-modules and from the reasoning above we obtain that

Hi(π(M)) ∼= hi(ωπ(E•))
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The complex ωπ(E•), the homology of which we want to calculate, may be described
in an easier way, using the fact that κ+ is stable. Indeed, stability implies that each
graded injective R-module E may be written as a direct sum I⊕Q where I is graded
torsion and Q is graded torsionfree. Moreover, both I and Q are graded injective
and Qκ+(E)

∼= Q. We may then rewrite the injective resolution E• of M as :

0 −→M −→ I0 ⊕Q0
f0−→ I1 ⊕Q1

f1−→ I2 ⊕Q2
f2−→ · · ·

Note that fn(I
n) ⊆ In+1, since the image of a torsion element under a graded

R-module homomorphism is again torsion. Applying ω ◦ π yields a complex

0 −→ Qκ+(M) −→ Q0
g0−→ Q1

g1−→ Q2
g2−→ · · ·

where gi = Qκ+(fi) is the composition of the maps Qi ↪→ Ei
fi−→ Ei+1 → Qi+1.

Thus Hj(π(M)) is the jth homology-group of the complex (Qi, gi).

In algebraic geometry, it is shown that theseHi coincide with the derived functors
of the global sections functor on the category of sheaves, and the latter coincide with
the more amenable Čech cohomology groups. If R is a schematic algebra, we can
define (generalized) Čech cohomology groups as the homology of the complex

0 −→ ⊕iS
−1
i M −→ ⊕(i,j)S

−1
i R⊗R S−1j M −→ · · ·

We have shown in [15] (without intermediate step) that these Čech cohomology
groups coincide with the functors Hi. The point is that Čech cohomology vanishes
on graded injective modules. Besides providing a more computable way to the Hi

(see the example in [15]), this equality has some interesting consequences :

1. the cohomology of R as a left R-module is the same as that of R as a right
R-module.

2. if R′ is a quotient of R, then it makes no difference whether we calculate the
cohomology of R′ as an R-module or as an R′-module.

3. if R is a finite module over its center Z(R), then for each graded R-module
we have HiR(M)

∼= HiZ(R)(M) as Z(R)-modules since R may be covered with
Ore-sets contained in Z(R) and hence the Čech complex we use coincides with
the one in [12].

Moreover, if the schematic algebra R has finite global dimension, then the
cohomology groups of any finitely generated graded R-module are finite dimensional
([2, 15]). In particular, applying the functor ω ◦ π to an exact sequence of finitely
generated graded R-modules yields a left exact sequence of graded R-modules whose
parts of degree n are exact if n is large enough.

In the next lemma we collect some useful results from [2] :
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Lemma — Let E•(M) be a graded injective resolution of the finitely generated
graded R-module M . Then

1. for all i ≥ 1 : Hi(π(M)) ∼= hi+1(I•(M)), the i + 1st homology of the
subcomplex I•(M) of E•(M).

2. if the resolution is moreover a minimal one, then Hom(k, fj−1(Ej−1)) =
Hom(k,Ej). Consequently, Hom(k,Ej) ⊆ Kerfj and ExtjR(k,M) ∼=
HomR(k, I

j)

Suppose now that R has finite global dimension d and satisfies the Gorenstein
condition. This means that Exti(k,R) = 0 if i �= d and Extd(k,R) ∼= k[l] for some l in
�. We know from [2] that the homology groups of such an algebra R are completely
similar to those of projective d− 1 space:

– H0(π(R)) ∼= R

– Hj(π(R)) = 0 for all j �∈ {0, d− 1}

– Hd−1(π(R)) ∼= R∗[l] where R∗ = ⊕nHomk(R−n, k) is the graded dual of R.

We want to prove the converse : that algebras whose cohomology groups have this
shape are Gorenstein. This result is useful for schematic algebras, because for them
we have a down-to-earth description of the cohomology groups.

Theorem 1 — Let R be a Noetherian connected k-algebra with finite global di-
mension. Suppose there exists a natural number d and an integer l such that
H0(π(R)) ∼= R, Hj(π(R)) = 0 for all j �∈ {0, d − 1} and Hd−1(π(R)) ∼= R∗[l].
Then d = gl.dim(R) and R is Gorenstein.

Proof. Consider a minimal injective resolution E• of R and let Ej = Qj ⊕ Ij as
before. Let τ(Ij) be the socle HomR(k, I

j). The lemma entails that Extj(k,R) ∼=
τ(Ij) and that τ(Ij) ⊆ kerfj for all j ≥ 1. It is well-known that H0(R) ∼= R entails
that Extj(k,R) = 0 for j ∈ {0, 1} and that I0 = I1 = 0. Consider the exact sequence

0 −→ I2
f2−→ I3

f3−→ . . . −→ Id−1
fd−1
−−−→ Id

and its subcomplex of socles. Now f2 is injective and τ(I2) ⊆ kerf2, hence τ(I2) = 0

and also I2 is zero since I2 is the injective hull of its socle. Therefore, f3 is injective
and we may repeat this process, yielding that I2 = I3 = . . . = Id−1 = 0. We
conclude that Extj(k,R) = 0 for all j ≤ d−1. The following sequence is now exact :

0 −→ R∗[l] −→ Id
fd−→ Id+1 −→ . . .

Again τ(Id) ⊆ Kerfd, whence τ(Id) = τ(R∗[l]) and consequently Id = R∗[l]. In the
same way, we get τ(Id+1) = 0, hence Id+1 = 0 and it is clear that we may repeat this
argument. We conclude that Extd(k,R) = R∗[l] and Extj(k,R) = 0 for all j > d.
Finally, gl.dimR = p.dimR k = sup{i | Exti(k,R) �= 0} = d.
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At this moment, we do not know the strongness of the hypothesis that a certain
algebra is schematic. For instance, is a schematic algebra with finite global dimension
automatically Gorenstein? We hope that the above procedure will lead us to an
answer. It would also be interesting to know that the cohomological dimension of a
schematic algebra (i.e. the least integer n such that Hi(π(M)) = 0 for all M ∈ R-gr
and all i > 0) is still bounded by the number of open sets in a cover.

We conclude with a result which has been found independently by A. Yekutieli
and J. Zhang (cf. [17]) : if the connected Noetherian k-algebra R is Gorenstein,
then Serre-duality holds for R. The proof is just a restatement of the classical proof
(for sheaves) in terms of the quotient category. We switch to the more suggestive
notation � = π(M) and � = π(R).

Theorem 2 — Let R be a Gorenstein-algebra of finite global dimension d (with
Extd(k,R) = k[l]). Then :

1. The natural pairing Hom(�,�[−l]) × Hd−1(�) → Hd−1(�[−l]) ∼= k is a
perfect pairing of finite-dimensional vectorspaces for any finitely generated
graded R-module M .

2. ∀i ≥ 0 : Exti(�,�[−l]) ∼= (Hd−1−i(�))′, where ′ denotes the dual
vectorspace.

Proof. Since R is Gorenstein we have ωπ(R) = R and consequentlyHom�(�,�[−l]) ∼=
HomR-gr(M,R[−l]) ∼= (HomR(M,R))−l. A morphism f ∈ (HomR(M,R))−l yields
a map Hd−1(f) : Hd−1(�) → Hd−1(�)−l = Hd−1(�[−l]) which induces the nat-
ural pairing. This pairing is perfect if M is a direct sum of shifts of R because
Hd−1(�[q]) = Homk(R−l−q, k) and Hom(�[q],�[−l]) = R−l−q. If M is arbitrary, we
consider a projective resolution F2 → F1 →M → 0. On one hand, applying the left
exact contravariant functor Hom�(−,�[−l]) ◦ π yields an exact sequence

0 −→ Hom(�,�[−l]) −→ Hom(π(F1),�[−l]) −→ Hom(π(F2),�[−l])

On the other hand, if we apply the functor Hd−1(−)′, we get another exact sequence

0 −→ Hd−1(�)′ −→ Hd−1(π(F ))′ −→ Hd−1(π(F2))
′

The 5-lemma entails that the natural map Hom(�,�[−l]) → Hd−1(�)′ is indeed
an isomorphism. For the second statement, we note that both Exti(−,�[−l]) and
(Hd−1−i(−))′ are contravariant δ-functors � → k −mod which are isomorphic for
i = 0. If we show that they are both coeffaceable, then they are isomorphic by
general machinery. Thus fix a homomorphism ⊕nj=1R[−q] → M (n and q large
enough) such that M is κ+-torsion over the image. Then Exti(⊕nj=1�[−q],�[−l]) =

⊕nj=1H
i(�[−l + q]) and Hd−1−i(⊕nj=1(�[−q])) are both zero for i > 0.
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