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INTRODUCTION

0.1. Overview. The goal of this report is to present, in a unified way, what is known

about the problem of prescribed holonomy of torsion-free affine connections smooth

manifolds.

In §1, I give the fundamental definitions and develop the algebra needed to for-

mulate Berger’s criteria which a subgroup of GL(TxM) must satisfy if it is to be the

holonomy of a torsion-free affine connection on M which is not locally symmetric. I

also develop the closely related notion of a torsion-free H-structure. The fundamen-

tal strategy is to ‘classify’ the torsion-free connections with a given holonomy H by

first ‘classifying’ the torsion-free H-structures and then examining the problem of de-

termining for any given torsion-free H-structure, its space of compatible torsion-free

connections. In nearly all cases, there is a unique compatible torsion-free connec-

tion, but there are important exceptions that are closely related to the second-order

homogeneous spaces.

I formulate the classification problem for general torsion-free H-structures as a

problem treatable by the methods of Cartan-Kähler theory. Finally, I conclude this

section with an appendix containing definitions of the various Spencer constructions

that will be needed and a discussion of the history of the classification of the irreducible

second-order homogeneous spaces. This classification turns out to be important in

the classification of the affine torsion-free holonomies in §3.

In §2, I review Berger’s list of the possible irreducible holonomies for pseudo-

Riemannian metrics which are not locally symmetric. In the course of the review, I

analyze each of the possibilities and determine the degree of generality of each one.

Among the notable results are, first, that the group SO(n,H), which appeared on

Berger’s original list turns out not to be possible as the holonomy of a torsion-free

connection, and, second, that there are two extra cases left off the usual lists (see

§2.7-8). These can be viewed as alternate real forms of a group whose compact form
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96 R.L. BRYANT

is Sp(p)·Sp(1), the holonomy group of the so-called ‘quaternionic-Kähler’ metrics.

In §3, I turn to Berger’s list of the possible irreducible holonomies for affine con-

nections which are not locally symmetric and do not preserve any non-zero quadratic

form. This list turns out to be quite interesting and the examples display a wide

variety of phenomena. Actually, one has to remember that Berger’s original list was

only meant to cover all but a finite number of the possibilities, leaving open the pos-

sibility of a finite number of ‘exotic’ examples. Moreover, in Berger’s original list,

there was no attempt to deal with the different possibilities for the holonomy of the

central part of the group; Berger’s classification deals mainly with the classification

of the semi-simple part of the irreducible holonomies. It turns out that the center of

the group plays a very important role and gives rise to a wealth of examples that had

heretofore not been anticipated.

Finally, in §4, I discuss what is known about the exotic examples so far (see

Table 4). Perhaps the most interesting of these examples, aside from the examples in

dimension 4 first discussed in [Br2], are the ones associated to the ‘exceptional’ second-

order homogeneous spaces of dimension 16 and 27. For example, a consequence of this

is that EC
6 ⊂ SL(27,C) can occur as the holonomy of a torsion-free (but not locally

symmetric) connection on a complex manifold of dimension 27! Unfortunately, as of

this writing, the full classification of the possible exotic examples is far from complete.

0.2. Notation. In this report, I have adopted a slightly non-standard nomenclature

for the various groups that are to be discussed. This subsection will serve to fix this

notation, which is closely related to that used in [KoNa].

I will need to work with vector spaces over R, C, and the quaternions H. Con-

jugation has its standard meaning in C and H; in each case, the fixed subalgebra

is R. The symbol F will be used to denote any one of these division algebras. The

elements of the standard n-space F
n are to be thought of as columns of elements of F

of height n. It is convenient to take all vector spaces over H to be right vector spaces.

For any vector space V over F , the group of invertible F-linear endomorphisms

of V will be denoted GL(V,F) or just GL(V ) when there is no danger of confusion.

The algebra of n-by-n matrices with entries in F will be denoted by Mn(F). This

algebra acts on the left of Fn by the obvious matrix multiplication, representing the

algebra EndF(Fn). As usual, let GL(n,F) ⊂ Mn(F) denote the Lie group consisting

SÉMINAIRES & CONGRÈS 1
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of the invertible matrices in Mn(F), i.e., GL(n,F) = GL(Fn). When F = R, the

group GL(V ) has two components and it is occasionally useful to use the notation

GL+(V ) for the identity component. For any A ∈ Mn(F), define A∗ ∈ Mn(F) to be

the conjugate transpose of A, so that (AB)∗ = B∗A∗ for all A,B ∈Mn(F).

For a vector space V over R or C, the notation SL(V ) has its standard mean-

ing. There is no good notion of a quaternionic determinant; however, the obvious

identification Hn � R4n induces an embedding GL(n,H) ↪→ GL(4n,R) and the sub-

group SL(n,H) ⊂ GL(n,H) is then defined by SL(n,H) = GL(n,H) ∩ SL(4n,R).

Note that SL(n,H) has codimension 1 (not 4) in GL(n,H). In Chevalley’s nomen-

clature, SL(n,H), which is a real form of SL(2n,C), is denoted SU∗(2n). My no-

tation for the other real forms of SL(n,C) are the standard ones: SL(n,R) and

SU(p, q) = {A ∈ SL(n,C) A∗ Ip,q A = Ip,q }. For simplicity, SU(n) denotes SU(n, 0).

When F is R or C and Q is a non-degenerate quadratic form on a vector space V

over F, the slightly non-standard usage SO(V,Q) (respectively, CO(V,Q)) will refer

to the identity component of the subgroup of GL(V ) that fixes Q (respectively, that

fixes Q up to a multiple). The notations SO(p, q) (= SO(p) when q = 0) and CO(p, q)

(= CO(p) when q = 0) denote the identity components of the standard subgroups of

GL(p+q,R), while SO(n,C) and CO(n,C) denote the standard subgroups of GL(n,C).

Finally, SO(n,H) stands for the subgroup consisting of those A ∈ GL(n,H) that

satisfy A∗ iIn A = iIn. In Chevalley’s nomenclature, SO(n,H), which is a real form

of SO(2n,C), is denoted SO∗(2n).

Finally, when F is R or C and Ω is a non-degenerate skew-symmetric bilinear

form on a vector space V over F, the notation Sp(V,Ω) (respectively, CSp(V,Ω))

will stand for the subgroup of GL(V ) that fixes Ω (respectively, that fixes Ω up to a

multiple.) The notations Sp(n,R) and CSp(n,R) denote the standard subgroups of

GL(2n,R) while Sp(n,C) and CSp(n,C) denote the standard subgroups of GL(2n,C).

(In Chevalley’s notation, Sp(n,R) is denoted by Sp∗(n).) As for the other real forms

of Sp(n,C), I use the usual Sp(p, q) to denote the subgroup of GL(p+q,H) consisting

of those matrices A ∈Mp+q(H) that satisfy A∗ Ip,q A = Ip,q, with Sp(n, 0) abbreviated

to Sp(n).

Now define the following subspaces

Sn(R) = { A ∈Mn(R) A = tA }
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Sn(C) = { A ∈Mn(C) A = tA }

Sn(H) = { A ∈Mn(H) A = −A∗ }

and

An(R) = { A ∈Mn(R) A = −tA }

An(C) = { A ∈Mn(C) A = −tA }

An(H) = { A ∈Mn(H) A = A∗ }

and

Hn(C) = { A ∈Mn(C) A = A∗ } .

The definitions of Sn(H) and An(H) may seem surprising at first glance, but these

choices maintain a helpful consistency in the names of real forms of certain complex

representations.

When F is either R or C, the matrix group GL(n,F) acts on the right on Mn(F)

by the rule m · A = tAmA, preserving the two subspaces Sn(F) and An(F), which

are irreducible and inequivalent. On the other hand, when F is either C or H, the

matrix group GL(n,F) acts on the right on Mn(F) by the rule m ·A = A∗ mA. When

F = H, this action preserves the two subspaces Sn(H) and An(H), which are irre-

ducible and inequivalent. When F = C, this action preserves the two complimentary

subspaces Hn(C) and iHn(C), which are irreducible and equivalent.
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1. HOLONOMY AND G-STRUCTURES

1.1. Holonomy. Let Mn be a smooth, 1-connected n-manifold and let ∇ be a linear

connection on its tangent bundle TM .

Let P(M) denote the set of piecewise smooth paths γ : [0, 1] → M . For each

γ ∈ P(M), the connection ∇ defines a linear isomorphism Pγ : Tγ(0)M → Tγ(1)M

known as parallel translation along γ. The holonomy of ∇ at x is defined to be the

set

Hx = {Pγ γ ∈ P(M) and γ(0) = γ(1) = x } ⊂ GL(TxM) .

1.1.1. Group properties. — Because M is assumed to be connected and simply

connected, a theorem of Borel and Lichnerowicz [KoNo, Theorem 4.2, Chapter II]

implies that Hx is a connected Lie subgroup of GL(TxM).

The dependence on the basepoint x is well understood: For any γ ∈ P(M), the

isomorphism Pγ : Tγ(0)M → Tγ(1)M identifies Hγ(0) with Hγ(1).

Let V be some vector space of dimension n over R. Choose an x ∈ M and an

isomorphism u : TxM → V . Let Hu ⊂ GL(V ) denote the subgroup that corresponds

to Hx ⊂ GL(TxM) under this isomorphism. Explicitly,

Hu =
{
u◦Pγ◦u−1 γ ∈ P(M) and γ(0) = γ(1) = x

}
⊂ GL(V ) .

Because M is connected, the GL(V )-conjugacy class of the subgroup Hu is indepen-

dent of the choices of x and u. In fact, as u varies, the group Hu ranges over all of

the subgroups in a fixed GL(V )-conjugacy class. In discussions of holonomy groups,

it is customary to fix a subgroup H in this conjugacy class and simply say that the

holonomy of ∇ is H. I employ this abuse of language when it seems unlikely to be

confusing.
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It is not hard to show that any connected Lie subgroup of GL(V ) is (conjugate

to) the holonomy of some linear connection on Rn. Moreover, on a given manifold M ,

the problem of determining which subgroups of GL(V ) can be the holonomy of some

affine connection on TM is purely topological in nature; it reduces to the question of

which structure reductions of the tangent bundle TM are possible topologically.

1.1.2. The torsion-free condition. — For a connection ∇ on the tangent bundle

of a smooth manifold M , there is a tensor invariant called the torsion of ∇, defined by

the rule T (X, Y ) = ∇XY −∇Y X− [X, Y ] for any two vector fields X and Y on M . It

is the lowest order invariant of a connection on TM . Most connections on the tangent

bundle that arise in differential geometry are torsion-free, i.e., satisfy T ≡ 0, with the

Levi-Civita connection of a Riemannian metric being the prime example.

This report is concerned with the following basic problem:

Problem. Which (conjugacy classes of ) subgroups H ⊂ GL(V ) can occur as the

holonomy of some torsion-free connection ∇ on some n-manifold M?

Note that, by the remarks above, the torsion-free condition is the part of the

problem which makes it interesting in a differential geometric sense.

In the pioneering work [Be1], M. Berger found conditions stemming from the

Bianchi identities which must be satisfied by any subgroup H ⊂ GL(V ) that occurs

as the holonomy of some torsion-free connection. In §1.1.4, these conditions will be

recalled, but first, it is convenient to review the structure equations of a torsion-free

connection in a form that will be useful in later discussions.

1.1.3. The structure equations. — Again, let V be a fixed reference vector

space of dimension n over the reals. Let π : F → M denote the bundle of V - valued

coframes. Thus, an element of the fiber Fx = π−1(x) is an isomorphism u : TxM → V .

The bundle F is naturally a smooth principal right GL(V )-bundle over M where the

right action is given by RA(u) = u·A = A−1 ◦ u.

Any linear connection ∇ on TM has an associated connection form θ, i.e., a 1-

form on F with values in gl(V ) = V ⊗V ∗ [KoNo]. The form θ is characterized by two

conditions: First, it restricts to each fiber Fx to represent the canonical left-invariant
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1-form on GL(V ). Second, its kernel at each point u is the horizontal space of the

connection ∇, i.e., a piecewise C1 curve γ̃ : [0, 1]→ F satisfies γ̃∗(θ) = 0 if and only if

it is of the form γ̃(t) = γ̃(0)◦
(
Pγ(t)

)−1 where γ = π◦γ̃. These properties imply that θ

satisfies R∗
A(θ) = A−1 θ A.

Because of the way F was defined, there is also a canonical V -valued 1-form ω

on F defined by the rule ω(v) = u
(
π∗(v)

)
for v ∈ TuF . This 1-form obeys the

equivariance condition R∗
A(ω) = A−1ω. For each u ∈ F , the linear map ω : TuF → V

is a surjection and its kernel is the tangent space at u to the fiber Fπ(u).

The condition that ∇ be torsion-free is expressed in terms of θ and ω by the first

structure equation of Élie Cartan:

(1) dω = −θ ∧ω .

The curvature of θ is the 2-form Θ = dθ + θ∧θ. (This latter equality is often called

the second structure equation of Élie Cartan.) Taking the exterior derivative of the

first structure equation yields the first Bianchi identity

(2) Θ ∧ω = 0 ,

and the second Bianchi identity is simply dΘ = Θ∧θ − θ∧Θ.

1.1.4. Berger’s criteria. — The Bianchi identities can be used to derive in-

formation about the curvature of torsion-free connections with holonomy H. For

any u ∈ Fx, define the holonomy bundle of ∇ through u to be

(3) Bu =
{
u ◦ Pγ(1) γ ∈ P(M) and γ(1) = x

}
.

By the Reduction Theorem [KoNo, Theorem 7.1, Chapter II] the subset Bu ⊂ F is a

principal right Hu-subbundle of F .

Suppose that ∇ has holonomy (conjugate to) H where H ⊂ GL(V ) is a con-

nected Lie subgroup with Lie algebra h ⊂ gl(V ). Choose u ∈ F so that Hu = H.

After pulling back the forms ω and θ to B = Bu, the form ω remains V -valued and

surjective but, according to the Reduction Theorem, the form θ now takes values in

the subalgebra h ⊂ gl(V ).
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It follows that there exists a curvature function R on B with values in the subspace

h⊗ Λ2(V ∗) ⊂ gl(V )⊗ Λ2(V ∗) so that

Θ = R
(
ω ∧ω

)
.

The first Bianchi identity then becomes the relation

0 = Θ ∧ω = R
(
ω ∧ω

)
∧ω .

Thus, R takes values in the vector space K(h), which is defined to be the kernel of

the composition

h⊗ Λ2(V ∗) ↪→ gl(V )⊗ Λ2(V ∗) = V ⊗ V ∗ ⊗ Λ2(V ∗) −→ V ⊗ Λ3(V ∗) ,

where the final map is induced by exterior multiplication V ∗ ⊗ Λ2(V ∗) → Λ3(V ∗).

In terms of the Spencer complex described in the Appendix, K(h) is the cycle group

Z1,2(h) = h⊗Λ2(V ∗) ∩ V⊗S2(V ∗)⊗V ∗.

Proposition. (Berger) — Suppose that h ⊂ gl(V ) is the Lie algebra of the con-

nected subgroup H ⊂ GL(V ). Let h
′ ⊂ h denote the smallest subspace that satisfies

K(h′) = K(h). Then h
′ is the Lie algebra of a connected normal subgroup H ′ ⊂ H

which has the property that, if ∇ is a torsion-free connection on a 1-connected n-

manifold M whose holonomy is (conjugate to) a subgroup of H, then its holonomy is

(conjugate to) a subgroup of H ′.

Proof. First, note that if p and q are linear subspaces of gl(V ), then K
(
p ∩ q) =

K(p) ∩ K(q). Thus, intersecting all of the subspaces p ⊂ h that satisfy K(p) = K(h)
produces a unique minimal such subspace, say h

′. Since the sequence defining K(h)
is H-equivariant, h

′ ⊂ h must be invariant under the adjoint representation of H.

In particular, h
′ is an ideal of h, so that it is the Lie algebra of a connected normal

subgroup H ′ ⊂ H.

Now, suppose that ∇ is a torsion-free connection on a 1-connected n-manifold M

and that there exists a u ∈ Fx so that Hu ⊂ H. Let B = Bu. After restriction to B,
the connection form θ takes values in hu ⊂ h and hence the curvature function R
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must take values in K(h) = K(h′). But now, for any piecewise C1 path γ : [0, 1]→M

with γ(1) = x, parallel translation of any curvature endomorphism of ∇ on Tγ(0)M to

an endomorphism on Tγ(1)M = TxM yields an endomorphism which, relative to the

coframe u, takes values in h
′, possibly after being conjugated by an element of Hu ⊂

H. However, H ′ is a normal subgroup of H, so h
′ is stable under conjugation by Hu.

Thus, all parallel translations of curvature endomorphisms take values in h
′. Now,

by the holonomy theorem of Ambrose and Singer [KoNo, Theorem 8.1 of Chapter II]

and the 1-connectedness of M , it follows that Hu ⊂ H ′ as desired.

This yields the first criterion of M. Berger:

Criterion 1. — If H ⊂ GL(V ) can occur as the holonomy of a torsion-free connec-

tion, then K(h) �= K(h′) for any proper ideal h
′ ⊂ h.

Example. — Criterion 1 is very stringent. In [Br2], it is shown that, of all of the

irreducible representations ρn : SL(2,R) → SL(n+1,R) (n ≥ 1), only the groups

ρn

(
SL(2,R)

)
⊂ SL(n+1,R) for n = 1, 2, 3, or 4 satisfy Criterion 1.

More generally, Berger showed that any reductive Lie group H has only a finite

number of inequivalent representations ρ : H → GL(V ) so that the subgroup ρ(H) ⊂
GL(V ) satisfies Criterion 1. In fact, making extensive use of representation theory,

he compiled a list of almost all of the subgroups H ⊂ GL(V ) that satisfy Criterion 1

and act irreducibly on V . This list was rather long. To reduce it, Berger formulated

a second criterion that I will now describe.

A torsion-free connection ∇ is said to be locally symmetric if its curvature tensor

is ∇-parallel. The problem of classifying the irreducible (affine) locally symmetric

connections can be reduced to a (still formidable) algebra problem concerning Lie

algebras [KoNo, Chapter XI]. Building on Cartan’s work on the irreducible Rieman-

nian symmetric spaces, Berger [Be2] solved this problem. Thus, the groups that can

only occur as the holonomy of locally symmetric connections can be eliminated from

further consideration.

In order to do this effectively, one needs a condition on subgroups H ⊂ GL(V )

that is sufficient to force any torsion-free connection whose holonomy lies in H to
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be locally symmetric. Berger derived such a condition as follows: By the structure

equations, the exterior derivative of the curvature function R can be written in the

form

dR = θ·R+DR(ω)

where the term θ·R represents the ‘fiber derivative’ of R and and the term DR(ω)

represents its ‘covariant derivative’. Here, DR is a function on B with values in

K(h)⊗ V ∗. The condition that ∇ be locally symmetric is just the condition DR = 0.

The second Bianchi identity now takes the form DR(ω)
(
ω∧ω

)
= 0 and hence this

represents a set of linear equations onDR. These equations express the condition that

DR take values in the vector space K1(h), defined to be the kernel of the composition

K(h)⊗ V ∗ ↪→ gl(V )⊗ Λ2(V ∗)⊗ V ∗ −→ gl(V )⊗ Λ3(V ∗) ,

where the second map is just the identity on gl(V ) tensored with exterior multiplica-

tion Λ2(V ∗)⊗ V ∗ → Λ3(V ∗). This leads to the second criterion of M. Berger:

Criterion 2. — IfH ⊂ GL(V ) can occur as the holonomy of a torsion-free connection

which is not locally symmetric, then K1(h) �= 0.

Example. (continued) — Only ρn

(
SL(2,R)

)
⊂ SL(n+1,R) for n = 1, 2, or 3

satisfy Criterion 2 [Br3]. In fact, all three of these subgroups do occur as holonomy

of non-symmetric torsion-free connections on manifolds of the appropriate dimension.

When n = 1, such connections are the generic torsion-free connections on surfaces that

preserve an area form, and when n = 2, since ρ2

(
SL(2,R)

)
� SO(2, 1) ⊂ SL(3,R),

such connections are the Levi-Civita connections of (generic) Lorentzian metrics on

3-manifolds. The case n = 3 is considerably more subtle. The reader may consult

[Br2] or [Sc] for details.

On the other hand, the subgroup ρ4

(
SL(2,R)

)
⊂ SL(5,R) (which satisfies Cri-

terion 1 but not Criterion 2) occurs only as the holonomy of a locally symmetric

torsion-free connection on a 5-manifold. In fact, up to diffeomorphism, such a con-

nection must be locally equivalent to the canonical symmetric connection on either

the symmetric space SL(3,R)/ SO(2, 1) or the symmetric space SU(2, 1)/ SO(2, 1).

SÉMINAIRES & CONGRÈS 1
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The list of (conjugacy classes of) subgroups H ⊂ GL(V ) that act irreducibly

on V and satisfy Berger’s two criteria is manageably short. Berger himself compiled

this list except for a few small modifications that will be explained in later sections.

In this report, this list is essentially Tables 1 and 3. (The division into two parts is

original with Berger. The first part consists of the groups satisfying both Criteria

that also preserve a non-degenerate quadratic form and the second part contains all

the rest.)

1.1.5. Sufficient conditions. — There remains the task of determining which of

the groups on these lists can actually occur as holonomy, in other words determining

sufficient conditions for a subgroup to be holonomy of a torsion-free connection.

The most direct method of proving sufficiency would be to explicitly construct a

torsion-free connection with holonomy H for each of the groups H satisfying Berger’s

criteria. However, this approach has difficulties and limitations.

The main difficulty is that the condition on a connection that it have holonomy

in a certain subgroup is an integro-differential condition, difficult to capture or test

locally. Except for the trivial cases where H is one of 1V , R+ · 1V , or SL(V ) (the

only connected normal subgroups of GL(V )), there is certainly no set of differential

equations on connections whose solutions are precisely the connections with holonomy

(conjugate to) H.

The main limitation of explicit construction is that it may not address the prob-

lem of moduli , that is, construction of one example may not give any clue as to ‘how

many’ torsion-free connections there are with a given holonomy.

There is, however, a general strategy for resolving these problems for any specific

subgroup H. After reviewing the relevant details from the theory of G-structures,

this strategy will be outlined in §1.3.

1.2. H-structures. If H ⊂ GL(V ) is any subgroup, an H-structure on M is, by

definition, a smooth H-subbundle B ⊂ F .

When H is a closed subgroup of GL(V ), the space of H-structures on M is simply

the space of sections of the quotient bundle SH = F/H → M whose typical fiber is

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



106 R.L. BRYANT

isomorphic to GL(V )/H.1

In this report, I am going to concentrate on the local geometry of H-structures,

avoiding global topological questions about whether or not there exists a section of

the bundle SH over a given manifold Mn. For the problems that I will discuss, taking

M = Rn would suffice, but, for the most part, I will continue to discuss the general

n-manifold case as a way of emphasizing the diffeomorphism invariance of the problem

being treated. Note that, since the bundles F and SH are (non-canonically) trivial

over R
n, one may think of the space of H-structures on R

n as the space of mappings

of Rn into GL(V )/H. This is what I mean by the statement “Local H-structures

depend on dim
(
GL(V )/H

)
= n2 − dim H functions of n variables.”

1.2.1. Torsion-free structures. — Since an H-structure B on M is a subbundle

of F , it follows that every connection on B extends canonically to a connection on F .

Naturally, a connection on B is said to be torsion-free if its extension to F is torsion-

free.

I will say that an H-structure B itself is torsion-free if it admits at least one

torsion-free connection and that it is locally flat2 if every point x ∈ M has a neigh-

borhood U over which B has a closed section, i.e., a section η which satisfies dη = 0.

From a partition of unity argument it follows that a locally flat H-structure is torsion-

free and that the condition of being torsion-free is itself a local condition on an H-

structure. The converse is not true; for most subgroups H of interest, torsion-free

does not generally imply locally flat .

For simplicity of notation, I will use the symbol ω to denote the pull-back to B of

the canonical V -valued 1-form ω on F . The condition that B be torsion-free is then

equivalent to the condition that there exist a 1-form φ on B with values in h ⊂ gl(V )

satisfying the structure equation dω = −φ∧ω. For many (in fact, most) subgroups H

of GL(V ), being torsion-free is a non-trivial condition on B, as will be seen in the

next section. First, here are three examples:

1 Even when H is not closed, it is possible to regard the space of H-structures as
the space of sections of a (non-Hausdorff) bundle, but the closed case will suffice here.

2 Some authors, such as [KuSp], say integrable although this terminology conflicts
with that of earlier authors, cf. [Ch].
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Example. — If H = 1V , then an H-structure on M is simply a section of F , i.e.,

a V -valued 1-form η on M with the property that ηx : TxM → V is an isomorphism

for all x ∈M . This 1V -structure is torsion-free if and only if dη = 0. Clearly, in this

case, torsion-free is the same as locally flat.

Example. — If J : V → V is a complex structure on V and H ⊂ GL(V ) is

the commuting group of J , then an H-structure on M is simply an almost complex

structure on M . It is not hard to show that an H-structure is torsion-free if and

only if the Nijnhuis tensor of the almost complex structure vanishes. The Newlander-

Nirenberg theorem [Ni] implies that this is equivalent to the condition that the almost

complex structure be integrable to a complex structure. Thus, for this subgroup also,

torsion-free is the same as locally flat.

Example. — If H is the group of isometries of some positive definite quadratic

form on V , then an H-structure on M is simply a Riemannian metric on M . By

the Fundamental Lemma of Riemannian geometry, such a structure always has a

(unique) torsion-free connection. Thus, in this case, all H-structures are torsion-free.

However, as this example illustrates, ‘torsion-free’ need not imply ‘flat’. The generic

Riemannian metric is certainly not flat when n > 1.

1.2.2. Differential equations. — It is not hard to show that ‘torsion-free’ is the

same as ‘locally flat to first order’ [Br1]. In fact, it is worthwhile to look at the

differential equations which an H-structure must satisfy in order to be torsion-free.

Since this is a local condition, I can simply assume that M = Rn = V with standard

coordinate x : V → Rn. Then any map g : M → GL(V ) determines an H-structure

by the formula

Bg =
{
h−1g−1 dxp h ∈ H, p ∈M

}
.

Clearly, Bg depends only on the reduced mapping [g] : M → GL(V )/H. This H-

structure will be torsion-free if and only if there exists a 1-form φ on M with values

in h which satisfies the equation

g−1dg ∧ g−1dx = φ ∧ g−1dx .
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In other words, writing g−1dg∧g−1dx = T (g)
(
g−1dx∧ g−1dx

)
, where T (g) : M →

V ⊗ Λ2(V ∗) is a non-linear first-order operator on maps g : M → GL(V ), the H-

structure Bg is torsion-free if and only if T (g) = δ(F ) where F : M → h ⊗ V ∗ is

some mapping and δ : h ⊗ V ∗ → V ⊗ Λ2(V ∗) is the Spencer map defined in the

Appendix. The cokernel of this mapping is the Spencer cohomology group H0,2(h),

whose dimension is h0,2(h). It follows that the condition of being torsion-free is

a set of at most h0,2(h) independent first-order partial differential equations on an

H-structure.

It is not difficult to show that these equations are all independent at a point and

that these equations are actually equations on the mapping [g] : M → GL(V )/H. The

principal difficulties of dealing with these equations can be enumerated as follows:

(1) They are invariant under the diffeomorphism group. This precludes them from

being elliptic or hyperbolic in the usual senses, so that it can be difficult to apply

analytic techniques. On the other hand, this can sometimes be turned into an

advantage, as in Malgrange’s proof of the Newlander-Nirenberg Theorem [Ni].

(2) They are generally overdetermined. It is almost always true that h0,2(h) >

dim
(
GL(V )/H

)
. For example, subgroups H which satisfy h0,2(h) = 0, so that

all H-structures are torsion-free, are very restricted. For a discussion of this, see

the Appendix.

(3) For most subgroups H ⊂ GL(V ), they are neither involutive or formally inte-

grable, so that delicate methods from Cartan-Kähler theory must be brought to

bear in their analysis. For example, for the subgroups H = SO(p)× SL(2,R) ⊂
SL(2p,R) studied in Example 1, the corresponding equations are not formally

integrable.

Nevertheless, the methods of Cartan-Kähler theory can be used to study these prob-

lems and this is what I will be doing in a large part of this report.

1.2.3. An exterior differential system. — I will now describe an exterior differ-

ential system on SH whose integral manifolds are the (local) torsion-free H-structures.

The Appendix contains the information on the Spencer complex needed in this de-

scription. First, here are some basic facts about the geometry of F .
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For each x ∈ gl(V ), the right action of the 1-parameter subgroup etx ∈ GL(V )

on F is the flow of a vertical vector field on F which I denote by Vx. The assignment

x �→ Vx is a linear map which satisfies the identity V[x,y] =
[
Vx, Vy

]
and the identities

ω(Vx) = 0 and Vx dω = −xω are easily verified.

The double complex A∗,∗(V ) = S∗(V ∗)⊗Λ∗(V ∗) is defined in the Appendix.

Now, define a map ξ : A∗,∗(V )→ A∗(F) by setting ξ(1⊗ α) = α ◦ ω and ξ(α⊗ 1) =

α ◦ dω = d
(
α ◦ ω

)
and then extending ξ to all of A∗,∗(V ) as an algebra map. Thus,

for example, ξ
(
A0,∗(V )

)
consists of the differential forms on F which are polynomial

in the components of ω with constant coefficients. If e1, . . . , en is a basis of V and

one sets ω = ei ω
i, then a typical element ϕ ∈ ξ

(
A1,q(V )

)
has the form

ϕ =
1
q!

∑
i,j1,...,jq

cij1···jq
dωi ∧ωj1 ∧ · · · ∧ωjq

where the constants cij1···jq
are skew-symmetric in the last q indices. The n-form

Ω = ω1∧ω2∧ · · ·∧ωn generates ξ
(
A0,n(V )

)
and is non-vanishing on any submanifold

of F which is transverse to the fibers of F →M .

Define

Iq(h) =
{
ϕ ∈ ξ

(
A1,q(V )

)
| Vx ϕ = 0 for all x ∈ h

}
.

It is obvious that I∗(h) is invariant under right action by H. By construction, it is

semi-basic for the projection F → F/H = SH . It follows that there is a differen-

tial ideal IH , well-defined on SH , which has the property that its pullback to F is

generated by I∗(h). The n-form Ω is only well-defined on SH when H is a subgroup

of SL(V ), however, it is well-defined up to a multiple on SH and so, by abuse of

language, I will usually refer to it as providing an independence condition for the

ideal IH .

The importance of this ideal is explained by the following proposition. The proof

consists of unwinding the definitions and will be omitted.

Proposition. — The n-dimensional integral manifolds of IH that are transverse to

the fibers of SH → M are locally graphs of torsion-free H-structures. Conversely,

the projection of each torsion-free H-structure B over M to SH is an n-dimensional

integral manifold of IH that is transverse to the fibers of SH →M .
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This proposition makes the study of the generality of torsion-free H-structures

amenable to the techniques of Cartan-Kähler theory. If, for example, the ideal-plus-

independence condition
(
IH ,Ω

)
is involutive on SH , then this allows one to determine

the ‘generality’ of torsion-free H-structures and to make claims about the behavior

of the higher order jets of torsion-free H-structures. This information can be quite

useful in the analysis of H-structures, cf. [Br1] and below.

Before leaving this construction, I should remark that there is also a relative

version of this construction and this will be called upon at various times during

the report. In the H-structures to be studied below, it sometimes happens that

there is a group G satisfying H ⊂ G ⊂ GL(V ) which has the property that torsion-

free G-structures are all (locally) flat. The most common cases of this are when

G = Sp(V,Ω
)
or is the group of complex linear transformations of V endowed with a

fixed complex structure. In such cases, it is frequently advantageous to take advantage

of Darboux’ theorem or the Newlander-Nirenberg theorem to reduce the original

problem to the study a differential system whose integral manifolds correspond to

the (local) reductions of a torsion-free G-structure to a torsion-free H-structure. I

will not go through the construction of the corresponding differential system in full

generality here. Instead, I will content myself with examples. The reader can see these

examples in application in §2.5, which deals with torsion-free Sp(p, q)-structures and

in §3.1.3, which deals with GR ·SL(n,H)-structures.

1.3. Torsion-free H-structures and connections. Here is how the problem of

describing the local torsion-free H-structures is related to the problem of describing

the torsion-free connections with holonomy H: When the holonomy of a torsion-free

connection ∇ is conjugate to a subgroup H ⊂ GL(V ), say, with Hu = H, then the

bundle Bu is a torsion-free H-structure. In fact, the connection ∇ determines a family

of torsion-free H-structures which, in some sense, ought to be considered equivalent:

Let NH ⊂ GL(V ) denote the normalizer of H in GL(V ). Then for every g ∈ NH , the

bundle Bu·g = Bu·g is also a torsion-free H-structure on M . This construction gives

rise to a family of H-structures parametrized by the homogeneous space NH/H.

Conversely, starting with any torsion-free H-structure B ⊂ F , one may choose

a compatible connection ∇ which will be torsion-free and whose holonomy will be a
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(possibly proper) subgroup of H.

If being able to describe all torsion-freeH-structures is to be useful in determining

whether or not H can be the holonomy of a torsion-free connection, one needs a

verifiable condition on an H-structure B which will guarantee that it supports a

torsion-free connection with holonomy equal to the full group H. The remainder of

this section develops a sufficient condition which will be used frequently in the rest of

the report.

1.3.1. A sufficiency condition. — Now, for any fixed torsion-free H-structure B,
the space of B-compatible torsion-free connections is an affine space modeled on the

space of sections of the vector bundle B×H h
(1) over M whose typical fiber is isomor-

phic to h
(1). In fact, supposing that φ is an h-valued 1-form on B that represents the

restriction to B of a torsion-free connection on F , then dω = −φ∧ω and any other

B-compatible torsion-free connection is represented by a 1-form φ̃ = φ + a ω where

a is a function on B with values in h
(1) ⊂ h ⊗ V ∗ which satisfies the equivariance

condition R∗
A(a ω) = A−1 (a ω)A. Since Φ = dφ + φ∧φ = R(ω∧ω), where R takes

values in K(h), it is easy to compute that

Φ̃ = dφ̃+ φ̃ ∧ φ̃ = Φ+
(
da+ φ·a+Q′(a)(ω)

)
(ω)

= Φ +
(
Da(ω)

)
∧ω =

(
R+ δ(Da)

)
(ω ∧ω)

= R̃
(
ω ∧ω

)

where Q′ : h
(1) → h

(1)⊗V ∗ is an appropriate quadratic mapping and Da is a function

on B with values in h
(1) ⊗ V ∗ which may be thought of as representing the covariant

differential of the section of B ×H h
(1) represented by a. In particular, note that the

quotient mapping

[R] : B → H1,2(h) = Z1,2(h)/B1,2(h) = K(h)/B1,2(h)

is well-defined independent of choice of connection. Thus, [R] represents a section

of B ×H H1,2(h) that can be regarded as the intrinsic curvature of the torsion-free

H-structure B.

Now, in the case where the differential system (IH ,Ω) is involutive, the fact

that there is a (local) integral manifold tangent to every integral element coupled
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with the description of the integral elements just given shows that for every element

[R0] ∈ H1,2(h), there is a local torsion-free H-structure whose curvature function

assumes the value [R0]. Moreover the formula given for the effect on curvature of

variation of connection then shows that for each element of R0 ∈ Z1,2(h) = K(h),
there is a connection on some torsion-free H-structure whose curvature assumes the

value R0.

Let K•(h) ⊂ K(h) denote the (possibly empty) subset consisting of those elements

that do not lie in any subspace of the form p⊗Λ2(V ∗) for any proper subalgebra p ⊂ h.

For groups H that satisfy Criterion 1, it frequently happens that K•(h) is dense in

K(h). When h
(1) �= 0, it can even happen that K•(h) ∩B1,2(h) is dense in B1,2(h).

Definition. — A connection on anH-structure B will be said to have h-full curvature

if its curvature at some point assumes a value in K•(h).

By the Ambrose-Singer Holonomy theorem, any torsion-free connection on an

H-structure B with h-full curvature will necessarily have its holonomy be all of H.

Moreover, up to local diffeomorphism there is at most a finite dimensional space

of torsion-free connections with holonomy H that are locally symmetric. Thus, a

Cartan-Kähler analysis of the system
(
IH ,Ω) together with an understanding of the

set K•(h) can suffice to prove that a torsion-free, not-locally-symmetric connection

with holonomy H actually does exist. It is this general approach to sufficiency that

will be used in this report.

I summarize this discussion in the enunciation of the following sufficient criterion.

Criterion 3. — If H ⊂ GL(V ) is a connected Lie subgroup for which the ideal

(IH ,Ω) is involutive and for which K•(h) is non-empty, then there exist torsion-free

connections with holonomy H.

Example. — When h
(1) = 0, a torsion-free H-structure possesses a unique com-

patible, torsion-free connection. For example, so(p, q)(1) = H0,2
(
so(p, q)

)
= 0. (In

fact, this is a restatement of the Fundamental Lemma of Riemannian geometry: Ev-

ery (pseudo-)Riemannian metric (i.e., H-structure) possesses a unique compatible
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CLASSICAL, EXCEPTIONAL, AND EXOTIC HOLONOMIES : A STATUS REPORT 113

torsion-free connection.) In this case, there is no freedom in the choice of a compati-

ble torsion-free connection and, since every SO(p, q)-structure is torsion-free, it is not

surprising that the system
(
ISO(p,q),Ω

)
is involutive. Since K•(so(p, q)) is easily seen

to be dense in K
(
so(p, q)

)
, it follows that the generic SO(p, q)-structure has holonomy

equal to the identity component of SO(p, q).

Example. — At the other extreme, for groups like GL(V ) or SL(V ) when n ≥ 2,

which also have H0,2(h) = 0, all H-structures are locally flat, K(h) = B1,2(h), and

K•(h) is dense in K(h). Thus, in these cases also, the generic compatible connection

has holonomy equal to H.

For most cases, however, the Cartan-Kähler analysis is non-trivial and the results

are more subtle. In this report, I will concentrate exclusively on the case where H

acts irreducibly on V , even though the general method does not need this restriction.

A. Appendix: Spencer cohomology

In this appendix, I collect definitions and facts about Spencer cohomology which

will be needed in this report. Let V be a vector space of dimension n over a ground

field F of characteristic zero. I use the standard notations Sp(V ∗) and Λp(V ∗) to

denote, respectively, the symmetric and alternating p-linear functions on V .

A.1. The Spencer complex. The space Ap,q(V ) = Sp(V ∗) ⊗ Λq(V ∗) can be

thought of as the space of q-forms on V whose coefficients are homogeneous polynomial

functions on V of degree p. Exterior differentiation then defines a linear map δ :

Ap,q(V ) → Ap−1,q+1(V ) which makes A∗,∗(V ) =
⊕

p,q≥0 A
p,q(V ) into a bigraded

complex satisfying

H∗,∗(A∗,∗(V ), δ
)
= H0,0

(
A∗,∗(V ), δ

)
� F .

Let W be another vector space over F, define δW : W⊗A∗,∗(V ) → W⊗A∗,∗(V )

to be δW = 1W ⊗ δ, and let L ⊂ W ⊗ V ∗ be any linear subspace. Define subspaces

L(k) ⊂W ⊗Sk+1(V ∗) by the rules L(−1) = W , L(0) = L, and, for k ≥ 1, the inductive

formula

L(k) = δ−1
W

(
L(k−1) ⊗ V ∗) .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



114 R.L. BRYANT

(The space L(k) is known as the k-th prolongation of L.) The natural inclusion

Sk+1(V ∗) ⊂ V ∗ ⊗ Sk(V ∗) allows one to write

L(k) =
(
L⊗ Sk(V ∗)

)
∩W ⊗ Sk+1(V ∗) .

The Spencer complex
(
C∗,∗(L), δ

)
is then defined by setting

Cp,q(L) = L(p−1) ⊗ Λq(V ∗) ⊂W ⊗ Sp(V ∗)⊗ Λq(V ∗) = W ⊗Ap,q(V ) .

It is not hard to see that δW
(
Cp,q(L)

)
⊂ Cp−1,q+1(L), so

(
C∗,∗(L), δW

)
is indeed a

subcomplex of
(
W ⊗A∗,∗(V ), δW

)
. For simplicity, I shall write δ on this subcomplex

instead of δW . The cohomology groups of this complex are denoted Hp,q(L) and, as

usual, hp,q(L) is defined to be dim FH
p,q(L). It is not hard to see directly from the

definitions that Hp,0(L) = Hp,1(L) = 0 for all p > 0. Moreover, H0,0(L) = W and

H0,1(L) = (W ⊗ V ∗)/L. Thus, the interesting groups are Hp,q(L) where q ≥ 2.

In the cases of present interest, W = V and L = h ⊂ V ⊗ V ∗ = gl(V ) is the Lie

algebra of a connected Lie subgroup H ⊂ GL(V ) which acts irreducibly on V . The

lower corner of the bigraded complex takes the form

...
...

h
(2)

h
(2) ⊗ V ∗ · · ·

↘ ↘

h
(1)

h
(1) ⊗ V ∗ h

(1) ⊗ Λ2(V ∗) · · ·

↘ ↘ ↘

h h⊗ V ∗ h⊗ Λ2(V ∗) h⊗ Λ3(V ∗) · · ·

↘ ↘ ↘ ↘

V V ⊗ V ∗ V ⊗ Λ2(V ∗) V ⊗ Λ3(V ∗) · · ·

where all of the slanted arrows are simply δ. It is worth remarking that all of these vec-

tor spaces are H-modules in an obvious way and that all of the maps δ are H-module

maps. Thus, in particular, all of the Spencer cohomology groups are themselves

H-modules.
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A.2. The torsion-free condition. As explained in §1.2.2, h0,2(h) is the number of

independent first order equations on H-structures needed to express the condition of

being torsion-free. Since H is assumed to act irreducibly on V , a result of [KoNa1]

(based on previous work of Cartan and Weyl) asserts that if dimV ≥ 3, then h0,2(h) =

0 if and only if H contains the identity component of an orthogonal group O(V,Q)

where Q is some non-degenerate quadratic form on V . Of course, the only connected

groups satisfying this condition are the identity components of the groups O(V,Q),

CO(V,Q), SL(V ), and GL(V ).

However, it must be noted that when dimV = 4 their classification admits an

exception, namely CSp(V,Ω). Presumably this is the only exception.

Also, their result assumes that dimV ≥ 3. When dimV = 2, in addition to

the subgroups which contain an orthogonal group, there is a one-parameter family of

subgroups

Hλ =
{

eλt

(
cos t − sin t
sin t cos t

)
t ∈ R

}
� R, λ > 0

which also have h0,2(hλ) = 0. All these exceptions turn up later in this report.

A.3. Non-uniqueness of torsion-free connections. Another classification result

which will be important for this report is the determination of the subgroups H which

act irreducibly on V and which have h
(1) �= 0. In the case that the ground field is C,

this list can be found in Table A.

The derivation of this result has an interesting history. É. Cartan derived most

of this list in his fundamental paper [Ca2], which classifies the primitive infinite tran-

sitive pseudogroups in the holomorphic category. Unfortunately, he missed the two

“sporadic” cases at the end of Table A. This omission came to light in [KoNa2]

when Kobayashi and Nagano classified the irreducible second-order transformation

groups (see below). Interestingly, in 1893 Cartan knew of these two exceptions to his

classification of 1909. In the closing paragraphs of [Ca1], he explicitly lists realiza-

tions as second-order transformation groups of the exceptional groups EC
6 and EC

7 on

(complex) spaces of respective dimensions 16 and 27. Their respective isotropy rep-

resentations are C∗·Spin(10,C) on C16 and C∗ ·EC
6 on C27, precisely the ones Cartan
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Table A. Irreducible C-groups H ⊂ GL(V ) with
h
(1) �= 0. (Notation: d = dimW and the dimension

restrictions prevent repetition and/or reducibility.)

H V h
(1) Restrictions

SL(W ) W
(
W ⊗ S2(W ∗)

)
0

d ≥ 2
GL(W ) W W ⊗ S2(W ∗) d ≥ 1
Sp(W,Ω) W S3(W ∗) d ≥ 4
CSp(W,Ω) W S3(W ∗) d ≥ 4

CO(W,Q) W W ∗ d ≥ 3
GL(W ) S2(W ) S2(W ∗) d ≥ 3
GL(W ) Λ2(W ) Λ2(W ∗) d ≥ 5

GL(W1)·GL(W2) W1 ⊗W2 W ∗
1 ⊗W ∗

2 d1 ≥ d2 ≥ 2,
(d1, d2) �= (2, 2)

C∗ ·Spin(10,C) S+ � C16 S∗
+ � C16

C
∗ ·EC

6 V � C
27 V ∗ � C

27

omitted in his 1909 classification.3

The following information will be needed in the section on non-metric holonomy:

For the first four entries of Table A, h
(k) �= 0 for all k ≥ 0 while, for all of the

rest of the entries, h
(k) = 0 for all k > 1.

Most of the groups listed in Table A satisfy h1,2(h) = h2,2(h) = 0. The three

exceptions are as follows:

(1) When H = CSp(W,Ω) where Ω is a non-degenerate 2-form on a vector space W

of dimension 4, then h1,2(h) = 5. In fact, H1,2(h) is isomorphic to the kernel of

the map Λ2(W ∗)→ Λ4(W ∗) defined by exterior multiplication by Ω.

3 Given Cartan’s abiding interest in the exceptional groups, this omission is par-
ticularly puzzling. It is perhaps of some significance that, although Cartan refers to
the results on infinite groups from his 1909 paper frequently in his later works, he
never (to my knowledge) mentions his classification of the irreducible second-order
transformation groups again. This is in spite of his extensive later work on second-
order geometries (such as projective and conformal geometries), real forms of the
complex simple groups, Riemannian symmetric spaces, and bounded symmetric do-
mains, each of which is a subject where second-order transformation groups could
have quite naturally arisen.
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Table B. Irreducible R-groups H ⊂ GL(V ) with h
(1) �= 0.

(Notation: GF denotes any connected subgroup of F∗ and the
dimension restrictions prevent repetition and/or reducibility.)

H V Restrictions

R∗ R

C
∗

C

GR ·SL(n,R) Rn n ≥ 2
GC ·SL(n,C) C

n n ≥ 2

GR ·Sp(n,R) R2n n ≥ 2
GC ·Sp(n,C) C2n n ≥ 2

CO(p, q) Rp+q p+ q ≥ 3
CO(n,C) Cn n ≥ 3

R∗ ·SL(p,R)·SL(q,R) Rpq p ≥ q ≥ 2, (p, q) �= (2, 2)
C∗ ·SL(p,C)·SL(q,C) Cpq p ≥ q ≥ 2, (p, q) �= (2, 2)
R∗ ·SL(p,H)·SL(q,H) R4pq p ≥ q ≥ 1, (p, q) �= (1, 1)

R∗ ·SL(p,C) Rp2 � Hp(C) p ≥ 3

GL(p,R) Rp(p+1)/2 � Sp(R) p ≥ 3
GL(p,C) Cp(p+1)/2 � Sp(C) p ≥ 3
GL(p,H) Rp(2p+1) � Sp(H) p ≥ 2

GL(p,R) Rp(p−1)/2 � Ap(R) p ≥ 5
GL(p,C) Cp(p−1)/2 � Ap(C) p ≥ 5
GL(p,H) R

p(2p−1) � Ap(H) p ≥ 3

R∗ ·Spin(5, 5) R16

R∗ ·Spin(1, 9) R16

C∗ ·Spin(10,C) C16

R∗ ·E1
6 R27

R∗ ·E4
6 R27

C∗ ·EC
6 C27

(2) When H = CO(W,Q) for Q a non-degenerate quadratic form on a vector spaceW

of dimension at least 4.
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(3) When H = GL(W1)·GL(W2) where dimW1 > dimW2 = 2.

In [Ma], an attempt was made to extend Cartan’s classification to the real field.

However, this list is incomplete for two reasons. First, since he relied on Cartan’s

incomplete list, Matsushima’s list does not contain any of the real forms of the two

‘sporadic’ cases. Second, for several of the entries on Cartan’s complex list, Mat-

sushima missed one or more of their real forms, particularly, the ones associated to

the quaternions. This list was finally completed by Kobayashi and Nagano in [KoNa2]

and is to be found in Table B.

Finally, because it will be of use in the last section of this report, I have included

the list of irreducible second-order homogeneous spaces as complied by Kobayashi and

Nagano [KoNo2]. I would also like to remind the reader of the following terminology.

Let G0 ⊂ G be a closed subgroup of a Lie group G which contains no normal sub-

group of G of positive dimension. Then G acts almost faithfully on the homogeneous

space G/G0 and G0 is the stabilizer subgroup of [e] ∈ G/G0. There is a natural

isomorphism T[e](G/G0) � g/g0 where [e] is the identity coset and there is a natural

representation ρ : G0 → Aut(g/g0) given by ρ(g) = L′
g

(
[e]

)
where Lg : G/G0 → G/G0

is the obvious left action by g ∈ G.

Let G1 ⊂ G0 denote the kernel of ρ. If G0 is discrete, the homogeneous space

is said to be of order zero, while if G0 has positive dimension, the order of G/G0 is

defined to be one more than the order of G/G1. (It is easy to see that if dimG1 =

dimG0 then the identity component of G0 is a normal subgroup of G which lies in G0,

so this inductive definition actually works.)

Let H = ρ(G0) ⊂ Aut(g/g0) be the image subgroup. The homogeneous space

G/G0 is said to be irreducible if H acts irreducibly on g/g0. In [Ca1] Cartan claimed

that any irreducible homogeneous space (in the holomorphic category) is either of

order one or two. Apparently, his proof is flawed, but the result (even in the real

category) is correct anyway, as was verified by Kobayashi and Nagano.

The list of the irreducible first-order homogeneous spaces is long, including, in

particular, all of the irreducible affine symmetric spaces [Be2]. However in contrast,

the complete list over the reals of the irreducible second-order homogeneous spaces is

rather short. It is due to Kobayashi and Nagano [KoNa2]. This list is reproduced here
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Table C. The irreducible second-order homogeneous spaces

H = G0/G1 g/g0 G G/G0

R∗ ·SL(p,R)·SL(q,R) Rpq SL(p+q,R) GrR

p

(
Rp+q

)
C∗ ·SL(p,C)·SL(q,C) Cpq SL(p+q,C) GrC

p

(
Cp+q

)
R∗ ·SL(p,H)·SL(q,H) R4pq SL(p+q,H) GrH

p

(
Hp+q

)
CO(p, q) Rp,q SO(p+1, q+1) N1

(
Rp+1,q+1

)
CO(p,C) Cp SO(p+2,C) N1

(
Cp+2

)
R∗ ·SL(p,C) Hp(C) SU(p, p) Hp

(
C2p

)
R∗·SL(p,R) Ap(R) SO(p, p) Np

(
R2p

)
C∗·SL(p,C) Ap(C) SO(2p,C) Np

(
C2p

)
R∗·SL(p,H) Ap(H) SO(2p,H) Np

(
H2p

)
R∗·SL(p,R) Sp(R) Sp(p,R) Lp

(
R2p

)
C∗·SL(p,C) Sp(C) Sp(p,C) Lp

(
C2p

)
R∗·SL(p,H) Sp(H) Sp(p, p) Lp

(
H2p

)
R

∗ ·Spin(5, 5) R
16 E1

6

R∗ ·Spin(1, 9) R16 E4
6 OP2

C
∗ ·Spin(10,C) C

16 EC
6

R∗ ·E1
6 R27 E1

7

R∗ ·E4
6 R27 E3

7

C
∗ ·EC

6 C
27 EC

7

as Table C.4 As will be seen in later sections, this list is relevant to the determination

of the non-metric holonomies. For my purposes, it is only necessary to observe that,

for each of the irreducible second-order homogeneous spaces, one has the isomorphism

of H-modules g1 �
(
g/g0

)∗
and that, except for the first two entries of Table C, one

has h
(1) �

(
g/g0

)∗.

4 The reader may want to note that I have corrected the misprint SU∗(4n) in their
fifth entry to SO∗(4n) = SO(2n,H). Also, for a related result, see Ochiai [Oc].
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2. THE METRIC CASES

The list of all of the subalgebras of gl(V ) which satisfy Berger’s two criteria is

not known. However, if one restricts attention to the irreducibly acting subalgebras

of gl(V ), many techniques from representation theory become available. Using these

techniques, Berger himself found a large list of irreducibly acting subalgebras of gl(V )

which satisfy his two criteria. This list falls naturally into two parts: The first part,

the metric list, consists of the irreducibly acting subalgebras of gl(V ) which also fix

some non-degenerate quadratic form Q on V . This part appears in Table 1. The

second part, the non-metric list, will be treated in the next section.

Since so(p, q)(1) = 0, one has h
(1) = 0 for any subgroup H ⊂ SO(p, q). Thus,

each connection with holonomy H ⊂ SO(p, q) determines a NH/H-parameter family

of torsion-free H-structures and each torsion-free H-structure determines a unique

torsion-free connection with holonomy a subgroup of H. In particular, the geometry

of torsion-free H-structures in the metric case is essentially the same as the geometry

of the torsion-free connections with holonomy conjugate to a subgroup of H.

I will now discuss what is known about the generality of the space of connections

with these holonomies on a case-by-case basis.

2.1. SO(p, q). — This is the generic (pseudo-)Riemannian metric. Such a metric

is locally determined by choosing the n(n+1)/2 components of the metric in a local

coordinate system, subject only to the open condition that the quadratic form have the

desired signature. It is easy to see that the Levi-Civita connection of a generic metric

of signature (p, q) will have so(p, q)-full curvature and hence will have holonomy equal

to SO(p, q). Now, the local diffeomorphisms depend on n functions of n variables, so

it follows that the local ‘moduli space’ of connections with this holonomy is described

by n(n−1)/2 (local) functions of n variables.
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Table 1. Berger’s metric list

n H Geometric Type

p+q ≥ 2 SO(p, q) Generic Metric
2p SO(p,C) Holomorphic Metrics

2(p+q) ≥ 4 U(p, q) Kähler
2(p+q) ≥ 4 SU(p, q) special Kähler

4(p+q) ≥ 8 Sp(p, q)·Sp(1) Quaternionic Kähler
4(p+q) ≥ 8 Sp(p, q) hyperKähler

4p ≥ 12 SO(p,H) ?

7 G2 Associative
7 G′

2 split-Associative
14 GC

2 Holomorphic Associative

8 Spin(7) Cayley
8 Spin(4, 3) split-Cayley
16 Spin(7,C) Holomorphic Cayley

16 Spin(9) ?
16 Spin(8, 1) ?
16 Spin(5, 4) ?

2.2. SO(p,C). — These structures are simply the holomorphic analogues of Rieman-

nian metrics. The only essential difference is that there is now no signature to worry

about. The Levi-Civita connection of the generic holomorphic metric on C
p � R

2p

has holonomy SO(p,C) and, modulo local biholomorphism, these structures depend

on p(p−1)/2 holomorphic functions of p complex variables.

2.3. U(p, q). — This is the generic Kähler (pseudo-)metric. Since U(p, q) is a sub-

group of GL(p+q,C), a torsion-free U(p, q)-structure has an underlying torsion-free

almost complex structure. By the Newlander-Nirenberg theorem, torsion-free almost

complex structures are locally flat, so one may assume that the underlying almost

complex structure is locally the standard one on Cp+q. Moreover, the metric ten-

sor can be described on U ⊂ Cp+q in terms of a function f (known as the Kähler
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potential) by the formula

g =
∂2f

∂zi ∂z̄j
dzi dz̄j = Hi̄(f) dzi dz̄j ,

where f is only required to satisfy the open condition that its complex Hessian H(f)

have Hermitian type (p, q). Thus, the torsion-free U(p, q) structures depend locally on

one function of n = 2(p+q) variables. (The choice of local holomorphic coordinates zi

depends on (p+q) holomorphic functions of (p+q) complex variables. Since such

coordinates are determined by their restriction to any totally real submanifold, it

follows that this coordinate ambiguity depends on 2(p+q) real analytic functions of

(p+q) real variables. Thus, this coordinate ambiguity does not materially affect the

generality count.)

For generic f , the Levi-Civita connection of the metric g will be u(p, q)-full, so

that the holonomy of the metric will be all of U(p, q).

2.4. SU(p, q). — Since SU(p, q) is a subgroup of SL(p+q,C), such a structure has not

only an underlying parallel complex structure, but a parallel holomorphic volume form

as well. An easy consequence of the Newlander-Nirenberg theorem is that all torsion-

free SL(p+q,C)-structures are locally flat, so there exist local complex coordinates

z1, . . . , zp+q in which this volume form becomes dz1∧ · · ·∧dzp+q . Specifying the metric

tensor is then locally equivalent to choosing a function f on U ⊂ Cp+q and letting

g =
∂2f

∂zi ∂z̄j
dzi dz̄j ,

where the complex Hessian of f has Hermitian type (p, q) and moreover, satisfies the

single second-order PDE

det
(

∂2f

∂zi ∂z̄j

)
= (−1)q .

Locally, in the real analytic category, a solution f to this equation will be determined

by the values of it and its normal derivative along a (non-null) hypersurface. Thus,

the solutions of this equation depend locally on two functions of (2p+2q−1) variables.
As long as p+q > 1, the coordinate ambiguity is of lower generality, depending only

on 2p+2q−2 functions of p+q real variables.
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Table 2. Local generality of metric
holonomies (modulo diffeomorphisms)

n H Local Generality

p+q ≥ 2 SO(p, q) 1
2n(n−1) of n

2p SO(p,C) 1
2p(p−1)C of pC

2(p+q) ≥ 4 U(p, q) 1 of n
2(p+q) ≥ 4 SU(p, q) 2 of n−1

4(p+q) ≥ 8 Sp(p, q) 2(p+q) of (2p+2q+1)

4(p+q) ≥ 8 Sp(p, q)·Sp(1) 2(p+q) of (2p+2q+1)
4p ≥ 8 Sp(p,R)·SL(2,R) 2p of (2p+1)
8p ≥ 16 Sp(p,C)·SL(2,C) 2pC of (2p+1)C

7 G2 6 of 6
7 G′

2 6 of 6
14 GC

2 6C of 6C

8 Spin(7) 12 of 7
8 Spin(4, 3) 12 of 7
16 Spin(7,C) 12C of 7C

For a generically chosen solution f to this equation, the Levi-Civita connec-

tion of gf will have su(p, q)-full curvature, so that its holonomy will be the full

group SU(p, q).

2.5. Sp(p, q). — This is the geometry of pseudo-Kähler metrics which also possess

a parallel holomorphic symplectic form. According to the holomorphic version of

Darboux’ theorem, any holomorphic symplectic form has a local coordinate expression

of the form

Ω = dz1 ∧ dzp+q+1 + · · ·+ dzp+q ∧ dz2p+2q .

A reduction of this Sp(p+q,C)-structure to a Sp(p, q)-structure is specified by

choosing another 2-form ω with appropriate algebraic properties. These properties

are described as follows: The 2-form ω must be expressed in the form

ω = i
2

tdz ∧G ∧ dz
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where dz is the column of height 2(p+q) of the differentials of the coordinate functions

and G is a Hermitian symmetric matrix of functions on some domain U ⊂ C2(p+q)

with the property that it has Hermitian type (2p, 2q) at each point of U and, moreover

satisfies the matrix equation GJp+q G = Jp+q where

Jp+q =
(

0 Ip+q

−Ip+q 0

)
.

In this case, the associated metric is given by g = tdz Gdz.

It is not difficult to show that the resulting Sp(p, q)-structure is torsion-free if

and only if the 2-form ω is closed. Since the real 3-form dω must be the real part

of a 3-form of type (2, 1), this constitutes at most 4(p+q)2(2p+2q−1) independent

equations for the coefficients of G. The algebraic conditions on G (analyzed more

fully below) imply that such a matrix is determined locally by (p + q)(2p+2q+1)

unknowns, so the closure of ω is always an overdetermined system of first order pde

for these unknowns.

One might hope to avoid dealing with an overdetermined system by introducing

the Kähler potential f , i.e, a function f so that ω = −i ∂∂̄f , as was done in the study

of torsion-free SU(p, q)-structures. However, as an equation for f , this is expressed in

terms of its complex Hessian H(f) by the matrix equation H(f)Jp+q H(f) = Jp+q

together with the open condition thatH(f) be of Hermitian type (2p, 2q). This matrix

equation expands to be (p+q)(2p+2q−1) independent second order PDE for f and

hence is still an overdetermined system as soon as p+q > 1.

In fact, it is not difficult to construct an exterior differential system which allows

analysis of the equations directly without the introduction of a potential. Since this

will serve as a model for other such calculations, I will consider this one in some detail.

First, recall that the groups in question are defined by

Sp(p+q,C) = { A ∈ GL(2p+2q,C) tAJp+q A = Jp+q }

and

Sp(p, q) = { A ∈ Sp(p+q,C) AHp,q
tA = Hp,q }
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where

Hp,q =




Ip 0 0 0
0 −Iq 0 0
0 0 Ip 0
0 0 0 −Iq


 .

By its very construction, there is an identification

Sp(p+q,C)/ Sp(p, q) = {AHp,q
tA A ∈ Sp(p+q,C) }

and this latter subspace of M2p+2q(C) is exactly the set of Hermitian symmetric

matrices G of Hermitian type (2p, 2q) which satisfy GJp+q G = Jp+q, as is easy to

verify.

Now set Xp,q = C
2p+2q × Sp(p+q,C)/ Sp(p, q) and note that there is a natural

embedding of Xp,q into the bundle of (1, 1)-forms on C2p+2q given by the assignment

(
z, A · Sp(p, q)

)
�→

(
z, i

2
tdz ∧AHp,q

tA ∧ dz
)

.

This identifies Xp,q as the bundle whose sections correspond to the reductions of

the standard Sp(p+q,C) structure on C2p+2q to a Sp(p, q)-structure. Such a section

corresponds to a closed 2-form if and only if the 3-form dω vanishes identically on it

where ω is the 2-form

ω = i
2

tdz ∧AHp,q
tA ∧ dz ,

which is clearly well-defined on Xp,q.

Thus, let I be the differential ideal on Xp,q generated by the 3-form dω and let

the independence condition be given by the standard volume form on C2p+2q. Note

that this ideal is homogeneous and that, to compute its characters, it suffices to work

at a single point. Moreover, there exist integral elements at each point since the flat

structures defined by constant sections are integral manifolds of I.

Now, ω is clearly well-defined on C2p+2q × Sp(p+q,C) as well, and, setting ζ =
tAdz and α = A−1 dA, one finds that the formula for dω takes the form

dω = − i
2

tζ ∧
(
αHp,q +Hp,q

tα
)
∧ ζ ,
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showing that the system I is in linear form with constant coefficients (in this ba-

sis), making the calculation of the characters particularly easy. Since I is gener-

ated by a real 3-form, one has s′k ≤ k−1 for all k. However, the sum of the re-

duced characters clearly cannot be more than the dimension of the homogeneous

space Sp(p+q,C)/ Sp(p, q), i.e., (p+q)(2p+2q+1). Thus, if the lower characters are

to have their maximal possible value, then one might expect

s′i =
{
i− 1, 1 ≤ i ≤ 2p+2q+1
0, 2p+2q+1 < i ≤ 4(p+q) .

Not surprisingly, this actually turns out to be the case, as is easily calculated. Another

calculation reveals that the space of integral elements at each point has dimension

2
(
2p+2q+2

3

)
=

2p+2q+1∑
i=1

i s′i

so that Cartan’s Test is satisfied, and the system is involutive. Since its last non-zero

Cartan character is s2p+2q+1 = 2(p+q), the Cartan-Kähler theorem implies that, in

the analytic category, solutions depend on 2(p+q) functions of 2p+2q+1 variables. In

fact, a more precise statement can be made: Starting with a real analytic submani-

fold N2p+2q+1 ⊂ C2p+2q which is in sufficiently general position with respect to the

holomorphic symplectic structure and a real analytic 1-form α on N whose exterior

derivative dα satisfies certain open conditions, there is an open neighborhood U of N

on which there exists a unique, real analytic, closed section of Xp,q which pulls back

to N to become dα.

Now, the ambiguity in the choice of holomorphic symplectic coordinates is given

by one symplectic generating function and hence is one holomorphic function of

(2p+2q) complex variables. Note that this ambiguity is of strictly smaller degree than

that of the integral manifolds of I. Thus, modulo diffeomorphisms, the generic local

torsion-free Sp(p, q)-structure depends on 2(p+q) functions of 2p+2q+1 variables.

Finally, using the fact that I is involutive, one can compute that the generic inte-

gral manifold of I yields a torsion-free Sp(p, q)-structure whose Levi-Civita connection

is sp(p, q)-full, so that the holonomy of such a structure is the full group Sp(p, q). The

details of this calculation (which are very similar to the calculations done in [Br1] for

the groups G2 and Spin(7)) are left to the reader.

SÉMINAIRES & CONGRÈS 1



CLASSICAL, EXCEPTIONAL, AND EXOTIC HOLONOMIES : A STATUS REPORT 127

Metrics with this holonomy are known as hyperKähler (at least in the case H =

Sp(p)). See [Bea] for a survey article on the global aspects of the subject.

Explicit examples of hyperKähler metrics can be constructed by a generalization

of the classical symplectic reduction procedure in which reduction works on three

symplectic forms simultaneously. For references on this procedure, see [Bes]. No

examples of hyperKähler metrics on compact manifolds are known explicitly, though

one can study them by twistor methods [HKLR].

2.6. Sp(p, q)·Sp(1). — These structures turn out to be only slightly more general

than the Sp(p, q) examples. In fact, they satisfy the same curvature identities except

that there is one extra parameter, the scalar curvature, and it must be constant.

These metrics are all Einstein metrics. They have the same degree of local generality

as Sp(p, q)-structures (as is not hard to prove).

However, globally, things are more restrictive. For example, it was shown in

[PoSa] that there is no compact smooth example with holonomy Sp(2)·Sp(1) with

positive scalar curvature other than the locally symmetric examples. On the other

hand, yet another generalization of the symplectic reduction procedure allows one to

construct such structures on certain compact orbifolds in any dimension, [Bo].

Using twistor methods, [LeB] has shown how to construct families of complete

metrics with this holonomy depending on functions of p+q+2 variables. Recently,

LeBrun and Salamon [LeSa] have shown that in each dimension there are only a finite

number of diffeomorphism types of compact manifolds which admit a metric with this

holonomy.

2.7. Sp(p,R)·SL(2,R). — This is one of the two metric possibilities omitted from

Berger’s original list. It is a subgroup of SO(2p, 2p) ⊂ GL(4p,R). Note that this case

and the previous case are real forms of the same complex subgroup Sp(p,C)·SL(2,C)

of SO(4p,C). All the corresponding metrics are Einstein. Just as in the other cases,

a Cartan-Kähler analysis shows that modulo diffeomorphism the (analytic) local

torsion-free H-structures in this case depend on 2p functions of 2p+1 variables and

that the Levi-Civita connection of the generic such structure has sp(p,R)⊕sl(2,R)-full

curvature, so that its holonomy is the full group Sp(p,R)·SL(2,R).
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2.8. Sp(p,C)·SL(2,C). — This is the other of the two metric possibilities omit-

ted from Berger’s original list. The groups Sp(p, q)·Sp(1) and SL(p,R)·SL(2,R) are

real forms of this complex group. All the corresponding metrics are holomorphic

Einstein metrics. A Cartan-Kähler analysis shows that modulo diffeomorphism the

(analytic) local torsion-free H-structures in this case depend on 2p holomorphic func-

tions of 2p+1 holomorphic variables and that the Levi-Civita connection of the generic

such structure has sp(p,C)⊕sl(2,C)-full curvature, so that its holonomy is the full

group Sp(p,C)·SL(2,C).

2.8. SO(p,H). — As was recently pointed out by R. McLean [Mc], this group does

not satisfy Berger’s first criterion. In fact, K
(
so(p,H)

)
= 0 since the complexification

of the inclusion so(p,H) ⊂ so(2p,C) ⊂ gl(4p,R) is the diagonal inclusion so(2p,C) ⊂
so(2p,C) ⊕ so(2p,C) ⊂ gl(4p,C). Thus there are no torsion-free connections with

this holonomy.

2.9. The Exceptional Cases. Of the remaining cases, often called the ‘exceptional’

holonomies, the three groups of type Spin(9−k, k) were eliminated independently by

Alexeevski [Al] and Brown and Gray [BrGr], who showed that these groups did not

actually satisfy Berger’s second criterion.

In [Br1] it was shown that all of the other exceptional groups on Berger’s list do,

in fact, occur, and with the local generality stated in Table 2. Complete examples for

the compact holonomies were constructed in [BrSa]. It is now known that a compact

Riemannian 7-manifold with holonomy G2 would necessarily have finite fundamental

group, must have its first Pontrjagin class p1 be non-zero, and cannot be a product.

Quite recently, Joyce [Jo1] has constructed compact Riemannian 7-manifolds with

holonomy G2 and compact 8-manifolds with holonomy Spin(7).

2.10. Summary. — The results of this discussion are summarized in Table 2. This

table gives the “generality” of the non-symmetric local connections with a given metric

holonomy group once one reduces modulo the diffeomorphism group. The entry “m

of q” means “m functions of q variables”. A superscript C is used to denote the

holomorphic category and the spurious entries from Berger’s list have been removed.
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Table 3. Berger’s non-metric list (modified)
(Notation: GF denotes any connected subgroup
of F∗ and the dimension restrictions prevent
repetition and/or reducibility.)

H V Restrictions

GR ·SL(n,R) Rn n ≥ 2
GC ·SL(n,C) C

n n ≥ 1
GR ·SL(n,H) Hn n ≥ 1

GR ·Sp(n,R) R2n n ≥ 2
GC ·Sp(n,C) C2n n ≥ 2

CO(p, q) Rp+q p+ q ≥ 3
GC ·SO(n,C) Cn n ≥ 3

GR ·SL(p,R)·SL(q,R) Rpq p ≥ q ≥ 2, (p, q) �= (2, 2)
GC ·SL(p,C)·SL(q,C) C

pq p ≥ q ≥ 2, (p, q) �= (2, 2)
GR ·SL(p,H)·SL(q,H) R4pq p ≥ q ≥ 1, (p, q) �= (1, 1)

GR ·SL(p,C) Hp(C) � Rp2
p ≥ 3

GR ·SL(p,R) Sp(R) � Rp(p+1)/2 p ≥ 3
GC ·SL(p,C) Sp(C) � Cp(p+1)/2 p ≥ 3
GR ·SL(p,H) Sp(H) � R

p(2p+1) p ≥ 2

GR ·SL(p,R) Ap(R) � R
p(p−1)/2 p ≥ 5

GC ·SL(p,C) Ap(C) � Cp(p−1)/2 p ≥ 5
GR ·SL(p,H) Ap(H) � Rp(2p−1) p ≥ 3

The second part of Berger’s list consisted of a list of irreducibly acting groups

which did not fix a quadratic form and which satisfied Berger’s two criteria. Moreover,

Berger stated a theorem to the effect that this list contained all but a finite number
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of such groups.

With some modifications, Berger’s non-metric list is given in Table 3. The major

modification is that I have collected all of the entries on Berger’s original list which

differ only by ‘extension by scalars’ into single entries in the table; the entries which

contain a GK actually represent several entries (see below). Also, some of these entries

must be discarded for certain values of the (integer) parameters because the group

in question either fixes a quadratic form, does not act irreducibly, or else is already

accounted for somewhere else in the table.

Note that the list, as constituted, does not contain any examples (comparable to

the ‘exceptional’ cases like G2 ⊂ SO(7) on the metric list) which occur in only one

dimension. I will refer to any groups which act irreducibly, satisfy Berger’s criteria,

do not fix a non-degenerate quadratic form, and yet do not appear on this list as

exotic. It is not obvious that exotic groups exist.

We will now examine what is known about each of the entries on the list. For

convenience and because of the similarity of many of the arguments so grouped, I

have collected the entries into ‘families’.

3.1. The Affine Families. This is first group in the table and represents the

possible ‘affine’ cases as one allows the ‘ground field’ to vary.

3.1.1. GR· SL(n,R). — This contains two cases, GL(n,R) and SL(n,R) acting via

their usual representations on V = Rn. They will be referred to respectively as general

and special R-affine connections.

I will begin with the general affine case, where the corresponding H-structure is

the whole of F . Any coframing is a section of F , so there is no loss of generality in

choosing a closed coframing, i.e., so that η = dx for some V -valued function x. Then

a torsion-free connection is represented by a 1-form φ with values in n-by-n matrices

which satisfies the condition φ∧η = dη = 0. In other words,

φ =
(
φi

j

)
=

(
Γi

jk dx
k
)

for arbitrary functions Γi
jk = Γi

kj . The generic choice of such Γ’s will yield a connec-

tion with gl(n,R)-full curvature and hence with holonomy GL(n,R). The ambiguity
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in the choice of local coordinates x is given by n functions of n variables, so the

generality of such local connections modulo the local diffeomorphisms is given by

N = n
((

(n+1)
2

)
− 1

)
= 1

2 n(n+ 2)(n− 1)

functions of n variables.

Now, I turn to the special affine case. Here, there is an underlying parallel

volume form. Since volume forms have no local invariants, it follows that there are

local coordinates x1, . . . , xn so that the parallel volume form is dx1∧ · · ·∧ dxn. Then,

as before, a section of the SL(n,R)-structure is simply η = dx. Now again, the 1-

form corresponding to a torsion-free connection preserving this structure is given by

a n-by-n matrix of 1-forms φ which satisfies the condition φ∧dx = 0, but it must

also satisfy trφ = 0. This, of course is the extra condition on the Γ’s that Γi
ij = 0

for all j. Moreover, the generic choice of Γ’s satisfying these restrictions will yield

a connection with sl(n,R)-full curvature and hence with holonomy SL(n,R). Thus,

by the same analysis as above, it follows that, modulo diffeomorphisms, the local

torsion-free connections with holonomy SL(n,R) depend on

N = n
((

(n+1)
2

)
− 2

)
+ 1 = 1

2
(n2 + 2n− 2)(n− 1)

functions of n variables.

3.1.2. GC·SL(n,C). — This case divides into three subcases, depending on the

dimension of the subgroup GC ⊂ C∗. Set V = Cn and let GC· SL(n,C) act in the

usual way on V .

If GC = C∗, then the fact that the underlying GL(n,C)-structure is torsion-free

implies, via the Newlander-Nirenberg Theorem, that it is integrable, and hence that

a local section can be taken in the form η = dz. The associated connection 1-form of

any compatible torsion-free connection is given in the form

φ =
(
φi

j

)
=

(
Γi

jk dz
k
)

where Γi
jk = Γi

kj are arbitrary functions (not necessarily holomorphic). Thus, the

generality of such connections modulo (holomorphic) changes of coordinates is

N = 2n
(
(n+1)

2

)
= n2(n+ 1)
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(real) functions of 2n variables. The generic choice of such Γ’s yields a connection

with gl(n,C)-full curvature and hence with holonomy GL(n,C).

If GC = {1}, then the fact that the underlying SL(n,C)-structure is torsion-free

implies that it is integrable, and a local section can be taken in the form η = dz. The

accompanying connection is given in the form

φ =
(
φi

j

)
=

(
Γi

jk dz
k
)

where Γi
jk = Γi

kj are arbitrary functions (again not necessarily holomorphic) subject

to the extra condition that Γi
ij = 0 for all j. Thus, the generality of such connections

modulo (holomorphic) changes of coordinates is

N = 2n
((

(n+1)
2

)
− 1

)
= n(n+ 2)(n− 1)

(real) functions of 2n variables. Note, that one must assume n > 1 in order to

have an irreducible action in this case. Again the generic such connection will have

holonomy SL(n,C).

Finally, if GC is a 1-parameter subgroup of C
∗, then there is an angle θ in the

interval 0 ≤ θ < π so that GC is the group of complex numbers of the form

et(cos θ+i sin θ), t ∈ R .

Using the integrability of the underlying almost complex structure, it is not difficult

to show that one can always choose local holomorphic coordinates z1, . . . , zn so that

there exists an R-valued function f so that

η = e−(sin θ−i cos θ)f dz .

Moreover, the connection matrix φ is of the form

φi
j = δi

j(sin θ − i cos θ) df + Γi
jk dz

k

where Γi
jk = Γi

kj . In order that φ take values in h, these functions must also satisfy

the trace condition

Γi
ik dz

k = −2in e−iθ ∂f .
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Moreover, it is easy to see that, for generic choices of f and Γ satisfying these re-

lations, the connection φ will have h-full curvature and hence its holonomy will be

GC·SL(n,C). Thus, the space of such connections (modulo holomorphic diffeomor-

phisms) depends on

N = 2n
((

(n+1)
2

)
− 1

)
+ 1 = n(n+ 2)(n− 1) + 1

(real) functions of 2n variables. Note, by the way, that when n = 1 this family

contains the subgroup S1·SL(1,C) ⊂ GC·SL(1,C), which fixes a quadratic form, and

hence has already been counted in the metric list.

3.1.3. GR· SL(n,H). — This subfamily of affine structures contains two cases, namely

GL(n,H) and SL(n,H). There is a twistor-theoretic approach to their analysis, due

independently to Salamon and Bérard-Bergery. For more information on this, consult

[Bes, §§14.66–76] and [Sa]. The term hypercomplex is often used to refer to 4n-

manifolds endowed with torsion-free GL(n,H)-structures. For more information on

the construction of examples, the reader can consult [Jo1] and [Bo].

When n = 1, the subgroup SL(1,H) � SU(2) is compact and so fixes a quadratic

form; hence this one case has already been treated and so will be set aside in this

analysis.

First, I need to fix some notation. Let V = Hn and regard V as the space of

column vectors of height n with quaternion entries. The representation of GL(n,H)

on V is then defined by matrix multiplication on the left while scalar multiplication

takes place on the right. It will be useful to have an explicit identification of H
n in H

n,

corresponds to the usual scalar multiplication by i in C2n. For various reasons, I have

chosen to make the identification

v0 − v1 j =
(
v0

v1

)

for all v0, v1 ∈ Cn. By this identification, GL(n,H) is embedded as a subgroup

of GL(2n,C) so that

A−B j =
(
A −B
B A

)
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where A and B are n-by-n complex matrices. Moreover, under this identification, Rj

becomes the linear transformation w �→ Jn w where

Jn =
(

0n In
−In 0n

)
,

so that

GL(n,H) =
{
A ∈ GL(2n,C) AJn = Jn A

}
.

A GL(n,H)-structure B on a 4n-manifold M defines two skew-commuting al-

most complex structures Ri, Rj : TM → TM , i.e., linear bundle maps which satisfy

(Ri)2 = (Rj)2 = −1 and RiRj = −RjRi. (I am using Ri and Rj to remind the reader

that quaternion vector spaces are right vector spaces.) In fact, any local section of B
with domain U ⊂M is, by definition an Hn-valued 1-form η : TU → Hn which is an

isomorphism restricted to each fiber TxU and the maps Ri and Rj are then uniquely

defined (independent of the choice of section η) by the equations η(Riv) = η(v) i

and η(Rjv) = η(v) j. Conversely, given two skew-commuting almost complex struc-

tures Ri, Rj : TM → TM , the local Hn-valued coframings η : TU → Hn which satisfy

η(Riv) = η(v) i and η(Rjv) = η(v) j are the sections of a unique GL(n,H)-structure

on M .

An important difference between this family and the first two affine families is

that sl(n,H)(1) = gl(n,H)(1) = 0. This follows since, when one complexifies the

inclusions gl(n,H) ⊂ gl(2n,C) ⊂ gl(4n,R), the resulting inclusion of complex Lie

algebras is simply the diagonal inclusion5

gl(2n,C) ⊂ gl(2n,C)⊕ gl(2n,C) ⊂ gl(4n,C) .

Thus, a torsion-free SL(n,H)-structure or GL(n,H)-structure on a 4n-manifold has

only one compatible torsion-free connection, an observation originally due to Obata,

for whom this connection is named.

Another important feature of this case is the characterization of the torsion of

such structures. Letting hi (respectively, hj) denote the subalgebra of gl(4n,R) which

5 It is a general fact that, given two faithful representations ρi : h → gl(Vi), their
sum in gl(V1⊕V2) satisfies

(
(ρ1⊕ρ2)(h)

)(1) = 0.
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consists of the R-linear endomorphisms of H
n commuting with right multiplication

by i (respectively, j), then one has gl(n,H) = hi ∩ hj and hence a canonical mapping

H0,2
(
gl(n,H)

)
−→ H0,2

(
hi

)
⊕H0,2

(
hj

)

which, after some calculation (see below), is seen to be an isomorphism.6 Conse-

quently, a GL(n,H)-structure is torsion-free if and only if the two associated skew-

commuting almost complex structures Ri and Rj are themselves torsion-free, i.e.,

integrable.

Now, let B →M4n be a torsion-free GL(n,H)-structure. Let η be a local section

of B with associated connection 1-form θ. Then the first structure equation dη = −θ∧η
holds. Write η = η0 − η1 j and θ = θ0 − θ1 j where η0 and η1 are 1-forms with values

in Cn while θ0 and θ1 are 1-forms with values in gl(n,C). Then the first structure

equation expands to

d

(
η0

η1

)
= −

(
θ0 −θ1

θ1 θ0

)
∧

(
η0

η1

)
.

It follows that the C2n-valued coframing η0⊕η1 (which is, of course, Ri-linear)

is a section of an integrable GL(2n,C)-structure on M . By the Newlander-Nirenberg

theorem, the domain of η can be covered by open sets U on which there exists a

coordinate chart z : U(⊂M)→ C2n so that
(
η0

η1

)
= G−1 dz

for some function G : U → GL(2n,C). Since η(Rjv) = η(v) j for all v ∈ TU , it follows

that (
η0(Rjv)
η1(Rjv)

)
=

(
η1(v)

−η0(v)

)
= Jn

(
η0(v)
η1(v)

)
,

from which it follows that

dz(Rjv) = GJn G−1 dz(v) .

6 It is not true for arbitrary subalgebras g and h of gl(V ) that the canonical map
H0,2

(
g∩h

)
−→ H0,2

(
g
)
⊕H0,2

(
h
)
is an isomorphism. Both injectivity and surjectivity

fail in general.
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Define a GL(2n,C)-valued function J on z(U) by the rule J ◦ z = GJn G−1. Then

dz◦Rj = J◦z dz. Note that J takes values in the smooth submanifold Jn ⊂ GL(2n,C)

of real dimension 4n2 defined by

Jn =
{
GJn G−1 G ∈ GL(2n,C)

}
=

{
A ∈ GL(2n,C) AA = −I2n

}
� GL(2n,C)/GL(n,H) .

Conversely, any map J : z(U) → Jn determines a GL(n,H)-structure on U for

which Ri and Rj are defined by the equations dz◦Ri = i dz and dz◦Rj = J◦z dz. The
condition that this GL(n,H)-structure be torsion-free is then expressible in terms of

some system of partial differential equations on the map J , to be determined presently,

and which are equivalent to the condition that the almost complex structure Rj so

defined should be integrable.

First, though, I want to examine the effect of the choice of the local coordinate z

on the resulting function J . If one were to choose a different coordinate chart w :

U → C
2n satisfying dw(Riv) = i dw(v), then there would exist a biholomorphism

ϕ : z(U)→ w(U) so that w = ϕ ◦ z. By the Chain Rule, if dw = ϕ′ dz then

dw(Rjv) = ϕ′ J◦z (ϕ′)−1 dw(v) .

It follows that classifying the torsion-free GL(n,H)-structures up to local diffeomor-

phism on smooth 4n-manifolds is equivalent to classifying locally defined maps J :

U( ⊂ C2n) → Jn (which satisfy the system of partial differential equations to be

defined below) up to the equivalence relation
(
U, J

)
�

(
ϕ(U), Jϕ

)
where ϕ : U →

ϕ(U) ⊂ C2n is any biholomorphism and Jϕ : ϕ(U)→ Jn is defined by

Jϕ

(
ϕ(z)

)
= ϕ′(z) J(z)

(
ϕ′(z)

)−1
.

Note that this formulation reduces the coordinate ‘ambiguity’ in the problem from

the full diffeomorphism group of R4n (which depends on 4n smooth functions of

4n variables) to the biholomorphism group of C2n (which only depends on 4n real-

analytic functions of 2n variables).
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For the purposes of studying the local torsion-free GL(n,H)-structures, it clearly

suffices to study the case in which U is already an open subset of C2n and z : U → C2n

is just the identity map, so I will assume this from now on.

I claim that the condition that J define a torsion-free GL(n,H)-structure on U

is simply the condition

∂
(
J dz

)
= 0 .

(Note that this condition is invariant under the biholomorphism pseudo-group defined

above.) This is most easily seen as follows: Locally on U one can write J = GJn G−1

for some function G : U → GL(2n,C). Then the C2n-valued 1-form
(
η0

η1

)
= G−1 dz

defines, via η = η0−η1 j, an H-linear 1-form on U which may be regarded as a section

of a unique GL(n,H)-structure on U . Differentiating both sides of this equation yields

d

(
η0

η1

)
= −G−1 dG ∧

(
η0

η1

)
.

If one assumes that the associated GL(n,H)-structure be torsion-free, then there must

exist 1-forms θ0 and θ1 with values in gl(n,C) satisfying

d

(
η0

η1

)
= −

(
θ0 −θ1

θ1 θ0

)
∧

(
η0

η1

)
.

Comparing terms in the last two equations, the only possibility for the connection θ

is seen to be (
θ0 −θ1

θ1 θ0

)
= G−1∂G+ J−1

n G−1 ∂GJn .

Manipulating the equality

G−1 dG ∧

(
η0

η1

)
=

(
G−1∂G+ J−1

n G−1 ∂GJn

)
∧

(
η0

η1

)

by expanding dG into ∂G + ∂G, canceling equal terms, and then premultiplying by

GJn, this equation simplifies to ∂(J dz) = 0. These steps are reversible also, so this

latter condition is the necessary and sufficient condition for the connection θ defined

above to be torsion-free, which is what I wanted to show.
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Since Jn is a smooth manifold of dimension 4n2, locally the choice of a J depends

on 4n2 functions of 4n variables. However, the equations ∂(J dz) = 0, being equivalent

(as mentioned previously) to the integrability of the almost complex structure Rj,

constitute 4n2(2n−1) independent first-order partial differential equations for the

map J . Thus, as soon as n > 1, this is an overdetermined system of PDE for J .

It is not difficult to see that this system of equations is elliptic for each value

of n, and an immediate consequence of this is that any C1 solution J : U → Jn of the

system ∂(J dz) = 0 is actually real-analytic. This justifies further analysis of these

equations via Cartan-Kähler methods.

One attempt to analyze these equations is to ‘introduce a potential’. By the

local exactness of the ∂-complex associated to a complex manifold, it follows that, at

least locally, for every solution J of the equations ∂(J dz) = 0, there exists a C2n-

valued function F : U → C2n satisfying ∂F = J dz, i.e., Fz = J . Thus, the original

quasi-linear first order equations on J become the non-linear first order equations

Fz Fz = −I2n .

Of course, this constitutes 4n2 first order equations for the 4n unknown components

of the potential function F . However, a short calculation shows that this first order

system is not involutive as soon as n > 1.

However, I claim that the original system ∂(J dz) = 0 is involutive, with Cartan

characters si = 4n2 for 1 ≤ i ≤ 2n+1 and si = 0 for 2n+2 ≤ i ≤ 4n. It will

follow from this claim that the general solution depends on 4n2 functions of 2n+1

variables. Indeed, the Cartan-Kähler analysis will show that along any real-analytic

submanifold S2n+1 ⊂ C
2n with the property that each tangent space TsS is minimally

complex (i.e., TsS ∩ i(TsS) is a complex line for all s ∈ S), the analytic function J :

S → Jn can be specified arbitrarily subject to satisfying a certain open condition on

the pairs
(
J(s), TsS

)
(asserting that the subspace TsS be in ‘general position’ with

respect to the associated Rj(s) : TsC
2n → TsC

2n).

Because it illustrates several features of the use of exterior differential systems, I

want to sketch the details of this case.
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First of all, the introduction of the holomorphic coordinate system z, has allowed

a reduction from considering the sections of the bundle F/GL(n,H) over C2n (which

correspond to arbitrary GL(n,H)-structures on the 4n-manifold C
2n to considering the

sections for which the associated almost complex structure Ri is the standard complex

structure on C
2n. In other words, the bundle X = C

2n × Jn over C
2n is canonically

embedded into the structure bundle F/GL(n,H) over C2n. Let J1(C2n, X) denote the

space of 1-jets of sections of X over C
2n. It is a manifold of dimension 4n+4n2+16n3.

Let X(1) ⊂ J1(C2n, X) denote the submanifold consisting of the 1-jets of sections

of X which satisfy the equation ∂(J dz) = 0. The codimension of this submanifold

is 4n2(2n−1) since this is the number of independent equations in ∂(J dz) = 0.

As I remarked previously, the system of equations ∂(J dz) = 0 is invariant un-

der the pseudo-group B2n of local biholomorphisms of C2n. The description of the

equivalence relation
(
U, J

)
�

(
ϕ(U), J

)
above induced by B2n shows how to lift the

action of B2n to an action on X which commutes with its projection to C2n. It follows

that B2n also acts on the space of k-jets of sections of X in a natural way and this

action clearly preserves X(1). A straightforward calculation in local coordinates (es-

sentially a dimension count) shows that the sub-pseudo-group B2
2n ⊂ B2n, consisting

of those biholomorphisms which fix the origin in C2n to first order, acts transitively

on the fiber of X(1)→ X which lies over the 0-jet at the origin of the constant sec-

tion J ≡ J0. In particular, since X is clearly homogeneous under the action of B2n,

it follows that X(1) is as well.

Now let I denote pullback to X(1) of the contact system on J1(C2n, X). The

local sections of the bundle X(1) → C2n which are integral manifolds of I are, by

construction, the 1-jet graphs of local solutions to the equation ∂(J dz) = 0.

Now, I claim that the differential ideal I generated by I together with the inde-

pendence condition Ω got by pulling a volume form on C2n up to X(1) is involutive.

To see this, first note that the ideal I is a Pfaffian system in good form and then

note that, because there are admissible integral manifolds (given, for example, by

the constant sections), the torsion of the system I must vanish somewhere, but then,

because cI is invariant under the transitive action of B2n on X(1), it follows that

the torsion of the system must vanish everywhere. Since I is generated by a Pfaffian
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system I of rank 4n2, it follows that s′i ≤ min{4n2, s′i−1} for all 1 ≤ i ≤ 4n. Since

the sum s′1 + · · ·+ s′4n must be 4n2(2n+1) (the dimension of the fibers of X(1) → X),

it follows that the minimal configuration of the s′i would be to have s′i = 4n2 for

1 ≤ i ≤ 2n+1 and s′i = 0 for 2n+2 ≤ i ≤ 4n. Now, by homogeneity, it suffices to

compute the reduced characters of I for the integral element tangent to the constant

section J ≡ J0 at the origin and these computations show that this minimal config-

uration does, in fact, obtain. A final, somewhat tedious, calculation shows that the

space of admissible integral elements of I at this point has dimension

4n2(n+ 1)(2n+ 1) =
2n+1∑
i=1

i s′i ,

so that Cartan’s Test is verified and the system is in involution, as I claimed. More-

over, along a (2n+1)-submanifold S ⊂ C2n which is in general position with respect

to the complex structure on C2n, any (real analytic) choice of a section J of X which

satisfies certain zeroth order open conditions will be the restriction to S of a unique

solution of ∂(J dz) = 0 on an open neighborhood of S.

Since the ambiguity in the choice of the local holomorphic coordinate z depends

only on functions of 2n variables, it follows that, modulo local diffeomorphisms, the

space of local torsion-free GL(n,H)-structures depends on 4n2 functions of 2n+1

variables. Since such structures have unique compatible connections, it follows that

the space of local torsion-free connections on 4n-manifolds with holonomy conjugate

to some subgroup of GL(n,H) depends on 4n2 functions of 2n+1 variables.

There remains the problem of showing that the holonomy of the canonical con-

nection of the generic torsion-free GL(n,H)-structure actually has holonomy equal

to GL(n,H). This can be done as follows: The first Bianchi identity in the above

notation takes the form (
Θ0 −Θ1

Θ1 Θ0

)
∧

(
η0

η1

)
= 0

where I have set Θ = dθ + θ∧θ = Θ0 − Θ1 j in conformity with the above notation.

This can be solved in component form as follows (the index range is 1 ≤ i, j, k, C ≤ n):

(Θ0)i̄ = Ai
̄k̄�̄ η

k
0 ∧ η�

1 +Bi
̄k� η

k
0 ∧ η�

1 + Ci
�k̄̄

(
ηk
0 ∧ η�

0 + ηk
1 ∧ η�

1

)
(Θ1)ij = Di

jk� η
k
0 ∧ η�

1 + Ci
jk̄�̄ η

k
0 ∧ η�

1 +Bi
k̄�j

(
ηk
0 ∧ η�

0 + ηk
1 ∧ η�

1

)
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CLASSICAL, EXCEPTIONAL, AND EXOTIC HOLONOMIES : A STATUS REPORT 141

where each of Ai
jk� and Di

jk� is a collection of complex functions on the domain of the

coframing η which is symmetric in the three lower indices while Bi
̄k� and Ci

jk̄�̄
have

the symmetries Bi
̄k� = Bi

̄�k and Ci
jk̄�̄

= Ci
j�̄k̄

. This corresponds to the fact that the

space K
(
gl(n,H)

)
is a vector space of real dimension 2n ·

(
2n+2

3

)
.

Now, the involutivity of the system ∂(J dz) = 0 has, as one of its consequences,

that any element of K
(
gl(n,H)

)
can occur as the curvature of the canonical connection

associated to some torsion-free GL(n,H)-structure. Since choosing sufficiently generic

values for the components of A, B, C, and D at a point will clearly yield a curvature

tensor which does not lie in any proper subspace p ⊗ Λ2(V ∗) of gl(n,H) ⊗ Λ2(V ∗),

it follows that the holonomy of the generic torsion-free GL(n,H)-structure is equal

to GL(n,H), as desired.

The other holonomy group to be understood in this case is SL(n,H). Since this

case is very similar to that of GL(n,H), I will only sketch the argument. One starts

with a local section η of the bundle B and uses the Newlander-Nirenberg theorem

together with the fact that all integrable SL(2n,C)-structures are locally flat to show

that one can find local coordinate charts z : U → C2n so that(
η0

η1

)
= G−1 dz

where G now takes values in SL(2n,C). The corresponding function J then takes

values in the codimension 1 submanifold J 0
n ⊂ Jn defined as

J 0
n =

{
A ∈ SL(2n,C) AA = −I2n

}
.

For any open subset U ⊂ C
2n, the condition that a map J : U → J 0

n determine a

torsion-free SL(n,C)-structure on U is again just that ∂(J dz) = 0. Cartan-Kähler

analysis shows that this system of partial differential equations for maps J : U → J 0
n

is involutive with Cartan characters

si =




0 for i < 2n,
2n− 1 for i = 2n,
4n2 − 2n for i = 2n+ 1,
0 for i > 2n+ 1.

It follows that, up to diffeomorphism, the local torsion-free SL(n,H)-structures on R4n

depend on 4n2−2n functions of 2n+1 variables.
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The space K
(
sl(n,H)

)
is calculated as above except with the extra condition that

trΘ = 0, which is equivalent to the n(2n+1) conditions

Ai
ı̄̄k̄ +Bi

ı̄jk = Ci
jk̄ı̄ − Ci

k̄ı̄ = 0 .

Again, it can be shown that K•(sl(n,H)
)
is dense in K

(
sl(n,H)

)
. Moreover, because

the ideal I is involutive, the generic element of K
(
sl(n,H)

)
can occur as the curvature

of a local torsion-free SL(n,H)-structure. Thus, the generic torsion-free SL(n,H)-

structure has holonomy equal to SL(n,H).

Finally, since the normalizer of both GL(n,H) and SL(n,H) in GL(4n,R) is the

group GL(n,H) · SL(1,H) (where the second factor acts on Hn by right multiplica-

tion by scalars), it follows that a torsion-free connection on M4n whose holonomy

is GL(n,H) (respectively, SL(n,H)) is actually compatible with a 3-parameter (re-

spectively 4-parameter) family of distinct GL(n,H)-structures (respectively, SL(n,H)-

structures) on M .

3.2. The Conformal Families. The second group of entries in Table 3 are the ones

corresponding to groups which preserve a quadratic form up to a factor.

3.2.1. CO(p, q). — These are the conformal groups of various signatures and can

clearly occur as holonomy. The underlying CO(p, q)-structures are (of course) torsion-

free and depend locally on
(
n+1

2

)
−1 functions of n = p+q variables. Once a conformal

structure is chosen, the space of compatible torsion-free connections is an affine space

modeled on the space of sections of a bundle of rank n over M . The generic torsion-

free connection for any conformal structure is easily seen to have holonomy CO(p, q).

It follows that the space of such connections modulo the action of the diffeomorphism

group is determined locally by the choice of
(
n+1

2

)
−1 functions of n variables, as

expected.

3.2.2. GC·SO(p,C). — Here, in order to not preserve a quadratic form, the scalar

group GC must not be trivial. When GC = C∗, the underlying complex confor-

mal structure must be torsion-free and hence holomorphic. Thus, it depends on(
p+1
2

)
− 1 holomorphic functions of p complex variables. However, the compatible
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torsion-free connections are an affine space modeled on the space of (not necessar-

ily holomorphic) sections of a vector bundle of complex rank p over M . Thus the

space of such connections depends on n = 2p functions of n variables. It is easy

to see that the generic torsion-free connection compatible with a given holomorphic

conformal structure has h-full curvature and hence its holonomy is equal to the full

group GC·SO(p,C). Thus, the space of connections with this holonomy modulo the

diffeomorphism group depends on n functions of n variables.

The more interesting and complicated case is when H = Tθ· SO(p,C) where Tθ

is the 1-dimensional group of complex numbers of the form

et(cos θ+i sin θ), t ∈ R

for some real number θ in the range 0 ≤ θ < π. In this case h
(1) = 0, so a

torsion-free H-structure has a unique compatible connection. Moreover, a torsion-

free Tθ· SO(p,C)-structure B has an underlying torsion-free C∗·SO(p,C)-structure

which is therefore a holomorphic conformal structure. It follows that locally one can

find a section η of B of the form

η = e−i(cos θ+i sin θ)f ω

where f is some smooth real-valued function on the domain of the coframing and ω

is a holomorphic section of the underlying C∗·SO(p,C)-structure. Now, since ω is

holomorphic, there exists a unique holomorphic 1-form ψ with values in so(p,C) so

that dω = −ψ∧ω. Of course, this implies that

dη = −(ieiθdf Ip + ψ) ∧ η .

Setting ∂f = aω where a is a row of functions yields dη = −φ∧η where

φ = ψ + eiθ i(∂̄f − ∂f)− 2ieiθ(ω a− ta tω) .

Since φ has values in h, it represents the unique torsion-free connection compatible

with B.
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For any underlying holomorphic conformal structure, choosing the real normal-

izing factor f sufficiently generically (for example, requiring i∂∂f > 0) yields a con-

nection whose curvature is h-full, so that its holonomy is equal to H. It follows that,

modulo diffeomorphisms, the space of torsion-free connections with holonomy H is

locally dependent on the choice of one arbitrary function of n = 2p variables.

3.3. The Symplectic Families. The third group on the list consists of various

modifications of the symplectic group.

3.3.1. Sp(p,R). — In this case, n = 2p > 2 and the representation of Sp(p,R)

on V = R2p is the standard one. As usual, let

Jp =
(

0 Ip
−Ip 0

)
,

and recall that Sp(p,R) is the subgroup of GL(2p,R) consisting of those matrices A

which satisfy tAJ A = J . The Lie algebra of Sp(p,R) is the vector space sp(p,R)

of 2p-by-2p matrices a with the property that Ja is symmetric. In fact, the map

a �→ Ja induces an isomorphism sp(p,R) →̃S2(V ∗). Under this isomorphism, the map

h⊗V ∗ → V ⊗Λ2(V ∗) simply becomes the natural map S2(V ∗)⊗ V ∗ → V ⊗ Λ2(V ∗).

Its kernel sp(p,R)(1) is isomorphic to S3(V ∗) while its cokernel H0,2
(
sp(p,R)

)
is iso-

morphic to Λ3(V ∗). This latter isomorphism corresponds to the fact that an Sp(p,R)-

structure B on a manifold M2p is torsion-free if and only if the 3-form dΩ vanishes,

where Ω, the canonical 2-form associated to the Sp(p,R)-structure B, is of the form

Ω = 1
2
tηJη in the domain of any local section η of B.

A torsion-free Sp(p,R)-structure on a manifold M2p is simply a symplectic struc-

ture. By the Darboux Theorem, all such structures are locally isomorphic to the

standard one. Thus, locally one can always choose a section of B of the form η = dx,

where x : U → V is a local coordinate chart. Consequently, Ω = 1
2

tdx J dx. An

associated torsion-free connection matrix must have the form φ = Jψ, where ψ is a

1-form with values in symmetric matrices and its components can be written in the

form ψij = Pijk dx
k where P is symmetric in its lower indices. The generic choice of

such a P will yield a connection with sp(p,R)-full curvature and hence with holon-

omy Sp(p,R). Since the local symplectomorphisms (i.e., canonical transformations)
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are generated by a single function of n = 2p variables, it follows that, modulo the

diffeomorphism group, the space of local connections with holonomy Sp(p,R) depends

on
(
n+2

3

)
−1 functions of n variables.

3.3.2. CSp(p,R). — In Berger’s original list, along with the symplectic case,

there was included what might be called ‘conformally symplectic’ connections, i.e.,

connections whose holonomy was CSp(p,R) = R
+·Sp(p,R).

However, it turns out that, for p ≥ 3, the group CSp(p,R) cannot occur as

holonomy of a torsion-free connection, for it does not satisfy Berger’s first criterion.

In fact K
(
csp(p,R)

)
= K

(
sp(p,R)

)
when p ≥ 3. Here is how one can see this.

Suppose that ∇ were a torsion-free connection on M2p with holonomy CSp(p,R).

Any section η of the corresponding torsion-free CSp(p,R)-structure would then have

an associated connection matrix of the form φ = ρ I2p + ψ where ρ is a single 1-form

and ψ has values in the Lie algebra of sp(p,R). The identity

dη = −
(
ρ I2p + ψ

)
∧ η

would then imply the identity dΩ = −2ρ∧Ω where Ω = 1
2

tη J η. Computing the

exterior derivative of this relation yields 0 = dρ∧Ω. When p ≥ 3, this implies that

dρ = 0, since Ω is a 2-form of half-rank p. However, this in turn implies that the

curvature form of the connection form φ is the same as the curvature form of ψ, i.e.,

it takes values in the subalgebra sp(p,R). Thus, the holonomy of the connection ∇
lies in Sp(p,R).

The situation when p = 2 is quite different, in two ways. First, as the reader can

easily check, H0,2
(
csp(2,R)

)
= 0, so that every CSp(2,R)-structure on a 4-manifold

is torsion-free. Second, CSp(2,R) does satisfy Berger’s first criterion (as well as the

second criterion).

A choice of a CSp(2,R)-structure on a 4-manifold is equivalent to the choice

of a non-degenerate 2-form well-defined up to non-zero scalar multiples. Now, if Ω

is a generic non-degenerate 2-form on M4, then there is a unique 1-form ρΩ which

satisfies dΩ = −2ρΩ∧Ω. Moreover, if Ω̃ = λΩ for some function λ �= 0, then ρΩ̃ =

ρΩ − 1
2dλ/λ, so that dρΩ̃ = dρΩ. In particular, the 2-form dρΩ depends only on the
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underlying CSp(2,R)-structure to which Ω belongs. This 2-form vanishes if and only

if Ω has a (local) non-zero multiple which is closed. The generic compatible torsion-

free connection for a CSp(2,R)-structure whose invariant 2-form ρ is non-zero has

csp(2,R)-full curvature and hence has its holonomy equal to CSp(2,R).

Moreover, the generic CSp(2,R)-structure has no local symmetries, so a sim-

ple count shows that, modulo local diffeomorphism, the local CSp(2,R)-structures

depend on one function of four variables. Since csp(2,R)(1) = sp(2,R)(1) � R
20,

it follows that, modulo local diffeomorphisms, the connections on 4-manifolds with

holonomy CSp(2,R) depend on 21 functions of four variables.

3.3.3. Sp(p,C). — In this case, the situation is much the same as in the real

case. A torsion-free Sp(p,C)-structure on a manifoldM4p is a holomorphic symplectic

structure, and by the holomorphic version of the Darboux Theorem, these are all

flat. The main difference is that the ambiguity in the connection is not required

to be holomorphic, while the arbitrary function which parametrizes the holomorphic

symplectomorphism is required to be holomorphic. Moreover, since K•(h) is dense

in K(h) = B1,2(h), it follows that the generic compatible connection has holonomy

equal to all of Sp(p,C). Thus, modulo the diffeomorphism group, the space of local

connections with holonomy Sp(p,C) depends on 2
(
2p+2

3

)
functions of n = 4p variables.

3.3.4. CSp(p,C). — An argument similar to that in the real case applies in the

complex case to show that, when p > 2, any connection whose holonomy lies in

CSp(p,C) must actually have its holonomy lie in Sp(p,C). In the case p = 2, however,

the full group CSp(2,C) is possible. The complex case is slightly different of course,

because the group H0,2
(
csp(2,C)

)
is non-zero. However, because of the connection

ambiguity, it is not difficult to see that, modulo diffeomorphisms, the local connections

on C4 = R8 with holonomy CSp(2,C) depend on 40 functions of 8 variables.

3.4. The Segre Families. The fourth family of groups in Table 3 consists of the

ones which are representable as tensor product representations. There is no uniform

terminology for these groups, some authors call these ‘paraconformal’ others call

these ‘almost Grassmannian’. I first heard them called ‘Segre’ structures, and so have

adopted this name for them.
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CLASSICAL, EXCEPTIONAL, AND EXOTIC HOLONOMIES : A STATUS REPORT 147

3.4.1. GR·SL(p,R)·SL(q,R). — Let V be the space of p-by-q matrices with real

entries and define an action of GL(p,R)×GL(q,R) on V � Rpq by the the rule

(A,B)·v = AvB−1 for all (A,B) ∈ GL(p,R)×GL(q,R), v ∈ V .

This action is not effective; its ineffective subgroup is the subgroup of matrices of

the form (rIp, rIq). Most of this ineffective subgroup can be removed by restricting

attention to the subgroup G ⊂ GL(p,R)×GL(q,R) consisting of those pairs (A,B)

satisfying det (A) det (B) = 1. (Since this discussion is local, I will ignore any

problems caused by the remaining finite ineffective subgroup.) I will denote the image

subgroup in GL(V ) � GL(pq,R) by R+·SL(p,R)·SL(q,R), and let SL(p,R)·SL(q,R)

denote the obvious codimension 1 subgroup.

I will assume that p ≥ q ≥ 2 and that (p, q) �= (2, 2) since the cases excluded by

these inequalities have already been discussed. The discussion of the remaining cases

divides naturally into two types: The ones where q = 2 and the ones where q > 2. The

reason for this is that, when q > 2, any torsion-free R+· SL(p,R)·SL(q,R)-structure

is necessarily flat, while this is not true when q = 2.

On general principles, this follows a computation showing that, first of all h
k = 0

for k > 1 and that, when q > 2, the groups Hk,2(h) vanish for k = 1, 2. It then follows

that there are no formal obstructions to flatness for a torsion-free H-structure. Since

theseH-structures are of finite type, it then follows that there are no local obstructions

at all.

Here is how a direct proof of the flatness of Segre structures in the case q > 2

can be constructed. Suppose that B → Mpq is a torsion-free R+·SL(p,R)·SL(q,R)-

structure. Choose a local section η of B. Then the assumption that B be torsion-free

implies that there exists a 1-form α with values in gl(p,R) and a 1-form β with values

in gl(q,R) so that the pair (α, β) satisfies trα + trβ = 0 and so that the following

structure equation holds:

dη = −α ∧ η − η ∧β .

(The trace condition ensures that the 1-form (α, β) actually takes values in the Lie

algebra of R+·SL(p,R)·SL(q,R).) Differentiating this equation and setting

A = dα+ α ∧α

B = dβ + β ∧ β
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yields the relation A∧η = η∧B. Moreover, the trace condition on the connection

implies that trA+ trB = 0.

Keeping in mind the relation trA+ trB = 0 and applying a little linear algebra,

these relations can be shown to imply that there exists a unique triple (ψ,A0, B0)

where ψ is a 1-form with values in V ∗ (= q-by-p matrices), A0 is a 2-form with values

in sl(p,R), and B0 is a 2-form with values in sl(q,R) so that

A = A0 − η ∧ψ

B = B0 − ψ ∧ η

0 = A0 ∧ η = η ∧B0 .

The assumptions p > q ≥ 2 imply p > 2 and, in this situation, the equation η∧B0 = 0

implies that B0 = 0. Moreover, if q > 2, then the equation A0∧η = 0 implies that

A0 = 0.

Assume that q > 2. Differentiating the relations dα + α∧α = −η∧ψ and dβ +

β∧β = −ψ∧η (and again using the assumption that p ≥ q > 2) yields

dψ = −ψ ∧α− β ∧ψ .

Of course, these relations altogether imply that the sl(p+q,R)-valued matrix

ω =
(
β ψ
η α

)

satisfies dω = −ω∧ω. Thus, the given R+·SL(p,R)·SL(q,R)-structure is locally

equivalent to the flat one induced on the Grassmannian manifold Grp
(
Rp+q

)
, as was

claimed. In fact, if π1(M) � 1, there exists a smooth map g : B → SL(p+q) satisfying

ω = g−1 dg which covers a smooth local diffeomorphism f : M → Grp
(
Rp+q

)
inducing

a local equivalence of flat R+·SL(p,R)·SL(q,R)-structures.

Using this local flatness result, the study of the local connections with holonomy

R+·SL(p,R)·SL(q,R) or SL(p,R)·SL(q,R) becomes quite simple.

First, consider the case of a connection ∇ on a manifold M whose holonomy

is H = R+· SL(p,R)·SL(q,R). Since the underlying H-structure B is flat, it follows

that it is possible to choose a local section η of B so that η = dx where x : U → V
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is a local coordinate chart. The h-valued 1-form corresponding to this section is a

pair of 1-forms (α, β) where α takes values in gl(p,R), β takes values in gl(q,R),

trα+ trβ = 0, and

0 = dη = −α ∧ η − η ∧β .

By straightforward linear algebra, it follows that there exists a unique function s on U

with values in V ∗ so that α = dx s and β = −s dx.

Conversely, any choice of a V ∗-valued function s on U yields a torsion-free con-

nection (α, β) = ( dx s, −s dx ) on U which is compatible with the flat H-structure. It

is not difficult to show that, by choosing s to be sufficiently generic, one can arrange

that the curvature of the resulting connection be h-full, so that the holonomy of such

a connection will be equal to the full group H. Thus, modulo diffeomorphisms, the

space of local connections on Rpq with holonomy R+·SL(p,R)·SL(q,R) depends on

pq arbitrary functions of pq variables.

Next, consider the case of a connection ∇ on a manifold M whose holonomy is

H = SL(p,R)·SL(q,R). Since any torsion-free R+·H-structure is locally flat, it follows

from the above analysis that a torsion-free H-structure always has a local section of

the form

η = e(p+q)f dx

for some function f on the domain U of the section. Moreover, it is easy to see

that, associated to the section η, there is a unique torsion-free connection 1-form with

values in the Lie algebra of H, namely, (α, β), where

α = dxF − q df Ip , β = −F dx+ p df Iq ,

where F is the unique q-by-p matrix of functions on U which satisfies

pq df = tr
(
F dx

)
.

Thus, the H-structure determined by an arbitrary choice of the function f is always

torsion-free. Since the space of closed sections of the underlying R+·H-structure

depends only on constants, it follows that the arbitrary function f is determined
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up to a finite dimensional ambiguity. Thus, modulo diffeomorphism, the space of

torsion-free H-structures depends on one arbitrary function of pq variables.

Finally, for any sufficiently generic choice of the function f , the formula given

above defines a connection with h-full curvature, so that it has holonomy H. It follows

that, modulo diffeomorphisms, connections with holonomy SL(p,R)·SL(q,R) depend

on one function of n = pq variables.

Now, in the case where q = 2, things are somewhat different since it is no longer

true that the torsion-free H-structures are locally flat or locally conformally flat.

However, by an analysis that is not difficult but too long to include here, it can be

shown that modulo diffeomorphism these local torsion-free structures on 2p-manifolds

depend on functions of p+1 variables modulo diffeomorphism. However, in the case

H = R
+·SL(p,R)·SL(2,R), once one fixes a torsion-free H-structure, the ambiguity

in the choice of compatible torsion-free connection is still 2p functions of 2p variables

and the generic such choice will have h-full curvature, so its holonomy will be all of H.

Thus, the general connection with holonomyH depends on 2p functions of 2p variables

modulo diffeomorphism. In the case H = SL(p,R)·SL(2,R), all these torsion-free

structures arise by choosing a volume form on a manifold endowed with a torsion-free

R+·SL(p,R)·SL(2,R)-structure and then reducing the structure group to match the

volume form. Any choice of volume form will yield a torsion-free H-structure and for

a given R
+· SL(p,R)·SL(2,R)-structure, the generic choice of volume form will yield

an H-structure whose canonical torsion-free connection has h-full curvature, so its

holonomy will be all of H. Thus, the general connection with holonomy H depends

on one function of 2p variables modulo diffeomorphism.

3.4.2. GC·SL(p,C)·SL(q,C). — This case is very much like the previous case except

that it takes place in the holomorphic category rather than the smooth category.

Rather than go through all of the details, I will just describe the results.

Using the inclusion GC· SL(p,C)·SL(q,C) ⊂ GL(pq,C), one sees that, for each

H in this family, every torsion-free H-structure on a manifold M2pq has a canoni-

cal underlying integrable almost complex structure and so one can regard M as a

complex manifold of complex dimension pq. Again, when p ≥ q > 2, all torsion-free
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C
∗·SL(p,C)·SL(q,C)-structures are locally flat with the standard model being the

complex Grassmannian GrC

p (C
p+q). When q = 2, this local flatness fails, but the gen-

eral torsion-free C∗· SL(p,C)·SL(2,C)-structure depends on holomorphic functions of

p+1 complex variables modulo biholomorphism.

In the case where H = C∗·SL(p,C)·SL(q,C), once a torsion-free H-structure

is fixed, there is still the ambiguity of the choice of connection which lies in the

smooth sections of a bundle isomorphic to the holomorphic cotangent bundle of M .

The general choice of such a connection will have h-full curvature and will thus have

holonomy H. Thus, modulo diffeomorphism, the torsion-free connections with this

holonomy depend on 2pq (arbitrary) functions of 2pq (real) variables. Note that this

count holds whether q > 2 or not.

At the other extreme, where H = SL(p,C)·SL(q,C) ⊂ SL(pq,C), one has h
(1) =

0. It follows that there is a unique torsion-free connection compatible with a torsion-

free H-structure and it supports a parallel holomorphic volume form. Conversely,

starting with a torsion-free C
∗·SL(p,C)·SL(q,C)-structure on a complex manifold

denoted Mpq, any choice of holomorphic volume form will yield a torsion-free H-

structure and the generic choice will yield one whose canonical connection has h-full

curvature, so that its holonomy will be all of H. Thus, the torsion-free connections

with holonomyH depend on one holomorphic function of pq complex variables modulo

diffeomorphism.

In the middle ground are the groups of the form H = T ·SL(p,C)·SL(q,C) where

T is any one-parameter subgroup of C
∗. Since h

(1) = 0 for these groups, each such

structure comes equipped with a unique compatible torsion-free connection. These

structures can be constructed by starting with a torsion-free C∗·SL(p,C)·SL(q,C)-

structure B → M and then choosing a smooth section of a ‘reduced’ determinant

bundle (of real fiber rank 1) over M . Any such choice works and the generic choice

yields a connection with h-full curvature. Thus, the general torsion-free connection

with this holonomy depends on one arbitrary function of 2pq variables, modulo dif-

feomorphism.

3.4.3. GR· SL(p,H)·SL(q,H). — Again, this case is very much like the two previous

cases. Rather than go through all of the details, I will just describe the results. The
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main guiding principle is that the subgroup R
∗·SL(p,H)·SL(q,H) ⊂ GL(4pq,R) is

the real form of the subgroup C∗· SL(2p,C)·SL(2q,C) ⊂ GL(4pq,C).

When p ≥ q > 1, any torsion-free R∗·SL(p,H)·SL(q,H)-structure B on a mani-

fold M4pq is locally flat with the standard model being the quaternionic Grassman-

nian GrH

p (H
p+q). When q = 1, this local flatness fails, but the general torsion-free

R∗·SL(p,H)·SL(2,H)-structure depends on functions of 2p+1 variables modulo dif-

feomorphism. (For more information about this case, including the construction of

specific examples using Lie group and/or twistor methods, see [Jo1] and [Bo].)

In the case where H = R∗·SL(p,H)·SL(q,H), once a torsion-free H-structure is

fixed, there is still the ambiguity of the choice of connection which lies in the smooth

sections of a bundle isomorphic to the cotangent bundle of M . The general choice of

such a connection will have h-full curvature and will thus have holonomy H. Thus,

modulo diffeomorphism, the torsion-free connections with this holonomy depend on

4pq (arbitrary) functions of 4pq variables. Note that this count holds whether q > 1

or not.

The other possibility in this case is H = SL(p,H)·SL(q,H) ⊂ SL(4pq,R), where

one has h
(1) = 0, so there is a unique torsion-free connection compatible with a torsion-

free H-structure and it supports a parallel holomorphic volume form. Conversely,

starting with a torsion-free R
∗·SL(p,H)·SL(q,H)-structure on a manifold M4pq, any

choice of volume form will yield a torsion-free H-structure and the generic choice

will yield one whose canonical connection has h-full curvature, so that its holonomy

will be all of H. Thus, the torsion-free connections with holonomy H depend on one

arbitrary function of 4pq variables modulo diffeomorphism.

3.5. The Quadratic Representation Families. This family constitutes all of the

remaining groups on Berger’s non-metric list. Before going into details, I will describe

the basic results:

Each of the entries in the remainder of Table 3 which are of the form GR· SL(p,F)
represent one of two possible groups, either R+· SL(p,F) or SL(p,F), acting on either

V = Sp(F), V = Ap(F), or, in the case F = C, the space V = Hp(C).

First, consider the entries of the form H = R+·SL(p,F). Assuming the restric-

tions on p listed in Table 3, any torsion-free H-structure B → M turns out to be
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locally flat, i.e., locally isomorphic to the corresponding second-order homogeneous

space listed in Table C. Moreover, the space of compatible connections on B is an

affine space modeled on the vector space A1(M) of 1-forms on M . (This happens

because, in each case, h
(1) is isomorphic to V ∗ as an H-module.) The generic such

connection has holonomy equal to H. Thus, modulo diffeomorphism, the space of

local connections with holonomy R+·SL(p,F) depends on n = dimV functions of n

variables.

Second, consider the cases H = SL(p,F). Again, assuming the restrictions on p

listed in the table, any torsion-free SL(p,F)-structure turns out to be locally con-

formally flat, i.e., up to a conformal factor, locally isomorphic to the flat SL(p,F)-

structure on V itself. This conformal factor can be arbitrarily chosen and, for each

such choice, there is a unique compatible connection. For the generic choice of confor-

mal factor, the holonomy of the corresponding connection is equal to SL(p,F). Thus,

modulo diffeomorphism, the space of connections with holonomy SL(p,F) depends on

1 function of n variables.

Each of the two remaining entries in Table 3 is of the form GC·SL(p,C) and

represents three possibilities, either C
∗·SL(p,C), SL(p,C), or T·SL(p,C) (where T ⊂

C
∗ is any 1-parameter subgroup) acting on either V = Sp(C) (if p ≥ 3) or V = Ap(C)

(if p ≥ 5).

When H = C∗·SL(p,C), every torsion-free H-structure B → M is locally flat

and has an integrable underlying complex structure. Moreover, the space of (smooth)

compatible connections on B is an affine space modeled on the vector space A1,0(M)

of (smooth) 1-forms of type (1, 0) on M . (This happens because, in each case, h
(1)

is isomorphic to V ∗ as an H-module.) The generic such connection has holonomy

equal to H. Thus, modulo diffeomorphism, the space of local connections with holon-

omy C∗·SL(p,C) depends on n = dim RV arbitrary functions of n variables.

Next consider H = SL(p,C) and a torsion-free H-structure B → M . By the

previous paragraph, the underlying C∗·H-structure B ·C∗ is flat and hence B is con-

formal to the flat H-structure. By the torsion-free assumption, the conformal factor

is holomorphic with respect to the underlying integrable almost complex structure.

Conversely, starting with the flat H-structure and choosing an arbitrary holomor-

phic conformal factor, the resulting H-structure is torsion-free, possessing a unique
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compatible connection. For a generically chosen holomorphic conformal factor, the

resulting connection has holonomy equal to H. Thus, modulo diffeomorphism, the

space of local connections with holonomy SL(p,C) depends on one holomorphic func-

tion of n = dim CV complex variables.

Finally, consider the case where H = T·SL(p,C) where T is any 1-parameter sub-

group of C∗ and one is given a torsion-free H-structure B →M . Since the underlying

C
∗·H-structure is flat, it follows that B is conformal to a flat structure by a conformal

factor which is “real” in the appropriate sense (this sense depends on T and will be

made explicit below). Conversely, starting with the flat H-structure and choosing an

arbitrary conformal factor satisfying this reality condition, the resulting H-structure

is torsion-free, and has a unique compatible connection. For a generically chosen

conformal factor satisfying the appropriate reality condition, the resulting connection

has holonomy equal to H. Thus, modulo diffeomorphism, the space of local connec-

tions with holonomy T·SL(p,C) depends on one arbitrary function of n = dim RV

variables.

The analysis in each of these cases is essentially the same. The important alge-

braic fact is that, in each of the seven cases, the group H ⊂ GL(V ) which arises when

one sets GF = F
∗ satisfies h

(1) = V ∗ and

H1,2(h) = H2,2(h) = h
(2) = 0 .

This is sufficient to prove that, for such H, any torsion-free H-structure is locally flat.

Moreover, in each of these cases, there is a unique second-order homogeneous space

(see Table C) carrying an invariant torsion-free H-structure.

To save space, I am only going to treat one of these subfamilies in detail, namely,

the first one. The diligent reader can repeat this analysis in each of the six remaining

subfamilies if necessary.

3.5.1. GR·SL(p,C) ⊂ GL
(
Hp(C)

)
. — I will consider this case in some detail since

it will be used as a model for the other cases, whose analysis is very similar and will

only be sketched. This case consists of two groups, R+·SL(p,C) and SL(p,C), acting

on the p2-dimensional real vector space V = Hp(C) of p-by-p Hermitian symmetric
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matrices. The action of these groups on V is best described by letting A ∈ GL(p,C)

act on the Hermitian symmetric matrix h by the rule A·h = Ah tĀ. This action is,

of course, irreducible, but is not effective, the ineffective subgroup being the set of

matrices of the form eiθ Ip. For this reason, I restrict to the subgroup R+·SL(p,C),

which acts almost effectively.

For simplicity in computations, it is worth remarking that the dual GR·SL(p,R)-

module V ∗ can also be identified with Hp(C) as a vector space, but with the action

A·s = (tĀ)−1 sA−1. Note that, in this form, the canonical pairing V × V ∗ → R can

be written in the form (h, s) �→ tr(hs).

The first non-trivial case would be p = 2. However, in this case, these represen-

tations of SL(2,C) and R+·SL(2,C) on V � R4 have already been treated as SO(3, 1)

and R+·SO(3, 1) = CO(3, 1), so I will assume p ≥ 3 from now on. Under this as-

sumption, the GR·SL(p,R)-modules V and V ∗ are not isomorphic.

First suppose that H = R
+· SL(p,C). I am now going to show that any torsion-

free H-structure is flat. This should be expected for the following reason. The com-

plexification V C of V can be identified with the space of all p-by-p complex matrices

in such a way that the complexification of the subgroup R+·SL(p,C) ⊂ GL(V ) is

the subgroup C∗·SL(p,C)·SL(p,C) ⊂ GL(V C) discussed above in the study of C-

Segre structures and it has already been shown that a torsion-free C-Segre structure

is flat when p = q ≥ 3. This indicates that the same should be true of a torsion-

free R+· SL(p,C)-structure B on Mp2
when p ≥ 3 and, indeed, this is exactly what

happens.

Briefly, if the V -valued 1-form η is a local section of a torsion-free H-structure B,
then the torsion-free assumption implies that there exists a 1-form α with values in

the Lie algebra of H (i.e., α takes values in the space of p-by-p complex matrices with

real trace) satisfying the equation

dη = −α ∧ η + η ∧ tα .

Setting A = dα + α∧α as usual, the first Bianchi identity says that A∧η + η∧tA = 0.

This, coupled with the relation tr(A)+tr(A) = 0 allows one to prove that there exists

a 1-form ψ with values in V ∗ so that A = −η∧ψ. Now differentiating the equation

dα = −α ∧α− η ∧ψ

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



156 R.L. BRYANT

yields the relation η∧
(
dψ− tα∧ψ+ψ∧α

)
= 0. This relation, together with the relation

ψ = tψ, implies

dψ = tα ∧ψ − ψ ∧α .

These three equations combine into the single equation dω = −ω∧ω where

ω =
(
−tα −i ψ
i η α

)
.

Of course, the 1-form ω takes values in a Lie algebra isomorphic to su(p, p). Since

ω satisfies the Maurer-Cartan structure equation dω = −ω∧ω, it follows that the

structure B is locally isomorphic to that induced on the second-order homogeneous

space Hp

(
Cp

)
= SU(p, p)/P , where P is the appropriate parabolic subgroup. This

proves the flatness of B.

In particular, if ∇ is a connection on Mp2
with holonomy R+·SL(p,C) and

associated torsion-free R+·SL(p,C)-structure B, then every point of M lies in an

open set on which there exists a closed section η of B. The corresponding connection

1-form α satisfies α∧η − η∧tα = 0. A little algebra now shows that there exists a

function s with values in V ∗ so that α = η s.

Conversely, if x : U → V is a local coordinate system on U and and one uses

η = dx to define an H-structure B on U , then for any V ∗-valued function s on U , the

B-compatible torsion-free connection on U defined by the 1-form α = dx s will have

holonomy in R+·SL(p,C). Moreover, for sufficiently generic s, the holonomy of the

resulting connection will be all of R+·SL(p,C) since its curvature will be full. Thus

it follows that, modulo the local diffeomorphisms, the torsion-free connections with

holonomy R+·SL(p,C) depend on p2 functions of p2 variables.

Now consider the subgroup H = SL(p,C) ⊂ R+·SL(p,C). Suppose that B →
M is a torsion-free SL(p,C)-structure. Since the underlying R+·SL(p,C)-structure

defined by B′ = B·R+ is locally flat, the above analysis shows that every point of M

lies in an open neighborhood U on which there is a section of the corresponding

H-structure of the form

η = e2f dx
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where x : U → V is a local coordinate system, and f is a (real valued) function on U .

It is now a simple matter to compute that the unique connection 1-form α with values

in sl(p,C) which satisfies the structure equation dη = −α∧η + η∧tα is given by

α = −df Ip + η F

where F is the unique V ∗-valued function which satisfies tr(η F ) = p df .

Conversely, for a sufficiently generic function f , the resulting connection α has

its holonomy equal to SL(p,C). In fact, its curvature at a generic point has all

p2−1 component 2-forms linearly independent. Thus, modulo local diffeomorphisms,

the local connections on Rp2
with holonomy SL(p,C) depend on one function of p2

variables.
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4. SOME EXOTIC CASES

Table 4. Some exotic irreducible holonomies
(Notation: GF denotes any connected subgroup
of F∗.)

H V

Hλ ·SL(2,R) R4

CO(2)·SL(2,R) R4

Hλ ·SU(2) R4

C∗ ·SU(2) R4

GR ·ρ3

(
SL(2,R)

)
R4

GC ·ρ3

(
SL(2,C)

)
C4

GR ·Spin(5, 5) R
16

GR ·Spin(1, 9) R16

GC ·Spin(10,C) C
16

GR ·E1
6 R27

GR ·E4
6 R27

GC ·EC
6 C27

In this final section, I will list the known exotic irreducible holonomies, i.e., the

irreducibly acting groups which do not appear on Berger’s general list (Table 3) but

which can occur as holonomy. As of this writing, it is not known that this list is

complete.

4.1. Product groups in dimension 4.

4.1.1. Hλ · SU(2). — Whether this group for λ > 0 can occur as the holonomy of

a torsion-free connection on a 4-manifold remains open as of this writing. (In the
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case λ = 0, the group H is simply U(2), so this corresponds to Kähler geometry and

this certainly does occur.) These groups all satisfy Berger’s criteria, but the exterior

differential systems analysis has not yet been completed and no examples appear to

be known.

4.1.2. C∗ · SU(2). — This case can be thought of as the ‘conformal Hermitian’ case.

This means that a torsion-free H-structure in this case is just a choice, on a complex

2-manifold M , of a positive (1, 1)-form Ω defined up to a (real) multiple. Note that

there is no assumption that Ω be closed, as this is not necessary (or even well-defined)

in this case.

It follows that these structures depend on three arbitrary functions of four vari-

ables modulo diffeomorphism. Moreover, an elementary calculation shows that the

generic such choice yields an H-structure whose connection has h-full curvature, so

that its holonomy is all of H.

4.1.3. Hλ · SL(2,R). — Whether this group for λ > 0 can occur as the holonomy of

a torsion-free connection on a 4-manifold remains open as of this writing. This case

should be thought of as a different real form of the group Hλ · SU(2) and so the two

problems might be related. These groups all satisfy Berger’s criteria, but the exterior

differential systems analysis has not yet been completed and no examples appear to

be known.

4.1.4. CO(2) · SL(2,R). — This is a different real form of the ‘conformal Hermitian’

case treated above. An analysis analogous to the one done there shows that these

structures depend on three arbitrary functions of four variables modulo diffeomor-

phism. Moreover, an elementary calculation shows that the generic such choice yields

an H-structure whose connection has h-full curvature, so that its holonomy is all

of H.

4.2. The cubic representation family.

4.2.1. GR ·ρ3

(
SL(2,R)

)
. — This pair of groups was first studied in [Br2]. Since

there is a thorough analysis there, I will not reproduce it here. I will simply report

that for the case H = ρ3

(
SL(2,R)

)
⊂ SL(4,R), the torsion-free connections with this
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holonomy essentially depend on one constant modulo diffeomorphism while for the

case H = R+·ρ3

(
SL(2,R)

)
⊂ GL(4,R), the generic torsion-free connections with this

holonomy depend on 4 arbitrary functions of 3 variables modulo diffeomorphism.

Further work on the geometry of these connections has been done in [Sc], to which

I refer the reader for more information, particularly about completeness aspects, etc.

4.2.2. GC ·ρ3

(
SL(2,C)

)
. — These groups are the holomorphic analogs of the previous

case. There are two possible groups here and the results are in every way analogous

to the previous case. The one subtlety is that the only possible ‘scalar’ groups are

GC = 1 or GC = C∗, the case where GC is a 1-parameter subgroup of C∗ turns out

not to be possible. Again, I refer the reader to the above-mentioned references for

further details.

4.3. The conformal Spin(10)-family. This family consists of several groups, with

the analysis being essentially the same in all cases. I will not present any of the details,

since this would require developing enough algebra of the spin representations to

explain the calculations which lead to the results, itself a space- and time-consuming

task which is out of proportion to the interest in the examples.

There are six groups in this family plus a one-parameter family of groups of the

form T ·Spin(10,C) where T is any 1-parameter subgroup of C∗.

The three maximal groups, i.e., the ones H for which GF = F∗, all have the

property that h
(1) � V ∗ � F16 and satisfy the conditions

H1,2(h) = H2,2(h) = 0 .

Any torsion-free R+· Spin(5, 5)-structure (respectively, R+·Spin(1, 9)- or C∗·Spin
(10,C)-structure on a manifold of dimension 16 (respectively, 16 or 32) is therefore

locally flat and has a second-order homogeneous model of the form E1
6 /P (respec-

tively, E4
6 /P or EC

6 /P ) where P is a maximal parabolic subgroup. The ambiguity in

a choice of compatible torsion-free connection is n functions of n variables where n is,

respectively, 16, 16, or 32. The generic choice of connection will have h-full curvature

and so will have holonomy H.
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The three minimal groups, i.e., the onesH for which GF = 1, all have the property

that h
(1) � 0 and so any torsion-free H-structure B has a unique compatible torsion-

free connection. Moreover, by the above discussion, B is ‘conformally flat’ and can

be constructed by starting with the flat F
∗·H-structure and choosing a volume form

(holomorphic in the case F = C). The generic choice of volume form (holomorphic

in the case F = C) will yield an H-structure B whose canonical connection has h-full

curvature and so will have holonomy H. Thus, in the first two cases, the general

torsion-free connection with holonomy H depends on one arbitrary function of 16

real variables while in the third case it depends on one holomorphic function of 16

complex variables.

Finally, consider the family of groups of the form H = T ·Spin(10,C) where T

is any 1-parameter subgroup of C∗. These all have the property that h
(1) � 0, so

a torsion-free H-structure B on a manifold M32 has a unique compatible torsion-

free connection. Moreover, these structures are constructed by taking an arbitrary

smooth reduction from a locally flat C∗·Spin(10,C)-structure on M . Since H has

codimension 1 in this group, it follows that this depends on a choice of one arbitrary

function of 32 variables. It can be checked that the generic such reduction yields anH-

structure whose canonical connection has h-full curvature, so that it has holonomy H.

4.4. The E6-family. This case is treated in a manner in every way analogous to the

Spin(10)-family just treated, so I will just summarize the results.

For the three maximal groups, H is either R+·E1
6 , R+·E4

6 , or C∗·EC
6 , the torsion-

free H-structures are all locally flat, being modeled by second order homogeneous

spaces which are quotients of the appropriate form of E7 and the corresponding local

torsion-free connections depend on 27 arbitrary functions of 27 variables in the first

two cases and 27 holomorphic functions of 27 complex variables in the third case.

For the three minimal groups, H is either E1
6 , E4

6 , or EC
6 , the corresponding

torsion-free H-structures are all locally conformally flat, being constructed from the

flat structures by choosing an arbitrary volume form (holomorphic in the third case).

Each such structure has a unique compatible torsion-free connection, with the generic

choice of volume form yielding a connection with h-full curvature. Thus, the corre-
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sponding local torsion-free connections depend on one arbitrary function of 27 vari-

ables in the first two cases and one holomorphic function of 27 complex variables in

the third case.

Finally, for the groups of the form H = T ·EC
6 , the torsion-free H-structures are

all got locally by taking an arbitrary reduction from the flat C∗·EC
6 -structure. Thus,

the general connection with this holonomy depends on one arbitrary function of 54

real variables.
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CNRS, Paris, 1984).
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