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INTRODUCTION

Although Comparison Geometry can be traced back to the previous century, it

did not really take root as a discipline until the 1930’s through the work of Morse,

[M1,2], Schoenberg [S], Myers [My] and Synge [Sy]. The real breakthrough came

in the 1950’s with the pioneering work of Rauch [R] and the foundational work of

Alexandrov and Toponogov [T]. Since then, the simple idea of comparing the geometry

of an arbitrary Riemannian manifold with the geometries of constant curvature spaces

has witnessed a tremendous evolution.

Sphere Theorems have often played a pivotal role in this evolution. In fact many

of the powerful ideas and techniques known today were first conceived in connection

with investigations around potential sphere theorems (cf. also [Sh]). Their significance

is also measured by their implications for the local structure of general Riemannian

manifolds and other related, but more singular spaces.

Our aim here is to trace out paths of developments, still under construction,

originating from the classical sphere theorem [R,K2] and the associated rigidity the-

orem by Berger [B1]. In doing so, it is our hope to reveal that there is an abundance

of challenging open problems in this area whose solutions will yet again involve the

conception of new ideas and tools.

1. DEVELOPMENTS FROM WITHIN

In this section we describe evolutions associated with constructions on a fixed

Riemannian manifold.

It all began with Rauch’s comparison theorem for the length of Jacobi fields [R]

and subsequently with the global Alexandrov-Toponogov triangle comparison theorem

[T]. And it culminated in the now classical theorem.
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Theorem 1.1 (Rauch-Berger-Klingenberg). — Let M be a closed simply connected

Riemannian manifold whose sectional curvature satisfies 1 ≤ secM ≤ 4. Then, either

(i) M is a twisted sphere, or

(ii) M is isometric to a rank one symmetric space.

Under the assumptions stated in the theorem, one of the key ingredients is the

injectivity radius estimate, injM ≥ π
2 . In the original approach, this was achieved

via Morse theory of geodesics [K1,2], [CG] and [KS] (cf. also [E]). Before moving on

to the natural generalization suggested by this estimate, let us point out that so far,

no positively curved exotic spheres are known!

Quite recently, it was shown by M. Weiss that some exotic spheres do not admit

1/4-pinched metrics [W]. His method is based on the observation that a 1/4-pinched

sphere M has maximal so called Morse perfection, i.e., there is a dimM -dimensional

(Z2 -equivariant) spherical family of Morse functions on M . On the other hand, so-

phisticated methods from algebraic K-theory reveal that some exotic spheres have

smaller Morse perfection. It is interesting to note that this is also related to the so

called Gromoll-filtrations of homotopy spheres, an idea which arose in the first proof

that there are no exotic δn-pinched n-dimensional spheres when δn is sufficiently close

to 1 [G]. Another completely different method to prove the same result was conceived

independently by Shikata [S2]. He constructed a distance between differentiable struc-

tures [S1], an idea which has since been expanded tremendously (cf. [Gr]). The best

estimate for δn = δ is due to Suyama [Su]. His method combines the earlier meth-

ods for achieving a dimension independent constant, the first due to Shiohama [SS]

and the second to Ruh [R1,2]. Here, Ruh’s method of approximating an almost flat

connection with a flat connection has evolved quite far and has had many subsequent

applications (cf. [R3]).

Another natural question related to the classical sphere theorem is: what happens

if M is not simply connected ? So far, all known (strictly) 1/4-pinched manifolds are

diffeomorphic to space forms. Moreover, at least these are the only manifolds which

admit a δ-pinched riemannian metric, with δ sufficiently close to 1 [GKR1,2], [IR].

The general nonlinear “Riemannian center of mass” was developed in connection with

the first proof of this result [GK].
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Recall that the radius radM and diameter diamM are given by radM =

minp maxq dist(p, q) ≤ maxp,q dist(p, q) = diamM . Since injM ≥ π
2 for 1-connected

Riemannian manifolds M with 1 ≤ secM ≤ 4, we also have diamM ≥ radM ≥ π
2

for such manifolds. In particular,

{M | 1 ≤ secM ≤ 4, π1(M) = {1}} ⊂ {M | 1 ≤ secM, radM ≥ π

2
}

⊂ {M | 1 ≤ secM, diamM ≥ π

2
} .

For the largest of these classes we have the following diameter sphere Theorem [GS] a

homotopy version of which was first proved in [B2] and its associated rigidity theorem

[GG1,2].

Theorem 1.2. (Gromoll-Grove-Shiohama) — Let M be a closed Riemannian mani-

fold with secM ≥ 1 and diamM ≥ π
2
. Then, either

(i) M is a twisted sphere, with the possible exception thatH∗(M) � H∗(CaP 2),

(ii) M is isometric to one of

(a) a rank 1 symmetric space,

(b) CP odd/Z2,

(c) Sn/Γ,Γ ⊂ O(n+ 1) acts reducibly on R
n+1.

The principal new tool discovered in the proof of this sphere theorem was a

“critical point theory” for nonsmooth distance functions. This signaled the beginning

of intense investigations of manifolds with a lower curvature bound only (for surveys,

cf. [C], [Gro]).

Aside from trying to deal with the exceptional case of the Cayley plane in the

above result, the most obvious questions related to the theorem are

Problem 1.3.

(i) Are there any exotic spheres M with secM ≥ 1 and diamM ≥ π
2 ?

(ii) Are there “new” manifolds M with secM ≥ 1 and diamM ≥ π
2 − ε, which are

not on the list of the above theorem ?

At this moment it appears to be too ambitious to answer these questions at the

level of generality at which they were posed (cf. the discussion in the next section).
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It turns out, however, that it is possible to give answers if one assumes the existence

of multiple points with large distances. The techniques used for this, however, come

somewhat surprisingly from “outside” in both cases, i.e., it does not suffice to work

exclusively within the manifold itself.

2. DEVELOPMENTS TO AND FROM THE OUTSIDE

When Gromov extended the classical Hausdorff distance to arbitrary pairs of

compact (separable) metric spaces, [Gr], a new powerful tool became available, con-

ceptually as well as technically. Its utility, however, is balanced between the facts

that on the one hand large classes of Riemannian manifolds are precompact relative

to this so-called Gromov-Hausdorff topology , but on the other hand only a limited

amount of structure is transferred onto spaces in their closure.

One of the first striking applications of these ideas to Riemannian geometry is due

to Berger. He showed that, for each even integer 2n, there is an ε = ε(2n) such that

any closed 1-connected Riemannian 2n-manifolds M which satisfies 1 ≤ secM ≤ 4+ε

is diffeomorphic to a projective space or homeomorphic to the 2n-sphere, [B3].

The main difference between even and odd dimensions in this problem is that,

under the given assumptions, injM ≥ π
2 when dimM is even [K1]. Just very recently,

Abresch and Meyer have extended this to odd dimensions in the remarkable paper

[AM]. This yields a sphere theorem for below 1/4-pinched simply connected odd

dimensional manifolds.

When the assumptions of simple connectivity and upper curvature bound are

replaced by a lower bound for the diameter, one arrives at question 1.3(ii) raised at

the end of the previous section. A natural approach to this problem is to investigate

a situation, where a sequence {Mi} of closed riemannian n-manifolds are given such

that secMi ≥ 1 and π
2
> diamMi ≥ π

2
− 1

i
, i = 1, · · ·. By Gromov’s precompactness

theorem [Gr], a subsequence of {Mi} will converge to an inner metric space X with
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diamX = π
2 . Moreover, as observed in [GP1]: The Hausdorff dimension of X satisfies

dimX ≤ n, and curvX ≥ 1 in the sense that the global Alexandrov-Toponogov

distance comparison theorem holds in X . It has proven adventageous to consider

these properties abstractly, and we adopt the terminology Alexandrov space for any

finite Hausdorff dimensional inner metric space X for which curvX ≥ k in distance

comparison sense. In this framework one therefore asks a classification question.

Problem 2.1. Classify all n-dimensional Alexandrov spaces X with curvX ≥ 1 and

diamX = π
2 .

In analogy to the case of Riemannian manifolds, this should be compared with

the situation where curvX ≥ 1 and diamX > π
2 . Here, a completely satisfactory

solution has been given by Perelman [P]. In fact, any such X is homeomorphic to

the suspension
∑

E, where E can be any Alexandrov space with curvE ≥ 1 and

dimE = dimX − 1.

Once it has been established that critical point theory for distance functions

extends to Alexandrov spaces, the proof of the above diameter suspension theorem is

identical to that of the diameter sphere theorem. To establish this, however, is deeply

intertwined with understanding the local structure of Alexandrov spaces (cf. [P]).

Here we give only a brief account on the structure of Alexandrov spaces X .

First of all, the curvature assumption implies that geodesics are unique in the sense

that they cannot bifurcate. This implies in particular that for every p ∈ X there

is a well defined space of geodesic directions (germs) at p. Moreover, the curvature

assumption yields a natural notion of angle between geodesics emanating at p. The

space of directions at p, SpX is now simply the completion of the space of geodesic

directions at p relative to the angle metric. This space is again an Alexandrov space

and curvSpX ≥ 1, dimSpX = dimX − 1, [BGP], [Pl]. In fact, the euclidean cone

C0 SpX = TpX on SpX , is the pointed Gromov-Hausdorff limit of the scaled spaces

(λX, p), λ → ∞, [BGP]. The basic local structure result is proved in [P]:

Theorem 2.2. (Perelman) — Let X be an Alexandrov space. Then, any p ∈ X

has an open neighborhood which is (bi-Lipschitz) homeomorphic to the tangent cone,

TpX = C0SpX to X at p.
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It is easy to see that this result yields a global stratification of X into topological

manifolds, a fact which is used in the proof of 2.5 below. The following stability

theorem is another key result proved in [P].

Theorem 2.3. (Perelman) — Given a compact n-dimensional Alexandrov space X

with curvX ≥ k. There is an ε = ε(X) such that any other n-dimensional Alexandrov

space Y with curv Y ≥ k and Gromov-Hausdorff distance dGH(X, Y ) < ε is (bi-

Lipschitz) homeomorphic to X .

The key to both of these results is a general local fibration theorem for m-tuples

of distance type functions, 1 ≤ m ≤ n, near a “regular point”, (see [P]). The ingenious

proof is carried out via inverse induction on m. The idea for the induction anchor,

i.e., when m = n was in essence first used in a Riemannian setting in the paper [OSY],

and then in [BGP].

To get an idea of the difficulty of Problem 2.1 we point out that there is an

abundance of examples (cf. [GP2] and [GM] for more details).

Example 2.4. Let A and B be Alexandrov spaces with curvA ≥ 1 and curvB ≥ 1.

Define a metric on the join A ∗ B, such that the join α ∗ β ⊂ A ∗ B of segments

α ⊂ A, β ⊂ B is isometric to α ∗β ⊂ S3
1 when α and β are identified with segments of

the unit circle S1. It is easy to see that curvA ∗B ≥ 1, in fact A ∗B = S(a,b)(C0A×
C0B) where a ∈ C0A and b ∈ C0B are the cone points. Moreover, diamA ∗ B =

max{diamA, diamB, π
2 }.

Now, suppose G is a compact Lie group which acts by isometries on A and on

B. Obviously, these actions extend to an isometric G action on A ∗B and diam(A ∗
B/G) ≥ π

2 .

A special case occurs if B = S◦ is the two-point space with diameter π. Then

A ∗ S◦ is nothing but the spherical suspension Σ1A of A, and diamΣ1A = π. All

Alexandrov spaces X with curv X ≥ 1 and diamX = π are of this type.

Another special case of interest occurs when B = G, i.e., G = S◦, S1 or S3. The

space A ∗G/G is then simply the spherical mapping cone C1(A → A/G).
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These examples show that even replacing the assumption diamX = π
2 with

radX = π
2

in (2.1) is ambitious. The corresponding inequality radX > π
2

has,

however, a very satisfactory and optimal solution obtained in [GP2] and independently

by Petrunin.

Radius Sphere Theorem 2.5. — Any n-dimensional Alexandrov space X with

curvX ≥ 1 and radX > π
2 is homeomorphic to Sn.

Another natural strengthening of the assumptions in (2.1) is obtained by replac-

ing the diameter assumption by having multiple points with distances ≥ π
2 . To be

precise, let packq denote the q′th packing radius, i.e.,

2 packq X = max
(p1,···,pq)

min
i<j

dist(pi, pj) .

Then obviously

1
2
diamX = pack2 X ≥ · · · ≥ packq X ≥ · · · ,

and thus, packq X ≥ π
4 , q ≥ 2, provides a natural filtration of the class, diamX ≥ π

2 .

A simple comparison argument shows that

packq X ≤ packq S
n
1

for all q and any n-dimensional Alexandrov space X with curv X ≥ 1.

Using critical point theory (cf. [P]) and the global rigidity distance comparison

theorem from [GM], one gets the following join theorem:

Theorem 2.6. ([GW]) — Let X be an n-dimensional Alexandrov space with

curvX ≥ 1, and let q ≤ n. Then

(i) packq+2X = packq+2 S
n
1 if and only if X is isometric to Sq

1 ∗E for some n− q−1

dimensional Alexandrov space E with curvE ≥ 1 ;

(ii) if packq+2X > π
4 , then X is homeomorphic to Sq

1 ∗ E.

This result is essentially optimal both with respect to the inequality and the

chosen number of points.
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The equality discussion packq X = π
4 is very difficult in general. However, for

q = n+ 1 and diamX = π
2 we have the following partial answer to 2.1.

Theorem 2.7. ([GM])— LetX be an n-dimensional Alexandrov space with curvX ≥
1. Then diamX = 2packn+1 X = π

2
if and only if X is isometric to Sn

1 /H, where

H is a finite group of commuting isometric involutions acting without fixed points on

the unit sphere, Sn
1 .

Among this fairly large class of spaces, the only manifolds are RPn
1 and spaces

homeomorphic to Sn
1 (see [GM]). As a consequence of the stability Theorem 2.3, and

Yamaguchi’s fibration theorem [Y] we thus have the following partial answer to 1.3(ii):

Corollary 2.8. ([GM]) — For every integer n ≥ 2, there is an ε = ε(n) such that

any closed Riemannian n-manifold M with secM ≥ 1 and packn+1 M ≥ π
4
− ε is

homeomorphic to Sn or diffeomorphic to RPn.

Note that if in the above Corollary, 2 packn+1 M = diamM = π
2 , then M is

isometric to RPn
1 . As a corresponding partial answer to 1.3(i) we have:

Theorem 2.9. ([GW]) — If M is a closed Riemannian n-manifold with secM ≥ 1

and packn+1 M > π
4 , then M is diffeomorphic to Sn.

The proof of this result involves yet another idea from “outside of M”. In fact,

the global Riemannian problem is changed to a local problem in Alexandrov geometry.

It is shown that M can be smoothly embedded in Rn+1 by establishing that a deleted

neighborhood of one of the cone points in the spherical suspension Xn+1 = Σ1M

is diffeomorphic to an open subset of Rn+1. This is done by exhibiting the deleted

neighborhood as a union of a 1-dimensional line bundle and a 1-dimensional annulus

bundle. The fibers consists of points, where n smoothed distance functions take

a given value. By appealing to the results of Smale [Sm] and Hatcher [H] on the

diffeomorphism groups of S2 and S3 respectively, the technique can be pushed to

yield the same conclusion with the weaker assumption packn−1 M > π
4 (see [GW]).

The reason why that is a significantly stronger result is that there are metrics on

M = Sn with secM ≥ 1, packn−1 M arbitrarily close to packn−1 S
n
1 and yet with
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vol M arbitrarily small. To be concrete, a Gromov-Hausdorff limit space can be

chosen to be the (n−1)-dimensional hemisphere, whereas in all previous differentiable

sphere theorems the limiting object in the extreme case is Sn
1 .
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