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Abstract

In this paper, we concentrate our attention on the Müntz problem in the univariate setting
and for the uniform norm.
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2.5 Proof of Müntz theorem via complex analysis . . . . . . . . . . . . . . . . . . . . . . 166
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1 Introduction

In his seminal paper [3] of 1912, the Russian mathematician S. N. Bernstein (one of the greatest
approximation theorists of the last century) asked under which conditions on an increasing sequence
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Λ = (0 = λ0 < λ1 < · · · ) one can guarantee that the vector space

Π(Λ) := span{xλk : k = 0, 1, . . .} (1)

spanned by the monomials xλk is a dense subset of C[0, 1]. He specifically proved that the condition

∑

λk>0

1 + log λk

λk
= ∞

is necessary and the condition

lim
k→∞

λk

k log k
= 0

is sufficient, and conjectured that a necessary and sufficient condition to have Π(Λ) = C[0, 1] is

∞∑

k=1

1

λk
= ∞.

This conjecture was proved by Müntz [25] in 1914. In his proof, he used the method of Gram
determinants to compute the distance of xλfrom Π(λ0, . . . , λn))2 in the L2(0, 1)–metric. The de-
terminants that appear in this problem are of the form

det(1/(1 + ai + aj))0≤i,j≤n,

and their explicit expression was obtained in the 19th century by Cauchy.
For the sake of clarity, let us give a precise formulation of the classical Müntz Theorem.

Theorem 1 (Müntz, 1914) Let Λ = (λi)
∞
k=0, 0 = λ0 < λ1 < · · · , be an increasing sequence of

non-negative real numbers. Then Π(Λ) = span{xλk : k = 0, 1, . . .}, the Müntz space associated
to Λ, is a dense subset of C[0, 1] if and only if

∞∑

k=1

1

λk
= ∞. (2)

This is a beautiful theorem because it connects a topological result (the density of a certain
subset of a functional space) with an arithmetical one (the divergence of a certain harmonic series).
Many people might well have been drawn to this result because of its beauty. Another reason to
be interested in Müntz’ theorem is that the original result not only solves a nice problem but also
opens the door to many new interesting questions. For example, one is tempted to change the
space of continuous functions C[0, 1] to other function spaces such as Lp(a, b), or to consider the
analogous problem in several variables, on complex domains, on intervals away from the origin, for
more general exponent sequences, for polynomials with integral coefficients, etc. As a consequence,
many proofs (and generalizations) of the theorem have been produced.

In this paper, we concentrate our attention on the Müntz problem in the univariate setting and
for the uniform norm. Moreover, we do not include any results about the rate of convergence to
zero of the errors of best (uniform) approximation using Müntz polynomials. On the other hand,
we do provide proofs in great detail, and we promise to write a second paper where we plan to
treat several advanced topics, including the Müntz Theorem for complex domains, Müntz-Jackson
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theorems, Müntz type theorems for approximation with polynomials with integral coefficients, the
p-adic Müntz theorems, and the Müntz Theorem for rational functions.

Let us return to a discussion of this paper. We devote Section 2 to the classical Müntz Theorem.
In particular, we give several proofs of this result, showing how the Müntz problem is connected
to many apparently different branches of mathematics. In Section 3, we focus our attention on
the so called Full Müntz Theorem, i.e., we study the density of span{xλk}∞k=0 in C(K), where K
denotes a compact subset of [0,∞), for arbitrary sequences of exponents (λk)

∞
k=0 and characterize

the (uniform) closure of span{xλk}∞k=0 in the nondense case.

2 The classical Müntz theorem

2.1 Müntz theorem: the original proof with a modification by O. Szász

The original proof by Müntz of Theorem 1, and that which remains essentially the standard proof
that you may find in many introductory textbooks on approximation theory, is based on an esti-
mation of the errors E(xq, Π(Λn)), where Λn := (λk)

n
k=0 and

E(xq, Π(Λn)) := inf
p∈Π(Λn)

‖xq − p(x)‖[0,1]

is the error of best approximation, with respect to the uniform norm in [0, 1], to xq when we take as
the set of approximants the space Π(Λn). It is clear that Π(Λ) is dense in C[0, 1] if and only if for all
q ∈ N, E(xq, Π(Λn)) converges to zero as n tends to infinity (this is a consequence of the Weierstrass
Approximation Theorem). So, how do we produce a reasonable estimate for E(xq, Π(Λn))?

If we use the L2(0, 1)-norm, then we can explicitly compute the errors

E(xq, Π(Λn))2 = inf
p∈Π(Λn)

‖xq − p(x)‖2

since L2(0, 1) is a Hilbert space. In fact, if we denote by G(f1, . . . , fn) the Gram determinant
associated with a linearly independent sequence (f1, . . . , fn) of elements in a Hilbert space H with
inner product (·, ·),

G(f1, . . . , fn) = det




(f1, f1) · · · (f1, fn)

...
. . .

...
(fn, f1) · · · (fn, fn)



 ,

then it is well known [10, Theor. 8.7.4.] that

E(g, Vn)H = inf
v∈Vn

‖g − v‖H =

√
G(g, f1, . . . , fn)

G(f1, . . . , fn)

holds for all g /∈ Vn = span{f1, . . . , fn}. From this follows (for λ0 > −1/2) the formula

E(xq, Π(Λn))2 =
1√

2q + 1

n∏

k=0

|q − λk|
q + λk + 1

for all q > −1/2, since
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G(xλ1 , . . . , xλn) = det

(
1

λi + λj + 1

)

0≤i,j≤n

=

∏n
i>j(λi − λj)

2

∏n
i,j=1(λi + λj + 1)

.

The Cauchy determinant det
(

1
λi+λj+1

)

0≤i,j≤n
is a particular case of det

(
1

ai+bj

)

1≤i,j≤n
and the

argument to compute a closed expression for this determinant is quite similar to the classical
argument to compute a Vandermonde determinant. Thus, it consists in considering both sides of
the identity

n∏

i=1

n∏

j=1

(ai + bj) det

(
1

ai + bj

)

1≤i,j≤n

=

n∏

i=1

i−1∏

j=1

(ai − aj)(bi − bj) (3)

as polynomials in the variables ai, bj , each time taking into account just one of these variables, and
using the zero properties of algebraic polynomials of one variable to prove that both expressions
are the same. A detailed proof of (3) can be found in [18, page. 74] or [10, page 268].

From here it is not difficult to prove that

lim
n→∞

E(xq, Π(Λn))2 = 0 for all q ∈ N if and only if
∞∑

k=1

1

λk
= ∞.

Hence Π(Λ) is dense in L2(0, 1) if and only if
∑∞

k=1 1/λk = ∞. This clearly implies the necessity
of the condition

∑∞
k=1 1/λk = ∞ to guarantee the density of Π(Λ) in C[0, 1].

In order to guarantee the sufficiency of condition (2) to the claim that Π(Λ) = C[0, 1], Müntz
used Fejér’s theorem on summation of Fourier series, but his proof is too complicated to be re-
produced here. In 1916 Otto Szász extended Müntz’s theorem in the sense that he was able to
prove the result also for certain special sequences of complex numbers (λk)

∞
k=0 as exponents (see

[33]). Furthermore, he simplified the final step of Müntz’s proof, showing that the result in L2(0, 1)
implies the same result in C[0, 1]. This follows from the inequality

∣∣∣∣∣x
q −

n∑

k=1

akx
λk

∣∣∣∣∣ =

∣∣∣∣∣

∫ x

0

(
qtq−1 −

n∑

k=1

akλkt
λk−1

)
dt

∣∣∣∣∣

≤
∫ 1

0

∣∣∣∣∣qt
q−1 −

n∑

k=1

akλkt
λk−1

∣∣∣∣∣ dt

≤




∫ 1

0

∣∣∣∣∣qt
q−1 −

n∑

k=1

akλkt
λk−1

∣∣∣∣∣

2

dt




1/2

=

∥∥∥∥∥qx
q−1 −

n∑

k=1

akλkx
λk−1

∥∥∥∥∥
L2[0,1]

which holds for all x ∈ [0, 1]. In other words,
∥∥∥∥∥x

q −
n∑

k=1

akx
λk

∥∥∥∥∥
C[0,1]

≤
∥∥∥∥∥qx

q−1 −
n∑

k=1

akλkx
λk−1

∥∥∥∥∥
L2[0,1]

. (4)
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2

For historical reasons, we include here (without proof) the precise statement of Szász’s theorem.

Theorem 2 (Szász, 1916) Let

C([0, 1], C) := {f : [0, 1] → C : f continuous}

be the space of continuous complex-valued functions defined on [0, 1] and assume that the Müntz
polynomials have complex coefficients and complex exponents, so that for Λ = (λk)

∞
k=0 ⊂ C we set

ΠC(Λ) := spanC{xλk}∞k=0. If λ0 = 0 and Re(λk) > 0 for all k > 0, then ΠC(Λ) is a dense subset of
C([0, 1], C) whenever

∞∑

k=1

Re(λk)

1 + |λk|2
= ∞. (5)

Moreover, if
∞∑

k=1

1 + Re(λk)

1 + |λk|2
< ∞,

then ΠC(Λ) is not a dense subset of C([0, 1], C). In particular, if

lim inf
k→∞

Re(λk) > 0

then ΠC(Λ) is a dense subset of C([0, 1], C) if and only if (5) holds.

Note that Szász’s theorem is not conclusive for all cases. For example, the sequence λk = 1
k +i

√
k

satisfies
∞∑

k=1

Re(λk)

1 + |λk|2
< ∞ and

∞∑

k=1

1 + Re(λk)

1 + |λk|2
= ∞.

2.2 M. von Golitschek’s constructive proof of the Müntz theorem

In this subsection, we present another proof of the fact that condition (2) is sufficient if the relation
λk → ∞ holds. To do this, we follow a very nice proof published by M. von Golitschek in [17],
which has two distinct advantages with respect to the majority of known proofs of the same result.
It is both constructive and short.

The idea is to define, for each q > 0, a concrete sequence of approximants to xq, (Pn)∞n=0 ⊂ Π(Λ)
and to prove that Qn(x) = xq −Pn(x) converges to zero uniformly on [0, 1]. So, we set Q0(x) := xq,
and, for n = 1, 2, . . ., if we already know that

Qn−1(x) = xq −
n−1∑

k=1

ak,n−1x
λk
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with some coefficients ak,n−1, then let

Qn(x) := (λn − q)xλn

∫ 1

x
Qn−1(t)t

−(1+λn) dt

= (λn − q)xλn

∫ 1

x

(
tq −

n−1∑

k=1

ak,n−1t
λk

)
t−(1+λn) dt

= (λn − q)xλn

∫ 1

x

(
tq−(1+λn) −

n−1∑

k=1

ak,n−1t
λk−(1+λn)

)
dt

= (λn − q)xλn

[
tq−λn

q − λn
−

n−1∑

k=1

ak,n−1
tλk−λn

(λk − λn)

]1

x

=: xq −
n∑

k=1

ak,nxλk ,

hence Pn(x) =
∑n

k=1 ak,nxλk .
We only need to prove that ‖Qn‖C[0,1] converges to zero as n → ∞. Now ‖Q0‖C[0,1] = 1, and

for all n ∈ N we get from the inequality

λxλ(1 − x) < 1 for all x ∈ (0, 1) and λ > 0

that

‖Qn‖C[0,1] ≤
∣∣∣∣1 − q

λn

∣∣∣∣ ‖Qn−1‖C[0,1] .

Hence

‖Qn‖C[0,1] ≤
n∏

k=0

∣∣∣∣1 − q

λn

∣∣∣∣→ 0, n → ∞.

2

2.3 Measure-theoretic focus

The classical Müntz Theorem can be formulated in terms of measures. We explain here the way in
which this formulation is attained and we give a proof, due to W. Feller [15], of the ‘only if’ part
of the result based on measure theoretical considerations. For pedagogical reasons, we postpone
Feller’s proof of the ‘if’ part to the next subsection.

Let us assume that Λ = (λk)
∞
k=1 is an increasing sequence of positive real numbers and, to

avoid problems with the origin, let us also assume in this subsection that the functions we want
to approximate vanish at the origin. In this case, we can rephrase the classical Müntz Theorem
as follows: The space Π(Λ) is a dense subset of C0[0, 1] := C[0, 1] ∩ {f : f(0) = 0} if and only if∑∞

k=1 1/λk = ∞. When dealing with the problem of the density of certain linear subspaces of a
Banach space, it is a quite natural to use the Hahn-Banach Theorem in the following way: if Y is
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a closed subspace of the Banach space X, then Y 6= X if and only if there exists a bounded linear
functional L ∈ X∗ such that L 6= 0 and L|Y = 0. Thus, taking X = C0[0, 1] and Y = Π(Λ), we
have that Π(Λ) 6= C0[0, 1] if and only if there exists an L ∈ C∗

0 [0, 1] \ {0} satisfying L(xλk) = 0
for all k = 1, 2, . . .. The dual of C0[0, 1] is characterized (by the Riesz Representation Theorem) as
follows: L ∈ C∗

0 [0, 1] if and only if

L(f) =

∫ 1

0
f(t) dµ(t) (6)

for a certain finite signed Borel measure µ on (0, 1]. Moreover, we know (by the Weierstrass
Approximation Theorem) that algebraic polynomials that vanish at 0 form a dense subspace of
C0[0, 1]. Hence a new formulation of the classical Müntz Theorem is given as follows.

Theorem 3 (Classical Müntz Theorem in terms of Measures) Let us assume that (λk)
∞
k=1

is an increasing sequence of positive real numbers and let us define, for each finite signed Borel
measure µ supported on (0, 1], the function

f(z) :=

∫ 1

0
tz dµ(t). (7)

Then the following claims are equivalent:

(a)
∑∞

k=1
1
λk

< ∞

(b) There exists a (non-zero) finite signed Borel measure µ on (0, 1] such that f(λk) = 0 for all
k ≥ 1 (where f is given by (7)).

Let us prove that (a) ⇒ (b). Given the measure µ we make the change of variable t = e−s

which transforms the interval (0, 1] onto the interval [0,∞), the measure µ into another measure
m on [0,∞) and the expression (7) to the new formula:

f(z) =

∫ ∞

0
e−zs dm(s). (8)

Hence we should prove that under condition (a) there exists a finite signed Borel measure m
supported on [0,∞) such that the function f given by (8) is not identically zero but satisfies
f(λk) = 0 for all k ≥ 1. We present a proof whose order is reversed: we first define a function f
that satisfies f(λk) = 0 for all k ≥ 1 and then we prove that this function admits an expression of
the form (8).

Set, with η > 0,

f(t) :=
1

(1 + η + t)2

∞∏

k=1

λk − t

λk + 2η + t
.

Obviously, (a) guarantees the convergence of the infinite product defining f . This convergence is
uniform and absolute on compact subsets of C \ {−λk − 2η}∞k=1. In particular, f is well defined on
[0,∞) and vanishes on the sequence (λk)

∞
k=1.

Let us define

f0(t) :=
1

(1 + η + t)2
and fk(t) :=

λk − t

λk + 2η + t
fk−1(t), for k = 1, 2, . . . .
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It is clear that

f0(t) =

∫ ∞

0
se−(1+t+η)s ds =

∫ ∞

0
e−tsu0(s) ds,

where u0(s) := se−(1+η)s. Let us assume that, for all k < n, the function fk admits an expression
of the form

fk(t) =

∫ ∞

0
e−tsuk(s) ds

with uk(0) = 0 (which we know to be true for k = 0). We will prove that this is then also the case
for k = n. In fact, taking into account the recursive definition of fn,

fn(t) =
λn − t

λn + 2η + t
fn−1(t) =

λn − t

λn + 2η + t

∫ ∞

0
e−tsun−1(s) ds,

and, integrating by parts, we note that

tfn−1(t) =

∫ ∞

0
e−tsu′

n−1(s) ds,

and

fn(t) =

∫ ∞

0
e−tsun(s) ds,

where un is the solution of the initial value problem






u′
n + u′

n−1 = λnun−1 − (λn + 2η)un

un(0) = 0.

Moreover, it is possible to check that under these conditions the solution un satisfies limt→∞ un(t) =
0. Let us now multiply both sides of the differential equation defining un by (un + un−1). We get

1

2
[(un + un−1)

2]′ = (u′
n + u′

n−1)(un + un−1) = (un + un−1)(λnun−1 − (λn + 2η)un)

= λn(u2
n−1 − u2

n) − η(2u2
n + 2unun−1)

≤ (λn + η)(u2
n−1 − u2

n).

Hence, for all h ∈ (0,∞),

1

2
(un(h) + un−1(h))2 =

∫ h

0

1

2
[(un + un−1)

2]′ dt ≤ (λn + η)

∫ h

0
(u2

n−1(t) − u2
n(t)) dt,

therefore ∫ ∞

0
u2

n(t) dt ≤
∫ ∞

0
u2

n−1(t) dt, n = 1, 2, 3, . . . .

Taking into consideration the convergence of fn to f and the weak sequential compactness of the
unit ball of L2(0,∞), we conclude that there exists a function u ∈ L2(0,∞) such that

f(t) =

∫ ∞

0
e−tsu(s) ds for all t ≥ 0.
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Moreover, the same arguments we have used for f should work with f∗(t) := f(t − η) (choose
λ∗

k = λk + η and η∗ = 0 instead of the old values λk and η). Hence

f∗(t) =

∫ ∞

0
e−tsu∗(s) ds for all t ≥ 0,

with u∗(s) := eηsu(s) ∈ L2(0,∞). Of course, this implies that

∫ ∞

0
|u(t)|dt < ∞,

so that f is of the form (8) with m the signed measure that has density u.

2.4 Two proofs of the ‘if ’ part based on the use of divided differences

One of the first things we observe when studying the Müntz Theorem is that the necessity of
condition (2) and its sufficiency are two facts of a quite different nature, so that the proofs of the
‘if’ part and the ‘only if’ part of the Müntz Theorem are usually independent. Hence it is tempting
to present new proofs for each one of these parts in terms of one’s own interest in the subject.

In this subsection, we will explain two proofs of the ‘if’ part of the classical Müntz Theorem,
both based on the use of divided differences.

The first proof is due to W. Feller [15]. It is a natural continuation of the proof given in
the previous subsection. It uses the strong connection between divided differences and completely
monotone functions and certain results from functional analysis and measure theory. The second
proof, by Hirschman and Widder [20] and Gelfond [16], uses divided differences to construct an
adequate generalization of Bernstein polynomials with the property that the new polynomials only
depend on the powers {xλk}∞k=1.

First, we would like to recall the definition of divided differences. Given a function f and a
subset {xk}∞k=0 of its domain, we define the divided differences of f with respect to the nodes
{xk}∞k=0 recursively:

f [xk] := f(xk), and f [xi0 , . . . , xin ] :=
f [xi0 , xi1 , . . . , xin−1

] − f [xi1 , xi2 , . . . , xin ]

xi0 − xin

.

These numbers can be characterized in many ways. One of their main properties is that they are
the coefficients in the Newton representation of the Lagrange interpolation polynomial of f at the
nodes {x0, x1, . . . , xn}. More precisely, if Pn(x) = a0 + a1x + · · · + anxn is the unique polynomial
of degree ≤ n that satisfies P (xk) = f(xk), k = 0, 1, . . . n, then

Pn(x) = f [x0] + f [x0, x1](x − x0) + · · · + f [x0, x1, . . . , xn](x − x0)(x − x1) · · · (x − xn−1), (9)

and this characterizes the values

f [x0], f [x0, x1], . . . , f [x0, . . . , xn].

An easy consequence of (9) is that, for all x, the error Rn(x) := f(x) − Pn(x) is given by

Rn(x) = f [x, x0, x1, . . . , xn](x − x0)(x − x1) · · · (x − xn). (10)
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Moreover, for functions f in C(n)(I), where I = [min{xi}n
i=0, max{xi}n

i=0], taking into account that
Rn(xi) = 0 for i = 0, 1, · · · , n, we conclude that R′

n(x) has at least n zeros in the interval I, R′′
n(x)

has at least n − 1 zeros therein, etc., so that R
(n)
n (τ) = 0 for a certain value τ ∈ I. Now,

R(n)
n (τ) = f (n)(τ) − n!f [x0, x1, · · · , xn],

so that for a function f that is sufficiently many times differentiable, the divided differences satisfy

f [x0, x1, . . . , xn] =
1

n!
f (n)(τ) (11)

for a certain τ ∈ I = [min{xi}n
i=0, max{xi}n

i=0].
Finally, it is also useful to note that:

f [x0, x1, . . . , xn] =
n∑

k=0

f(xk)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
. (12)

This follows from the fact (see (9)) that f [x0, . . . , xn] is the coefficient of xn in the power form of
the interpolating polynomial, and the Lagrange expression of this polynomial.

Feller’s Proof of the ‘if ’ part of Classical Müntz Theorem.

Taking into account the decomposition properties of signed measures, we see that in order to
prove (b) ⇒ (a) in Theorem 3 (which corresponds to the ‘if’ part of the classical Müntz Theorem)
it suffices to prove the assertion for nonnegative measures µ. Now, we note that functions f :
(0,∞) → R admitting an expression of the form (7) for a certain nonnegative measure µ are
completely monotone on (0,∞). This means that they satisfy the inequalities

(−1)nf (n)(t) ≥ 0 for all t > 0 and all n = 0, 1, 2, . . . .

(Indeed, it is a well known result by S.N. Bernstein [4] that f being completely monotone on (0,∞)
and of the form (7) for a certain nonnegative measure µ are equivalent claims). Let us now assume
that (a) is not true, and suppose first that (λk) ↑ ∞. Under these conditions we can use the
following theorem:

Theorem 4 (Feller, 1968) Let us assume that 0 < λ0 < λ1 < λ2 < · · · with λn → ∞, and∑∞
n=0 1/λn = ∞, and let f : (0,∞) → R be a completely monotone function. Then

f(t) =

∞∑

n=0

f [λ0, λ1, . . . , λn](t − λ0)(t − λ1) · · · (t − λn−1), (13)

where the series is absolutely convergent for all t > 0.

This proves that if f(λk) = 0 for all k, then f(k) = 0 for all k, and this means that the integral
of any polynomial against µ is zero, hence µ is zero, so (b) is also false.

Finally, we can use Morera’s theorem to prove that f(z) =
∫ 1
0 tz dµ(t) is holomorphic on the

half plane {z : Rez > 0}, so that the well known principle of identity shows that f is completely
determined by its values on any increasing bounded sequence (λk)

∞
k=0. This ends the proof of

(b) ⇒ (a) in Theorem 3.
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Proof of of Theorem 4. It follows from the fact that f is completely monotone and (11) that

(−1)nf [λ0, λ1, . . . , λn] ≥ 0 for all n ≥ 0.

Let us now assume that t ∈ [0, λ0). Then all terms of the series

∞∑

n=0

f [λ0, λ1, . . . , λn](t − λ0)(t − λ1) · · · (t − λn−1) (14)

are positive. Setting

Pn(t) :=
n∑

k=0

f [λ0, λ1, . . . , λk](t − λ0)(t − λ1) · · · (t − λk−1)

and Rn(t) := f(t) − Pn(t), we obtain

Rn(t) = f [t, λ0, λ1, . . . , λn](t − λ0)(t − λ1) · · · (t − λn),

so that
P0(t) ≤ P1(t) ≤ · · · ≤ f(t) (15)

and there exists a function α(t) such that

Rn(t) ↓ α(t).

We want to show that α(t) = 0. Now, for 0 < s < λ0, we have that

0 ≤ Rn(s) ≤ f [s, λ0, λ1, . . . , λn](−1)n+1λ0λ1 · · ·λn,

so that
s

λn
α(s) ≤ s

λn
Rn(s) ≤ f [s, λ0, λ1, . . . , λn](−1)n+1sλ0λ1 · · ·λn−1. (16)

Now, the right side of (16) is the nth term of the series (13) evaluated at t = 0 when the point s
is added to the sequence (λk)

∞
k=0. It follows that the series

∑∞
k=0 α(s)/λk is convergent, which is

consistent with our hypotheses on the sequence (λk)
∞
k=0 only if α(s) = 0. This proves (13) for all

t ∈ (0, λ0). The same argument works for t ∈ (λ2k−1, λ2k) except that the inequalities (15) can be
asserted only for n ≥ 2k. On the intervals (λ2k, λ2k+1) the inequalities are reversed. This ends the
proof, since limk→∞ λk = ∞ implies that all points t > 0 have been already considered. 2

Hirschman-Widder’s and Gelfond’s proof of the ‘if ’ part of the Müntz Theorem

The most famous proof of the Weierstrass Approximation Theorem is based on the use of the
Bernstein polynomials:

Bnf(x) :=
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1 − x)n−k.

Thus, it was an interesting (and difficult!) problem to find out whether a suitable generalization
of the Bernstein polynomials would give a new proof of the Müntz Theorem. This question was
solved in the positive by Hirschman and Widder [20] in 1949. Moreover, their proof was modified
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and extended by A. O. Gelfond [16] in 1958 and included by G. G. Lorentz in his book on Bernstein
polynomials [23, pp. 46–47]. In this subsubsection, we follow the discussion in Lorentz’s monograph.

The polynomials that will play the role of Bernstein polynomials are defined in terms of the
sequence of exponents (λk)

∞
k=0 as follows: Given n, k ∈ N such that k ≤ n, we set

gn,k(x) := (−1)n−kλk+1 · · ·λn

n∑

i=k

xλi

(λi − λk) · · · (λi − λi−1)(λi − λi+1) · · · (λi − λn)
(17)

and, given f ∈ C[0, 1], we set

ηn,k :=

[
(1 − λ1

λk+1
) · · · (1 − λ1

λn
)

] 1

λ1

for 0 ≤ k < n, and ηn,n := 1,

and

BΛ
n (f)(x) :=

n∑

k=0

f(ηn,k)gn,k(x). (18)

We can now state and prove the main result:

Theorem 5 (Hirschman-Widder [20], and Gelfond [16]) Let f ∈ C[0, 1] and assume that

0 < λ1 < λ2 < · · · , lim
k→∞

λk = ∞ and
∞∑

k=1

1

λk
= ∞.

Then
lim

n→∞
‖BΛ

n (f) − f‖[0,1] = 0.

Proof. Let us consider, for the function f(z) = xz, its divided differences with respect to the
nodes (λk)

∞
k=1. It is clear that

gn,k(x) = (−1)n−kλk+1 · · ·λnf [λk, λk+1, . . . , λn]. (19)

In particular, this implies that

gn,k(x) = (−1)n−kλk+1 · · ·λn
1

2πi

∫

C

xz dz

(z − λk) · · · (z − λn)
,

where C is any simple closed curve that contains the nodes (λi)
n
i=k in its interior Int(C), and such

that f(z) = xz is holomorphic in a neighborhood of Int(C) ∪ C. Now we prove a few technical
results:

Lemma 6 The polynomials {gn,k}n
k=0 form a partition of unity on [0, 1].

Proof. Taking into account (19) and (11), we get

gn,k(x) =
λk+1 · · ·λn

(n − k)!
xτ (− log x)n−k ≥ 0.
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Moreover, taking into account the identity (easily checked by induction on n)

1

z
=

1

z − λn
− λn

(z − λn−1)(z − λn)
+ · · · + (−1)n λ1 · · ·λn

z(z − λ1) · · · (z − λn)

and multiplying by xz/(2πi) and integrating along C, we get

1 =
1

2πi

∫

C

xz

z
dz =

n∑

k=0

gn,k(x),

which is what we wanted to prove. 2

Lemma 7 The following identities hold:

xλ1 =
n∑

k=0

ηλ1

n,kgn,k(x) (20)

and

x2λ1 =
n∑

k=1

η∗n,kgn,k +
1

2
η∗n,0g

∗
n(x), (21)

where

η∗n,k := (1 − 2λ1

λk+1
) · · · (1 − 2λ1

λn
)

and g∗n is the polynomial gn+1,1 associated with the nodes λ0 = 0, λ1, 2λ1, λ2, . . . , λn (taken in
increasing order).

Proof. The idea is analogous to that in the previous lemma. We write 1/(z − λ1) in a different
way (this is again easy to check by induction on n):

1

z − λ1
=

1

z − λn
− λn − λ1

(z − λn−1)(z − λn)
+ · · · + (−1)n−1 (λ2 − λ1) · · · (λn − λ1)

(z − λ1) · · · (z − λn)

and multiplying by xz/(2πi) and integrating over C, we get (20). To prove (21), we use the same
arguments but based on the formula

1

z − 2λ1
=

1

z − λn
− λn − 2λ1

(z − λn−1)(z − λn)
+ · · · + (−1)n λ1(λ2 − 2λ1) · · · (λn − 2λ1)

(z − λ1)(z − 2λ1)(z − λ2) · · · (z − λn)
.

2

Let us continue with the proof of Theorem 5. Consider the functions Tn given by

Tn(x) :=
n∑

k=0

(xλ1 − ηλ1

n,k)
2gn,k(x).
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Then

Tn(x) = x2λ1 − 2xλ1

n∑

k=0

ηλ1

n,kgn,k(x) +
n∑

k=0

η2λ1

n,k gn,k

=
n∑

k=1

(η2λ1

n,k − η∗n,k)gn,k(x) − 1

2
η∗n,0g

∗
n(x).

Now, the sequence (η∗n,0) converges to zero since the product
∏∞

n=1(1−2λ1/λn) diverges to zero be-

cause of our hypothesis on the sequence (λk)
∞
k=1. This means that −1

2η∗n,0g
∗
n(x) converges uniformly

to zero, since we know that 0 ≤ g∗n(x) ≤ 1 for all x ∈ [0, 1].
Let us now show that

η2λ1

n,k − η∗n,k → 0 (22)

uniformly in k ≥ 1. To prove this, let ε > 0 be arbitrary and fix n0 such that, for all k ≥ n0,
2λ1 < λk and

(1 + ε) log(1 − λ1

λk
)2 ≤ log(1 − 2λ1

λk
) ≤ log(1 − λ1

λk
)2.

(This is possible since λk → ∞, log is an increasing function and log t < 0 for t ∈ (0, 1).) Then

(1 − λ1

λk
)2(1+ε) ≤ (1 − 2λ1

λk
) ≤ (1 − λ1

λk
)2. (23)

Since the products
∏∞

k=1(1 − λ1

λk
) and

∏∞
k=1(1 − 2λ1

λk
) are both divergent to zero, we can consider

only the values k ≥ n0 in (22), so that we can use (23) for the factors representing η2λ1

n,k and η∗n,k.

If η2λ1

n,k ≤ ε then also η∗n,k ≤ ε and |η2λ1

n,k − η∗n,k| ≤ 2ε. On the other hand, if η2λ1

n,k ≥ ε then

0 ≤ η2λ1

n,k − η∗n,k ≤ η2λ1

n,k − (η2λ1

n,k )1+ε ≤ 1 − (η2λ1

n,k )ε ≤ 1 − εε,

which is arbitrarily small for ε → 0. This proves (22) and, consequently, that Tn(x) → 0 uniformly
in x ∈ [0, 1].

Let us take f ∈ C[0, 1] and let M ≥ ‖f‖[0,1]. Obviously, f is uniformly continuous so that
we may assume that for a given ε > 0 we have chosen δ > 0 such that |x − y| < δ implies
|f(x1/λ1) − f(y1/λ1)| < ε. Then

BΛ
n (f)(x) − f(x) =

n∑

k=0

(f(ηn,k) − f(x))gn,k(x)

(recall that the polynomials {gn,k}n
k=0 are a partition of unity in [0, 1]). Hence we can decompose the

summation formula into two parts: the first one containing those indices k such that |ηλ1

n,k−xλ1 | ≤ δ
and the second one, where this inequality does not hold. The first part of the summation formula
is ≤ ε and for the second part we use that |f(ηn,k) − f(x)| ≤ 2M and (ηλ1

n,k − xλ1)2/δ2 ≥ 1 to

conclude that 2MTn(x)/δ2 is an upper bound of this part. This obviously implies that BΛ
n (f)(x)

converges to f(x) uniformly on [0, 1]. 2
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2.5 Proof of Müntz theorem via complex analysis

In this subsection, we will use some basic results from complex analysis to give another proof of
the Müntz Theorem. It is because of our use of a complex variable that we introduce a minor
modification in the space of functions we want to approximate. Concretely, we assume that our
space of functions is C([0, 1], C) and Müntz polynomials have complex coefficients. Clearly, the
Müntz Theorem corresponding to this context is the following one (which is equivalent to the
classical Müntz Theorem since the variable z runs on [0, 1] which is a subset of R, so that in order to
approximate a continuous function f(z) = u(z)+iv(z) with a complex polynomial p(z) =

∑n
i=0 αiz

λi

we only need to choose the coefficients αi = ai + ibi in such a form that
∑n

i=0 aiz
λi approximates

u(z) and
∑n

i=0 biz
λi approximates v(z)):

Theorem 8 (Müntz Theorem for Complex-Valued Functions) Let Λ = (λk)
∞
k=0, 0 = λ0 <

λ1 < · · · be an increasing sequence of non-negative real numbers. Then ΠC(Λ) is a dense subset
of C([0, 1], C) if and only if

∑∞
k=1 1/λk = ∞.

Let D := {z ∈ C : |z| < 1} be the unit disc, and

H∞(D) := {f : f is holomorphic on D and ‖f‖H∞(D) = sup
z∈D

|f(z)| < ∞}

be the algebra of bounded analytic functions defined on D. The proof we present of Theorem 8
(which is due to Feinerman and Newman [14]) is based on the following lemmas.

Lemma 9 (Blaschke Products) The function f : D → C belongs to H∞(D) if and only if it can
be decomposed as

f(z) = zp
∞∏

k=0

(z − λk)h(z)

for a certain choice of a natural number p ≥ 0, a sequence of points (λk) ⊂ D such that
∑∞

k=0(1 −
|λk|) < ∞, and a function h ∈ H∞(D) without zeros on D.

Proof. See [21, pages 63–67]. 2

Lemma 10 If
∑∞

k=0 1/λk = ∞ and η is a complex Borel measure on [0, 1] such that
∫ 1

0
tλk dη(t) = 0, k = 0, 1, . . . ,

then ∫ 1

0
tk dη(t) = 0, k = 0, 1, . . . .

Proof. We may assume, without loss of generality, that our measure is concentrated on (0, 1].
Then we use Morera’s theorem to prove that h(z) :=

∫ 1
0 tz dη(t) is holomorphic on the half plane

{z : Rez > 0} and h(λk) = 0, k = 0, 1, . . .. Moreover, h is bounded on the half plane, since if we
decompose z = x+iy, then |tz| = tx ≤ 1 for all t ∈ [0, 1]. It follows that g(z) := h((1+z)/(1−z)) ∈
H∞(D) and g(αk) = 0, k = 0, 1, . . ., where αk := (λk − 1)/(λk + 1), for all k.

Now, it is clear that
∑

1/λk = ∞ (which is our hypothesis), implies that
∑

(1− |αk|) = ∞ , so
that g = 0. This of course implies that h(k) = 0 for all k ∈ N. 2
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Proof of Theorem 8. Let Y := Π(Λ) be the closure of Π(Λ) in X = C[0, 1]. It follows from the
Hahn-Banach Theorem that f ∈ X\Y if and only if there exists a bounded linear functional L ∈ X∗

such that L|Y = 0 but Lf 6= 0. Now, if L ∈ C∗[0, 1] then Lf =
∫ 1
0 f(t) dη for all f and a certain

finite complex Borel measure η defined on [0, 1]. It follows from Lemma 10 (and the Weierstrass
Approximation Theorem) that Lf = 0 for all f , which is in contradiction to our hypotheses. This
proves that

∑
1/λk = ∞ is a sufficient condition for the density of Π(Λ) in C[0, 1].

We now prove that the condition is also necessary. Let us assume that
∑

1/λk < ∞, and let
us define the function:

f(z) :=
z

(2 + z)3

∞∏

k=1

λk − z

2 + λk + z
.

Now,

1 − λk − z

2 + λk + z
=

2 + 2z

2 + λk + z
,

so that the infinite product that appears in the definition of f converges uniformly on compact
subsets of C \ ({−2} ∪ {−2− λk}∞k=0). Hence f is a meromorphic function on C with poles {−2} ∪
{−2 − λk}∞k=0 and zeros {0} ∪ {λk}∞k=0. Furthermore, each factor of our infinite product is (in
absolute value) less than 1 for all z such that Re z > −1. On the other hand, the restriction of f
to the line Re z = −1 is an absolutely integrable function (this follows from the fact that we have
divided by (2 + z)3). Let us fix z with Re z > −1 and consider the Cauchy formula for f taking as
path of integration the circle centered at −1 of radius R > 1 + |z|, from −1 − iR to −1 + iR, plus
the interval [−1 + iR,−1 − iR]. If we let R → ∞ then we can eliminate the part of the formula
associated with the semicircle (note that |2 + z|3 > R3 there), and we obtain

f(z) = − 1

2π

∫ +∞

−∞

f(−1 + is) ds

−1 + is − z
(24)

=

∫ 1

0
tz
{

1

2π

∫ +∞

−∞
f(−1 + is) exp(−is log t) ds

}
dt,

since
1

−1 + is − z
=

∫ 1

0
tz−is dt =

∫ 1

0
tz exp(−is log t) dt.

If we define g(s) := f(−1 + is) then the inner integral which appears in formula (24) is ĝ(log t),
where ĝ denotes the Fourier transform of g which is clearly a continuous bounded function defined
on (0, 1], so that if dη(t) = ĝ(log t) dt then η is a complex Borel measure. Therefore, the bounded
linear functional h 7→

∫
hdη annihilates Y but it is not identically zero, hence Y 6= X whenever∑∞

k=0 1/λk < ∞, which is what we wanted to prove. 2

3 The Full Müntz theorem and polynomial inequalities

The Classical Müntz Theorem was only stated for increasing sequences of nonnegative real numbers
0 = λ0 < λ1 < · · · . It would be interesting to know if a general result, dealing with arbitrary
sequences of exponents, is possible. We call such a result a Full Müntz Theorem. Moreover, it
would be interesting to know such a result not only for the space C[0, 1] but also for C(K) with K
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a compact subset of R or C and for other function spaces such as Lp[a, b], etc. As we have already
noted, Szász’ proof of the Müntz Theorem in 1916 included sequences of exponents more general
than those treated by Müntz in his paper of 1914. In particular, for real exponents, he proved
a result that works whenever lim infk→∞ λk > 0, so that Szász’ theorem was not properly a Full
Müntz theorem although it was near to it. It is remarkable that, after Szász’ work, the search for
a Full Müntz theorem was not immediate. Moreover, since the appearance of the Müntz and Szász
theorems it was clear that the role of the origin in these results was very important and to extend
the results to spaces of functions defined away from the origin was a nontrivial task. Moreover,
nobody had answered the main question of characterizing the elements in the closure of a Müntz
space Π(Λ) when this space is not a dense subset of C[a, b].

It was Fields medalist Laurent Schwartz [30] who proved a Full Müntz theorem for the space
of square-integrable functions L2[a, b] on general intervals [a, b]. Schwartz also characterized the
density of Müntz spaces in C[a, b] for 0 6∈ [a, b] and conjectured a necessary and sufficient condition
for the density in C[0, 1] of Π(Λ) with general sequences, but he did not prove the result.

It was only a few years later when Siegel [31], in a beautiful paper where he included a difficult
generalization of Szász’ theorem, proved Schwartz’ conjecture for the first time using complex
variable techniques. The deepest work related to the Full Müntz Theorem has only recently been
done by P. Borwein and T. Erdélyi, sometimes in collaboration with several other authors. They
proved that there is a strong connection between density results for Müntz spaces and the study of
some special inequalities for these polynomials. In fact, their book “Polynomials and Polynomial
Inequalities” [5] constitutes a deep contribution to this subject and contains a guided investigation
of the Full Müntz Theorem. The reader should attempt the solution of the exercises in Chapter 4
of that book or, avoiding much effort, read this section where we will concentrate almost all our
attention on the study of the Full Müntz Theorem for the spaces C[0, 1], Lp[0, 1] and C[a, b] (with
0 < a < b). We also include some ideas related to the proof by Borwein and Erdélyi of a Full
Müntz Theorem for the space C(K), where K is a compact set with positive Lebesgue measure,
and a recent result by the author where a Full Müntz Theorem is proved for the space of continuous
functions on quite general countable compact sets.

3.1 Full Müntz theorem on [0, 1]

We start with the precise statement of the main results of this section.

Theorem 11 (Full Müntz Theorem for C[0, 1]) Let us assume that Λ = (λk)
∞
k=1 is a sequence

of distinct real positive numbers. Then Π(Λ ∪ {0}) is dense in C[0, 1] if and only if

∞∑

k=1

λk

λ2
k + 1

= ∞. (25)

Theorem 12 (Full Müntz Theorem for L2[0, 1]) Let us assume that Λ = (λk)
∞
k=1 is a sequence

of distinct real numbers greater than −1/2. Then Π(Λ) is dense in L2[0, 1] if and only if

∞∑

k=1

2λk + 1

(2λk + 1)2 + 1
= ∞. (26)

Although we will not prove it in this paper, we would like to include here the corresponding
result for Lp[0, 1]:
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Theorem 13 (Full Müntz Theorem for Lp[0, 1]) Let p ∈ (0,∞) and let us assume that Λ =
(λk)

∞
k=1 is a sequence of distinct real numbers greater than −1/p. Then Π(Λ) is dense in Lp[0, 1] if

and only if
∞∑

k=1

λk + 1/p

(λk + 1/p)2 + 1
= ∞. (27)

Theorem 11 was conjectured by Schwartz, proved by A. R. Siegel [31] for the first time and,
following the ideas introduced by Szász in his famous 1916 paper, reproved by Borwein and Erdélyi.
Theorem 12 was proved by Szász [34]. Theorem 13 was proved for p = 1 and conjectured for p > 0
by Borwein and Erdélyi [5]. Moreover, it was proved by Operstein [27] for the case 1 < p < ∞, by
Erdélyi and Johnson [11] (using quasi-Banach space theory) for 0 < p < ∞ and, quite recently, by
Erdélyi [13] for 0 < p < ∞ with an “elementary” proof.

In this section, we will prove Theorem 11. As a first step, we prove the easier Theorem 12 and
we use it to prove some particular cases of Theorem 11. Then we introduce several polynomial
inequalities that will be needed to complete the proof of this theorem. These inequalities are proved
in the second part of this section. The third and fourth part are devoted to a characterization of
the closure of nondense Müntz subspaces of C[0, 1] and the statement and proof of the Full Müntz
Theorem for intervals [a, b] away from the origin.

Finally, the fifth and sixth part are devoted to the Full Müntz theorem for C(K) for compact
sets K ⊂ [0,∞) more general than intervals.

Proof of Theorem 12. We have already proved the formula:

E(xq, Π(Λn))L2(0,1) =
1√

2q + 1

n∏

k=1

|q − λk|
|q + λk + 1| .

Hence xq ∈ Π(Λ)
L2(0,1)

if and only if

lim
n→∞

n∏

k=1

∣∣∣∣
q − λk

q + λk + 1

∣∣∣∣

(
= lim

n→∞

n∏

k=1

∣∣∣∣1 − 2q + 1

q + λk + 1

∣∣∣∣

)
= 0.

We decompose the above product making a distinction between the cases λk ∈ (−1/2, q] and
λk ∈ (q,∞), which leads us to the following reformulation of the above condition:

lim
n→∞

∏

k≤n;λk∈(−1/2,q]

∣∣∣∣1 − 2q + 1

q + λk + 1

∣∣∣∣
∏

k≤n; λk∈(q,∞)

∣∣∣∣1 − 2q + 1

q + λk + 1

∣∣∣∣ = 0,

which is clearly equivalent to stating that

∑

k≥1; λk∈(q,∞)

1

2λk + 1
= ∞ or

∑

k≥1; λk∈(−1/2,q]

(2λk + 1) = ∞,

and this can be rewritten as
∞∑

k=1

2λk + 1

(2λk + 1)2 + 1
= ∞,
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which is what we wanted to prove. 2

We subdivide the proof of Theorem 11 into several cases, depending on which of the following
three conditions are satisfied by the sequence (λk):

H1 infk∈N λk > 0.

H2 limk→∞ λk = 0. (In this case, the identities
∑ λk

λ2

k
+1

= ∞ and
∑

λk = ∞ are equivalent.)

H3 (λk) = (αk) ∪ (βk), with αk → 0 and βk → ∞. (In this case, the identities
∑ λk

λ2

k
+1

= ∞ and
∑

αk +
∑ 1

βk
= ∞ are equivalent.)

At first glance it seems that condition H3 is not significant since, taking subsequences if nec-
essary, H1 and H2 produce all possibilities. Theorem 11 has been stated in a unified form that
depends on the convergence character of the series

∑ λk

λ2

k
+1

, and this depends on the knowledge

of the boundedness character of the set {λk}∞k=0. In particular, for the case infk≥0 λk = 0 and in

order to characterize for which sequences we have
∑ λk

λ2

k
+1

= ∞, we must take into account both

possibilities H2 and H3. We will see that the study of the case described by H3 is precisely the
most difficult to handle.

In fact, H1 – H3 do not cover all cases (e.g. if there is a subsequence converging to 0 and another
one converging to 1) but in the missing cases there is a subsequence that is bounded away from 0
and infinity, and in this case (25) is automatically true, and so is the denseness by H1 applied to
this subsequence.

Proof of Theorem 11, using Theorem 12, and assuming that infk∈N λk > 0. Let 0 < δ ≤
infk∈N λk. We make the change of variable x → x

1

δ and solve the problem for exponents λ∗
k = λk/δ

that satisfy infk∈N λ∗
k ≥ 1. This means that we may assume, without loss of generality, that

infk∈N λk ≥ 1. Then

∞∑

k=1

λk

λ2
k + 1

= ∞ if and only if

∞∑

k=1

(λk − 1)

(λk − 1)2 + 1
=

∞∑

k=1

2(λk − 1) + 1

(2(λk − 1) + 1)2 + 1
= ∞.

Let us first assume that ∑ 2(λk − 1) + 1

(2(λk − 1) + 1)2 + 1
= ∞.

It then follows from Theorem 12 that Π((λk − 1)∞k=1) is dense in L2[0, 1]. Let now q ∈ N be
arbitrarily chosen. We can use the Szász trick as described by the inequalities (4) (see Section 2 of
this paper) to prove that

E(xq, Π(Λn))C[0,1] ≤ qE(xq−1, Π(Λ∗
n))L2[0,1],

where Λn = (λk)
n
k=1 and Λ∗

n = (λk − 1)n
k=1. This error goes to zero for all choices q > 0, which

proves that condition
∑

λk/(λ2
k + 1) = ∞ is sufficient for the density of Π(Λ) in C[0, 1].

On the other hand, if Π((λk)
∞
k=1) is dense in C[0, 1] then, taking into consideration that C[0, 1]

is dense in L2[0, 1] and ‖·‖L2[0,1] ≤ ‖·‖C[0,1], we have that Π((λk)
∞
k=1) is also dense in L2[0, 1]. Hence,

using Theorem 12,
∑

λk/(λ2
k + 1) = ∞. 2
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Proof of Theorem 11 when λk → 0. We start by noting that in this case the identities∑
λk/(λ2

k + 1) = ∞ and
∑

λk = ∞ are equivalent. It follows from the Hahn-Banach and Riesz
Representation Theorems that span {1, xλk}∞k=1 is dense in C[0, 1] if and only if {λk} is not a subset
of the set of zeros of any nontrivial function of the form

fµ(z) =

∫
tz dµ(t)

for some finite Borel measure µ. This condition is equivalent to saying that {(λk − 1)/(λk + 1)} is
not the zero set of any function of the form

g(z) := fµ((1 + z)/(1 − z)) ∈ H∞(D).

Now, if λk → 0, then the equation
∑

λk = ∞ implies that

∞∑

k=1

(
1 −

∣∣∣∣
λk − 1

λk + 1

∣∣∣∣

)
= ∞,

so that, using Lemma 9, it is clear that {(λk − 1)/(λk + 1)} is not the zero set of any g(z) ∈
H∞(D). This means that

∑
λk = ∞ is a sufficient condition (whenever λk → 0) for the density of

span {1, xλ1 , xλ2 , . . . } in C[0, 1].
In order to prove that condition (25) is also necessary, we need to introduce the following

theorem:

Theorem 14 (Newman’s Inequality) Assume that Λ = (λk)
∞
k=1 is a sequence of distinct posi-

tive real numbers. Then the inequality

∥∥xp′(x)
∥∥

[0,1]
≤ 11

(
n∑

k=0

λk

)
‖p(x)‖[0,1]

holds for all p ∈ Π(Λn) and all n ∈ N.

If M :=
∑∞

k=1 λk < ∞, then we have that
∥∥xp′(x)

∥∥
[0,1]

≤ 11M ‖p(x)‖[0,1]

for all p ∈ Π(Λ), which contradicts the density of Π(Λ) in C[0, 1]. For let us assume that Π(Λ) is
dense in C[0, 1]. If, for example, we set f(x) = (1 − x)1/2 then for every natural number m there
exists a p ∈ Π(Λ) such that ||p − f || ≤ 1/m2. Hence

|p(1 − 1/m2) − p(1)| ≥ |f(1 − 1/m2) − 1/m2 − (f(1) + 1/m2)|
= 1/m − 2/m2,

and it then follows from the Mean Value Theorem that

|ξp′(ξ)| = ξ
|p(1 − 1/m2) − p(1)|

1/m2
≥ (1 − 1/m2)

1/m − 2/m2

1/m2

= (1 − 1/m2)(m − 2) ≥ m − 2

2

for a certain ξ ∈ (1 − 1/m2, 1). This clearly is in contradiction with
∥∥xp′(x)

∥∥
[0,1]

≤ 11M ‖p(x)‖[0,1] ,

since m is arbitrary. 2
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Proof of Newman’s Inequality. We may assume, without loss of generality, that
∑n

k=0 λk = 1
since we may make the change of variable

x → x1/(
∑n

k=0
λk).

Set x = e−t. If p(x) =
∑n

k=0 akx
λk and q(t) = p(e−t) =

∑n
k=0 ake

−λkt then

xp′(x) =

n∑

k=0

λkakx
λk =

n∑

k=0

λkake
−λkt = q′(t),

so that we have changed our problem to one of estimating the uniform norm, on the interval [0,∞),
of the derivatives of functions of the form

n∑

k=0

ake
−λkt (28)

in terms of their uniform norms in the same interval.
Let

B(z) :=
n∏

k=0

z − λk

z + λk

and define

T (t) :=
1

2πi

∫

Γ

e−zt

B(z)
dz, where Γ := {z : |z − 1| = 1}.

It follows from the residue theorem that T is of the form (28). To prove Newman’s inequality we
first prove the following estimate:

|B(z)| ≥ 1/3 for all z ∈ Γ. (29)

It is easy to check that the Möbius transform z 7→ (z−λ)(z +λ) sends the circle Γ onto the circle
that contains the interval [−1, (2 − λ)/(2 + λ)] as a diameter, so that the inequality

∣∣∣∣
z − λ

z + λ

∣∣∣∣ ≥
2 − λ

2 + λ
=

1 − λ/2

1 + λ/2

holds for all z ∈ Γ, and

|B(z)| ≥
n∏

k=0

1 − λk/2

1 + λk/2
.

To estimate the above product, we take into consideration the fact that for all x, y ≥ 0, the
inequality

1 − x

1 + x
· 1 − y

1 + y
≥ 1 − (x + y)

1 + x + y

holds. This leads us to the inequality

n∏

k=0

1 − λk/2

1 + λk/2
≥ 1 − 1

2

∑n
k=0 λk

1 + 1
2

∑n
k=0 λk

=
1 − 1/2

1 + 1/2
= 1/3,
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which proves (29).
It follows from the definition of T , that

T ′′(t) =
1

2πi

∫

Γ

z2e−zt

B(z)
dz

and, using α(θ) = 1+eiθ as a parametrization of Γ, we have (taking into account Fubini’s Theorem)
that

∫ ∞

0
|T ′′(t)|dt ≤ (3/2π)

∫ ∞

0

∫ 2π

0
2(1 + cos θ)e−(1+cos θ)t dθ dt

= (3/2π)

∫ 2π

0
2(1 + cos θ)

1

(1 + cos θ)
dθ = 6.

Now we will compute integrals of the form
∫∞
0 e−λktT ′′(t) dt in terms of the scalars λk. To do this,

we note that ∫ ∞

0
e−λktT ′′(t) dt =

1

2πi

∫

Γ

z2

B(z)(z + λk)
dz (30)

and, taking into consideration the fact that

z2

B(z)(z + λk)

has no poles in the exterior of Γ, the above integral depends only on its residue at ∞. Now

1

z + λk
=

1

z

∞∑

j=0

(−1)j(λk/z)j = 1/z − λk/z2 + λ2
k/z3 − · · ·

and

1

B(z)
=

∞∏

k=0

1 + λk/2

1 − λk/2
= 1 +

2
∑∞

k=0 λk

z
+

2 (
∑∞

k=0 λk)
2

z2
+ · · ·

= 1 +
2

z
+

2

z2
+ · · ·

so that
z2

B(z)(z + λk)
= z + (2 − λk) +

λ2
k − 2λk + 2

z
+ · · · .

This, in conjunction with (30), leads us to the formula

∫ ∞

0
e−λktT ′′(t) dt = λ2

k − 2λk + 2. (31)
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Now, let q be an exponential polynomial of the form (28). Then, if we take into consideration (31),
we conclude that

∫ ∞

0
q(t + a)T ′′(t) dt =

∫ ∞

0

(
n∑

k=0

ake
−λkte−λka

)
T ′′(t) dt

=
n∑

k=0

ake
−λka

∫ ∞

0
e−λktT ′′(t) dt

=
n∑

k=0

ake
−λka(λ2

k − 2λk + 2)

= q′′(a) − 2q′(a) + 2q(a).

Hence,

∣∣q′′(a) − 2q′(a) + 2q(a)
∣∣ =

∣∣∣∣
∫ ∞

0
q(t + a)T ′′(t) dt

∣∣∣∣

≤
∫ ∞

0

∣∣q(t + a)T ′′(t)
∣∣ dt ≤ ‖q‖[0,∞)

∫ ∞

0

∣∣T ′′(t)
∣∣ dt

≤ 6‖q‖[0,∞) (for all a ≥ 0),

so that
‖q′′‖[0,∞) ≤ 2‖q′‖[0,∞) + 8‖q‖[0,∞).

It is well known that the inequality

‖f ′‖2
[0,∞) ≤ 4‖f‖[0,∞)‖f

′′‖[0,∞)

holds for all functions f ∈ C(2)[0,∞) (see [22]), so that

‖q′‖2
[0,∞) ≤ 4‖q‖[0,∞)‖q

′′‖[0,∞) ≤ ‖q‖[0,∞)(8‖q′‖[0,∞) + 16‖q‖[0,∞))

and (‖q′‖[0,∞)

‖q‖[0,∞)

)2

≤ 8
‖q′‖[0,∞)

‖q‖[0,∞)
+ 16

which clearly implies that
‖q′‖[0,∞)

‖q‖[0,∞)
≤ 11

for all expressions of the form (28). 2

Theorem 14 is a nice generalization of the classical Markov inequality, which states that algebraic
polynomials of degree ≤ n (i.e., polynomials of the form p(x) = a0 + a1x + · · · + anxn) satisfy

‖p′‖[−1,1] ≤ n2‖p‖[−1,1].
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Markov’s inequality is indeed related to another classical inequality, due to Bernstein, which states
that algebraic polynomials of degree ≤ n satisfy

|p′(x)| ≤ n√
1 − x2

‖p‖[−1,1], for all x ∈ (−1, 1).

It is not by chance that Theorem 14 appeared in the middle of our proof. In fact, the study
of certain classical polynomial inequalities and how they can be extended (and adapted) from the
usual spaces of algebraic polynomials to Müntz spaces, has proven to be a deep tool for studying the
density of these spaces. Concretely, the following generalization of the classical Bernstein inequality
will be of fundamental importance for the main objectives of this section.

Theorem 15 (Bounded Bernstein’s and Chebyshev’s inequalities) Let us assume that 0 ≤
λ0 < λ1 < · · · and

∑∞
k=1 1/λk < ∞. Then for each ε > 0 there are constants cε, c

∗
ε > 0 such that

‖p‖[0,1] ≤ cε‖p‖[1−ε,1]

and
‖p′‖[0,1−ε] ≤ c∗ε‖p‖[1−ε,1] ≤ c∗ε‖p‖[0,1]

for all p ∈ Π(Λ).

The proof of this theorem is especially tricky, so that we postpone it to part 2 of this section.
We prefer, at present, to explain how a clever use of this theorem helps us answer several questions
related to the study of the density of Müntz spaces. In particular, we close this subsection by
concluding the proof of the Full Müntz Theorem for the space C[0, 1].

Proof of Theorem 11 when (λk) = (αk) ∪ (βk), where αk → 0 and βk → ∞. In this case, the
relations

∑∞
k=1(λk)/(λ2

k + 1) = ∞ and

∞∑

k=1

αk +
∞∑

k=1

1

βk
= ∞ (32)

are equivalent. If (32) holds then we have already proved that Π(Λ) is dense in C[0, 1]. Let us now
assume that

∑∞
k=1 αk < ∞ and

∑∞
k=1 1/βk < ∞.

Recall that a sequence of functions (fk)
n
k=0 ⊆ C(K) is called a Haar system on K if

dim span {fk}n
k=0 = n + 1

and the only element f ∈ span {fk}n
k=0 that vanishes at n+1 points is the zero function. A special

type of Haar systems are Chebyshev systems, which are those given by a sequence of functions
(fk)

n
k=0 ⊆ C(K) such that

det




f0(x0) f1(x0) · · · fn(x0)

...
...

. . .
...

f0(xn) f1(xn) · · · fn(xn)



 > 0

holds whenever x0 < x1 < · · · < xn, {xi}n
i=0 ⊆ K.

Proposition 16 Let us assume that λ0 < λ1 < · · · < λn. Then (xλk)n
k=0 is a Chebyshev system

on (0,∞).
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Proof. Let ∆ = {(α0, α1, . . . , αn) ∈ R
n+1 : ∃i 6= j, αi = αj}. Then it is not difficult to prove that

D(ρ0, . . . , ρn) := det




xρ0

0 xρ1

0 · · · xρn

0
...

...
. . .

...
xρ0

n xρ1

n · · · xρn
n



 6= 0

whenever (ρ0, . . . , ρn) ∈ R
n+1 \ ∆ and 0 < x0 < x1 < · · · < xn. The difficult thing is to show that

this determinant must be positive. Now, we take τ = (τ0, . . . , τn) : [0, 1] → R
n+1 \ ∆ a continuous

path such that τ(0) = (λ0, . . . , λn) and τ(1) = (0, 1, . . . , n) (this is possible since λ0 < · · · < λn).
The continuity of τ implies that

sign(D(τ(0))) = sign(D(τ(1))) = +1,

since the last determinant is the well known Vandermonde determinant (see, e.g., [10]). 2

Let us assume that (fk)
n
k=0 is a Chebyshev system. Under these conditions, it is possible to

prove some interesting results about uniqueness and characterization of best approximants from
the space span {fk}n

k=0. In particular, the existence of a unique best approximation to fn by
elements of span {fk}n−1

k=0 is guaranteed. If Pn is such an approximant, then the function Tn :=
(fn − Pn)/‖fn − Pn‖ is, by definition, the Chebyshev polynomial associated with the Chebyshev
system (fk)

n
k=0. As we shall see, these polynomials play a main role in our theory. In particular,

they satisfy the following nice interlacing property (for a proof, see [5], page 116):

Theorem 17 (Zeros of Chebyshev Polynomials) Let us assume that T = (f0, . . . , fn−1, g)
and S = (f0, . . . , fn−1, h) are Chebyshev systems on [a, b] and that Tn = Tn,T and Sn = Sn,S

denote the associated Chebyshev polynomials. If (f0, . . . , fn−1, g, h) is also a Chebyshev system
then the zeros of Tn and Sn interlace (i.e., there exists exactly one zero of Sn between any two
consecutive zeros of Tn).

Moreover, the following theorem also holds:

Theorem 18 (Alternation property of Chebyshev Polynomials) Let us assume that T =
(f0, . . . , fn−1, fn) is a Chebyshev system on [a, b] and that Tn = Tn,T denotes the associated Cheby-
shev polynomial. Then there are n + 1 points x0 < x1 < · · · < xn in [a, b] such that

|Tn(xi)| = ε(−1)i, i = 0, 1, . . . , n,

where ε ∈ {1,−1} is the same for all i.

Let us use the following notation:

• Tn,α denotes the Chebyshev polynomial associated to the system (1, xαk)n
k=1.

• Tn,β denotes the Chebyshev polynomial associated to the system (1, xβk)n
k=1.

• T2n,α,β denotes the Chebyshev polynomial associated to the system

(1, xα1 , xα2 , . . . , xαn , xβ1 , xβ2 , · · · , xβn).
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It follows from Newman’s inequality

∥∥xT ′
n,α(x)

∥∥
[0,1]

≤ 11M({αk}) ‖Tn,α‖[0,1] = const < ∞ (n ∈ N),

that for each ε > 0 there exists a constant k1(ε) which only depends on ε and {αk} (but does not
depend on n) such that Tn,α has at most k1(ε) zeros in [ε, 1) and at least n − k1(ε) zeros in [0, ε).
(It is not possible to increase the number of zeros of Tn,α in [ε, 1) without increasing the modulus
of the derivative of Tn,α at least in some points of the same interval.) On the other hand, and
due to similar reasons, it follows from the bounded Bernstein’s inequality (Theorem 15), applied
to Tn,β , that

‖T ′
n,β‖[0,1−ε] ≤ c∗ε‖Tn,β‖[0,1] = c∗ε < ∞.

Hence Tn,β has at most k2(ε) zeros in [0, 1 − ε) and at least n − k2(ε) zeros in [1 − ε, 1).
Now, if we take into account the interlacing properties of the Chebyshev’s polynomials (Theorem

17), and the fact that the system (1, xαk , xβk)n
k=1 is an extension of both systems (1, xαk)n

k=1 and
(1, xβk)n

k=1, it follows that, for n big enough, T2n,α,β has at least n − k1(ε) − 1 zeros on [0, ε] and
at least n − k2(ε) − 1 zeros on [1 − ε, 1]. Hence we conclude that there exists a certain constant
k = k(ε) (which only depends on the sequence (λk)) such that T2n,α,β has at most k(ε) zeros in the
interval (ε, 1 − ε).

Set k = k(1/4) and let us take a set of points

1/4 < t0 < t1 < · · · < tk+3 < 3/4

and a function f ∈ C[0, 1] such that f(x) = 0 for all x ∈ [0, 1/4]∪ [3/4, 1] and f(ti) = (−1)i2 for all
0 ≤ i ≤ k + 3. Let us assume that there exists a polynomial p ∈ Π(Λ) such that ‖f − p‖[0,1] < 1.
Then p−T2n,α,β has at least 2n+1 zeros in the interval (0, 1) (where we have used that p dominates
in [1/4, 3/4] and T2n,α,β dominates outside this interval). This is in contradiction to the fact that
p − T2n,α,β ∈ Π2n(Λ) for all n large enough (which implies that p − T2n,α,β has at most 2n zeros).
This ends the proof whenever Λ has no accumulation points in (0,∞). 2

Proof of Theorem 11 for the case in which Λ has some accumulation point in (0,∞). In
this case there exists an infinite subsequence (αk) ⊂ Λ such that inf{αk} > 0 and, in such a case,
we already know that Π((αk)) ⊂ Π(Λ) is a dense subset of C[0, 1]. 2

3.2 Proof of the bounded Bernstein and Chebyshev inequalities

We devote this subsection to the proof of Theorem 15. The proof is long, so we divide it into several
steps:

Step 1: Bernstein’s and Chebyshev’s exponents satisfying a jump condition

In this step, we prove Bernstein’s and Chebyshev’s inequalities for sequences of exponents that
satisfy the following jump condition: infk∈N(λk−λk−1) > 0. In particular, we start with Bernstein’s
inequality in this special case:

Theorem 19 (Bounded Bernstein Inequality for Special Sequences) Let us assume that
Λ = (λk)

∞
k=0 is a sequence of nonnegative real numbers that satisfies the jump condition infk∈N(λk−
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λk−1) > 0, and
∑∞

k=1 1/λk < ∞, λ0 = 0, λ1 ≥ 1. Then for all ε ∈ (0, 1) there exists a constant
cε = c(ε, Λ) > 0 such that the inequalities

‖p′‖[0,1−ε] ≤ cε‖p‖L2(0,1), ‖p′‖[0,1−ε] ≤ cε‖p‖[0,1]

hold for all p ∈ Π(Λ).

Proof. It follows from direct computation of the errors E(xα, Π((λk)
n
k=0))2 that, for all m ∈ N

and all p ∈ Π(Λ\{λm}), the inequality

‖xλm − p(x)‖L2(0,1) ≥ 1√
2λm + 1

∏

k≥0; k 6=m

∣∣∣∣
λm − λk

λm + λk + 1

∣∣∣∣ (33)

=
1√

2λm + 1

∏

k≥0; k 6=m

∣∣∣∣
(λk + 1/2) − (λm + 1/2)

(λk + 1/2) + (λm + 1/2)

∣∣∣∣

holds. Hence it is of interest to study products of the form:

∏

k≥0; k 6=m

∣∣∣∣
αk + αm

αk − αm

∣∣∣∣

for sequences (αk)
∞
k=0 such that infk∈N(αk −αk−1) > 0, and

∑∞
k=0 1/αk < ∞. (Note that we have,

for ease of exposition, reversed the quotients.)
We decompose:

∏

k≥0; k 6=m

∣∣∣∣
αk + αm

αk − αm

∣∣∣∣ =
∏

k≥0; αk<αm

∣∣∣∣1 +
2αm

αk − αm

∣∣∣∣×

×
∏

k≥0; αm<αk<2αm

∣∣∣∣1 +
2αm

αk − αm

∣∣∣∣
∏

k≥0; αk≥2αm

∣∣∣∣1 +
2αm

αk − αm

∣∣∣∣ .

Clearly, for all k such that αk ≥ 2αm we have that αk/2 ≥ αm so that αk−αm ≥ αk−αk/2 = αk/2.
This means that

∏

k≥0; αk≥2αm

∣∣∣∣1 +
2αm

αk − αm

∣∣∣∣ ≤ exp




∑

k≥0; αk≥2αm

∣∣∣∣
2αm

αk − αm

∣∣∣∣





≤ exp



4αm

∑

k≥0; αk≥2αm

1

αk



 ,

which implies that there exists a constant ξm > 0 such that ξm ≤ 4
∑

k≥0; αk≥2αm
1/αk and

∏

k≥0; αk≥2αm

∣∣∣∣1 +
2αm

αk − αm

∣∣∣∣ = exp(αmξm).

The products
∏

k≥0; αk<αm

∣∣∣∣1 +
2αm

αk − αm

∣∣∣∣
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are bounded. Moreover, we can use that in between αm and 2αm there are o(αm) terms (since
∑

k
1

αk
< ∞) to estimate the product

∏
k≥0; αm<αk<2αm

∣∣∣1 + 2αm

αk−αm

∣∣∣ and prove that there are

constants γm such that

∏

k≥0; k 6=m

∣∣∣∣
αk + αm

αk − αm

∣∣∣∣ ≤ exp(αmγm), lim
m→∞

γm = 0.

Hence ∏

k≥0; k 6=m

∣∣∣∣
αk − αm

αk + αm

∣∣∣∣ ≥ exp(−αmγm), lim
m→∞

γm = 0

and, taking into consideration the formula (33), we obtain that

‖xλm − p(x)‖L2(0,1) ≥ exp(−γmλm)

where limm→∞ γm = 0 and p ∈ Π((Λ\{λm}). This clearly implies that for every polynomial
p =

∑
akx

λk ∈ Π(Λ), the inequality

‖p‖L2(0,1) = ‖akx
λk − (akx

λk − p(x))‖L2(0,1) ≥ |ak| exp(−γkλk)

holds. Hence
|ak| ≤ exp(γk)

λk‖p‖L2(0,1) ≤ cε(1 + ε)λk‖p‖L2(0,1) (34)

for a certain constant cε, since only a finite number of values γk satisfy exp(γk) > 1+ε (the constant
cε only depends on the behaviour of the other values γk). Another proof – indeed the original one
– of this inequality was given by Clarkson and Erdös [9] in 1943.

Taking into consideration that λ1 ≥ 1 and c = infk∈N(λk −λk−1) > 0, we have that there exists
a strictly increasing sequence of natural numbers mj , j ≥ 0, such that {⌊λk⌋}∞k=0 = {mj}∞j=0, where
⌊λk⌋ denotes the integer part of λk for each k ∈ N. Furthermore,

M := M(Λ) := max
j≥0

#{k : ⌊λk⌋ = mj} < ∞,

so that

n∑

k=0

λkα
λk−1 ≤

n∑

k=0

(⌊λk⌋ + 1)α⌊λk⌋−1

=
n∑

k=0

⌊λk⌋α⌊λk⌋−1 +
n∑

k=0

α⌊λk⌋−1

≤ M

(
n∑

k=0

mkα
mk−1 +

n∑

k=0

αmk−1

)

≤ M

(
∞∑

k=0

mkα
mk−1 +

∞∑

k=0

αmk−1

)

≤ C(α, M) := M

(
∞∑

t=1

tαt−1 +
∞∑

t=1

αt−1

)
< ∞
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for all α ∈ (0, 1).
We can use the above inequality to estimate the norm ‖p′‖[0,1−ε] as follows:

‖p′‖[0,1−ε] ≤
n∑

k=0

λk|ak|(1 − ε)λk−1

≤ cε(1 + ε)
n∑

k=0

λk[(1 + ε)(1 − ε)]λk−1‖p‖L2(0,1)

= cε(1 + ε)

n∑

k=0

λk[(1 − ε2)]λk−1‖p‖L2(0,1)

≤ cε(1 + ε)C(1 − ε2, M)‖p‖L2(0,1)

≤ c(ε, Λ)‖p‖L2(0,1) ≤ c(ε, Λ)‖p‖C[0,1],

which is what we wanted to prove. 2

The next theorem, proved by L. Schwartz [30], is an important consequence of the inequality
(34).

Theorem 20 (Closure of Nondense Müntz Spaces for Special Sequences) Let us assume
that Λ = (λk)

∞
k=0 is a sequence of nonnegative real numbers such that infk∈N(λk − λk−1) > 0

and
∑∞

k=1 1/λk < ∞, λ0 = 0, λ1 ≥ 1. Then the functions that belong to the closure of Π(Λ)
can be analytically extended to D \ [−1, 0]. If λk is an integer for all k, then the functions of
the closure of Π(Λ) can be analytically extended to the unit disc. Finally, if Λ is lacunary (i.e.,
inf{λk/λk−1}∞k=2 > 1) then the closure of Π(Λ) is precisely the set

{
f ∈ C[0, 1] : f(x) =

∞∑

k=0

akx
λk , x ∈ [0, 1]

}
.

Proof. Let us assume that limn→∞ ‖f − qn‖C[0,1] = 0, where qn(x) :=
∑kn

k=0 an,kx
λk . Then the

sequence of polynomials (qn)∞n=0 is a Cauchy sequence in C[0, 1]. It follows that for each δ > 0 and
all n ∈ N,

|an,k − am,k| ≤ cδ(1 + δ)λk‖qn − qm‖C[0,1] → 0 ( n, m → ∞).

This means that there are numbers ak ∈ R such that limn→∞ an,k = ak (k ∈ N). Let h(x) :=∑∞
k=0 akx

λk . Then for all δ > 0 we can write

|ak| = lim
n→∞

|an,k| ≤ lim
n→∞

cδ(1 + δ)λk‖qn‖C[0,1] = cδ(1 + δ)λk‖f‖C[0,1].

It follows that the series h(x) =
∑∞

k=0 akx
λk is absolutely convergent for all x < 1. To prove

this claim we take into account that λk/k ≥ c for all k, so that the inequality

|akx
λk |1/k ≤ (cδ‖f‖C[0,1])

1/k((1 + δ)x)λk/k ≤ (cδ‖f‖C[0,1])
1/k((1 + δ)x)c < 1

holds for k sufficiently large and δ such that (1 + δ)x < 1. Now, it is clear that h coincides with
the function f . Consider the branch of logarithm that is defined on the complex plane cut along
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(−∞, 0] and that is positive for values > 1. For any λ this defines a branch of zλ = exp(λ log z).
Now if z ∈ D \ [−1, 0] then

∞∑

k=0

∣∣∣akz
λk

∣∣∣ ≤ f(|z|) < ∞.

This proves that f(z) =
∑∞

k=0 akz
λk is analytic on D \ [−1, 0]. If λk is an integer for all k, then it is

clear that the above arguments are also valid for all z ∈ (−1, 0) so that f is analytic in the unit disc.
If the sequence is lacunary then we can use a theorem by Hardy and Littlewood [19] that claims that
if the power series

∑
k akx

λ
k , with radius of convergence 1, is lacunary and limx→1−

∑
k akx

λk = a,
then

∑
k ak = a, to conclude that the series

∑∞
k=0 akz

λk also converges for z = 1. In the other cases
there are counterexamples, i.e., there are series of the form

∑∞
k=0 akz

λk that belong to the closure
of Π(Λ) in C[0, 1] and they do not converge for z = 1 (see [9]). 2

We prove, for the special case we are considering in this step, Chebyshev’s inequality which
claims that the norms of the elements of (nondense) Müntz spaces essentially depend on the be-
haviour of the elements near x = 1.

Corollary 21 (Bounded Chebyshev Inequality for Special Sequences)Under the hypothe-
ses of Theorem 19, for each ε ∈ (0, 1) there exists a constant cε = c(ε, Λ) such that ‖p‖C[0,1] ≤
cε‖p‖C[1−ε,1] for all p ∈ Π(Λ).

Proof. Making (if necessary) the change of variable y = x1/λ1 we may assume, without loss of
generality, that λ1 = 1. Let us now assume that there exists a sequence of polynomials (pn) ⊂ Π(Λ)
such that limn→∞ ‖pn‖C[0,1] = ∞ but ‖pn‖C[1−ε,1] = 1 for all n. Then qn := pn/‖pn‖C[0,1] satisfies
‖qn‖C[0,1] = 1 for all n ∈ N, and limn→∞ ‖qn‖C[1−ε,1] = 0. It follows from the bounded Bernstein
inequality that for each δ ∈ (0, 1) there exists a constant cδ such that ‖q′n‖[0,1−δ] ≤ cδ for all
n. We may use the Arzelà-Ascoli theorem in the interval [0, 1 − ε/2] to obtain from (qn) a
subsequence that converges uniformly to a certain f ∈ C[0, 1 − ε/2]. Using the same arguments
as in the proof of Theorem 20, we get more information: f must be analytic on (0, 1 − ε/2). But
limn→∞ ‖qn‖C[1−ε,1] = 0 implies that f |(1−ε,1−ε/2) = 0, which clearly implies that f is the null
function (just apply the well known Identity Principle of complex analysis). The fact that f = 0
and ‖qn‖C[0,1] = 1 for all n are simultaneously impossible. 2

Step 2. Comparison results

The main goal of this step is to introduce a few results that will be useful for the proof, the
next step, of Bernstein’s and Chebyshev’s inequalities for general sequences of exponents (λk)

∞
k=0.

These results are expressed in terms of the Chebyshev polynomials associated with the Müntz
system (xλk)∞k=0.

Let us proceed by stages. We first introduce some notation. We say that (f0, . . . , fn) is a
Descartes system on [a, b] if

det




fi0(x0) fi1(x0) · · · fim(x0)

...
...

. . .
...

fi0(xm) fi1(xm) · · · fim(xm)



 > 0
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holds whenever 0 ≤ i0 < i1 < · · · < im ≤ n and a ≤ x0 < x1 < · · · < xm ≤ b. We say
that (f0, . . . , fn) is a Markov system in C[a, b] if for all f ∈ C[a, b] and all k ≤ n there exists a
unique best approximation to f by elements of Mk := span {fi}k

i=0. The nth Chebyshev polynomial
associated with the Markov system (fi)

n
i=0 is given by Tn := (fn − pn−1)/‖fn − pn−1‖C[a,b], where

pn−1 is the unique best approximation to fn by elements of Mn−1. Sometimes, by a misuse of
notation, we also say that the Chebyshev polynomial Tn is associated with Mn.

Now, one of the main properties of Müntz spaces is that

(xλ0 , xλ1 , . . . , xλn),

where 0 = λ0 < λ1 < · · · < λn, is a Descartes system on each interval [a, b] ⊂ [0,∞) (see
Proposition 16). The following technical lemma, whose proof is quite involved, is a nice refinement
of the classical Descartes rule of signs and was proved by Pinkus and (independently) by P. W.
Smith. It is the key for the proof of the comparison results we will need (see [5, p. 103], or [32] for
a proof).

Lemma 22 (Pinkus-Smith) Let us assume that (f0, . . . , fn) is a Descartes system on [a, b], and
let

p = fk +
r∑

i=1

aifki
; q = fk +

r∑

i=1

bifti ; with ai, bi ∈ R

be chosen such that 0 ≤ ti ≤ ki < k for all i ∈ {1, . . . , m} and k < ti ≤ ki ≤ n for all i ∈
{m + 1, . . . , r}, with strict inequality for at least one of the indices i ∈ {1, . . . , r}.
If p(xi) = q(xi) = 0 for the distinct points xi ∈ [a, b], i = 1, . . . , r, then

|p(x)| ≤ |q(x)|, x ∈ [a, b].

Furthermore, the inequality is strict for all x ∈ [a, b] \ {xi}r
i=1.

We use this result with the Müntz spaces Mn(Λ) = Π((λk)
n
k=0) and Mn(Γ) = Π((γk)

n
k=0), where

we assume that 0 = λ0 < λ1 < · · · < λn, 0 = γ0 < γ1 < · · · < γn, and λk ≥ γk for all k. With this
idea in mind, we take s ∈ (0, 1) and denote by Tn,λ and Tn,γ the Chebyshev polynomials associated
with Mn(Λ) and Mn(Γ), respectively, on the interval [1 − s, 1].

Lemma 23 With the hypotheses and notation just introduced, the following claims hold:

(a) Let y ∈ [0, 1 − s). Then the maximum values of the expressions

max
06=p∈Mn(Λ)

|p(y)|
‖p‖[1−s,1]

and max
06=p∈Mn(Λ)

|p′(y)|
‖p‖[1−s,1]

are both attained by p = Tn,λ. (In the second case we assume that λ1 ≥ 1 whenever y = 0.)

(b) |Tn,λ(0)| ≤ |Tn,γ(0)|. Furthermore, if λ1 = γ1 = 1 then also |T ′
n,λ(0)| ≤ |T ′

n,γ(0)|.
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Proof. We propose the proof of (a) as an exercise. Let us prove (b). Let p ∈ Mn(Γ) be
such that it interpolates Tn,λ at its zeros (which are all of them simple zeros), and in (0, 1). It
follows from the Pinkus-Smith Lemma that |p(x)| ≤ |Tn,λ(x)| for all x ∈ [0, 1]. In particular,
‖p‖[1−s,1] ≤ ‖Tn,λ‖[1−s,1] = 1 and, taking into account part (a) of this lemma, we get

|Tn,λ(0)| = |p(0)| ≤ |p(0)|
‖p‖[1−s,1]

≤ |Tn,γ(0)|
‖Tn,γ‖[1−s,1]

= |Tn,γ(0)|,

which proves the first part of (b). To prove the second claim, the argument is similar. We take
0 6= p ∈ Mn(Γ) such that it interpolates Tn,λ at its zeros in [1 − s, 1] (there are n zeros), and
we normalize by imposing the additional condition p′(0) = T ′

n,λ(0). (Note that p′(0) 6= 0, since
otherwise we would have that p ∈ span {xγk : k = 0, 2, 3, . . . , n} has n zeros in [1 − s, 1], which is
impossible since (xγk : k = 0, 2, 3, . . . , n) is a Descartes system.) Then |p(x)| ≤ |Tn,λ(x)| for all
x ∈ [0, 1]. Hence ‖p‖[1−s,1] ≤ ‖Tn,λ‖[1−s,1] = 1 and it follows again from part (a) of this lemma that

|T ′
n,λ(0)| = |p′(0)| ≤ |p′(0)|

‖p‖[1−s,1]
≤

|T ′
n,γ(0)|

‖Tn,γ‖[1−s,1]
= |T ′

n,γ(0)|,

which proves the second part of (b). 2

Lemma 24 |Tn,λ(x)| and |Tn,γ(x)| are monotone decreasing functions on the interval [0, 1 − s].
Furthermore, if λ1 = γ1 = 1, then also |T ′

n,λ(x)| and |T ′
n,γ(x)| are monotone decreasing on the

interval [0, 1 − s].

Proof. Let us assume that |Tn,λ(x)| is not monotone decreasing on [0, 1 − s]. Then T ′
n,λ(x) ∈

span {xλk−1 : k ∈ {1, 2, 3, . . . , n}} has at least n zeros in (0, 1), which is impossible. The second
claim can be proved by similar arguments. 2

Theorem 25 (Comparison Theorem) The inequality

max
06=p∈Mn(Λ)

‖p‖[0,1]

‖p‖[1−s,1]
≤ max

06=p∈Mn(Γ)

‖p‖[0,1]

‖p‖[1−s,1]

holds. Furthermore, if λ1 = γ1 = 1 then

max
06=p∈Mn(Λ)

‖p′‖[0,1−s]

‖p‖[1−s,1]
≤ max

06=p∈Mn(Γ)

‖p′‖[0,1−s]

‖p‖[1−s,1]
.

Proof. Let y ∈ [0, 1 − s). Then

max
06=p∈Mn(Λ)

|p(y)|
‖p‖[1−s,1]

=
|Tn,λ(y)|

‖Tn,λ‖[1−s,1]
= |Tn,λ(y)| ≤ |Tn,γ(0)|

=
|Tn,γ(0)|

‖Tn,λ‖[1−s,1]
≤ max

06=p∈Mn(Γ)

‖p‖[0,1−s]

‖p‖[1−s,1]

≤ max
06=p∈Mn(Γ)

‖p‖[0,1]

‖p‖[1−s,1]
.
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On the other hand, if y ∈ [1 − s, 1], then

max
06=p∈Mn(Λ)

|p(y)|
‖p‖[1−s,1]

≤ 1 ≤ max
06=p∈Mn(Γ)

‖p‖[0,1]

‖p‖[1−s,1]
.

Hence

max
06=p∈Mn(Λ)

‖p‖[0,1]

‖p‖[1−s,1]
≤ max

06=p∈Mn(Γ)

‖p‖[0,1]

‖p‖[1−s,1]
,

which is what we wanted to prove. By analogous arguments, we have that

max
06=p∈Mn(Λ)

|p′(y)|
‖p‖[1−s,1]

=
|T ′

n,λ(y)|
‖Tn,λ‖[1−s,1]

= |T ′
n,λ(y)| ≤ |T ′

n,λ(0)| ≤ |T ′
n,γ(0)|

=
|T ′

n,γ(0)|
‖Tn,γ‖[1−s,1]

≤ max
06=p∈Mn(Γ)

‖p′‖[0,1−s]

‖p‖[1−s,1]
,

which is the second claim of the theorem. 2

Remark 26 It is possible (with similar arguments) to extend Theorem 25 to include Müntz
polynomials with arbitrary real exponents (i.e., we can also consider negative powers of x).

Step 3. The General Bernstein and Chebyshev Inequalities

We now complete the proof of Theorem 15.
We know that limk→∞ λk/k = ∞ , since

∑∞
k=1 1/λk converges and (λk) is monotone. Let m ∈ N

be such that λk > 2k for all k ≥ m, and let us take Γ := (γk)
∞
k=0 defined by:

γk :=






min{λk, k}, if k ∈ {0, 1, . . . , m},
1
2λk + k, if k > m.

Then
∑∞

k=1 1/γk < ∞, 0 ≤ γ0 < γ1 < · · · , and

γk − γk−1 =






min{λk, k} − min{λk−1, k − 1}, if k ∈ {0, 1, . . . , m}
1
2λm+1 + m + 1 − min{λm, m}, if i = m + 1

1
2(λk − λk−1) + 1, if k > m + 1

satisfies γk − γk−1 ≥ 1 for all k ∈ N. Furthermore γk ≤ λk for all k. This implies (using Theorems
19 and 25, Corollary 21 and Remark 26) that the inequalities

max
06=p∈Mn(Λ)

‖p‖[0,1]

‖p‖[1−s,1]
≤ max

06=p∈Mn(Γ)

‖p‖[0,1]

‖p‖[1−s,1]
= cε < ∞

and

max
06=p∈Mn(Λ)

‖p′‖[0,1−ε]

‖p‖[1−s,1]
≤ max

06=p∈Mn(Γ)

‖p′‖[0,1−ε]

‖p‖[1−s,1]
= c∗ε < ∞,

both hold. 2
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Corollary 27 Let (pn)∞n=0 be a sequence of polynomials in Π(Λ) uniformly bounded in [0, 1], and
let us assume that 0 ≤ λ0 < λ1 < · · · and

∑∞
k=1 1/λk < ∞. Then for each a ∈ (0, 1), the sequence

(pn)∞n=0 is a relatively compact subset of C[0, a].

Proof. Set ε = 1− a. Then ‖p′n‖[0,a] ≤ c∗ε‖pn‖[a,1] ≤ c∗εM for all n, where M = sup ‖pn‖[0,1] < ∞.
This implies that {pn}∞n=0 is equicontinuous in C[0, a]. The corollary follows from the well known
Arzelà-Ascoli Theorem. 2

3.3 Description of the closure of nondense Müntz spaces: the C[0,1] case

If Π(Λ) is not a dense subspace of C[0, 1], it is natural to ask what is its topological closure. Since
the density of Π(Λ) depends on the convergence character of a certain series associated with the
sequence of exponents Λ, it is clear that given two nondense Müntz spaces Π(Λ1), Π(Λ2), their sum
Π(Λ1) + Π(Λ2) = Π(Λ1 ∪Λ2) is also nondense in C[0, 1]. This means that the closures of nondense
Müntz spaces Π(Λ) are, in a certain sense, of small dimension, when viewed as subspaces of C[0, 1].

This observation was first made in a famous paper by Clarkson and Erdős [9] published in 1943
in the Duke Math. Journal. They proved, for the case of integer exponents Λ = (nk)

∞
k=0 ⊂ N,

that
∑∞

k=0 1/nk < ∞ implies that the elements in the closure of Π(Λ) are analytic functions
defined inside the unit circle and that their Maclaurin series involves only the powers xnk and may
diverge at the point z = 1. Moreover, if the sequence of exponents is lacunary (which means that
infk≥0 nk+1/nk = c > 1), this series converges for z = 1. Finally, they used this result to prove,
in the particular case where the exponents are nonnegative integers and for intervals away from
the origin (i.e., intervals [a, b] with 0 6∈ [a, b]), the natural extension of Müntz’ theorem (i.e., they
proved that

∑∞
k=0 1/nk = ∞ is the necessary and sufficient condition for density of the Müntz space

Π((nk)
∞
k=0) independently of the appearance or not of the zero power in the exponents sequence

(nk)
∞
k=0).
This same question was tackled by L. Schwartz [30] for certain strictly increasing sequences of

exponents (he assumed infk∈Z(λk − λk−1) > 0 and proved Theorem 20 of the previous subsection)
and by Borwein and Erdélyi [5] and Erdélyi [12] for general sequences. In all cases the conclusion
is that the elements in the closure of a nondense Müntz space are analytic functions. The most
general result is the following one, proved by Erdélyi [12] in 2003.

Theorem 28 (Full Clarkson-Erdős-Schwartz Theorem) Let Λ = (λk)
∞
k=1 ⊂ (0,∞) be a se-

quence of positive real numbers such that M := Π(Λ∪{1}) is a nondense Müntz subspace of C[0, 1].
Then every function that belongs to the closure of M in the uniform norm can be represented as
an analytic function defined on the set {z : z ∈ C \ (−∞, 0], |z| < 1}.

3.4 Full Müntz theorem away from the origin

It is remarkable that the extension of the Müntz Theorem to intervals away from the origin is a
nontrivial task. Of course, a linear change of variable of the form x = bt allows to extend the Müntz
Theorem to the interval [0, b]. If Π(Λ) is dense in C[0, b], then given f ∈ C[a, b] with 0 < a < b one
can extend f with continuity to a function f ∈ C[0, b] that vanishes at the origin. This function
can of course be approximated uniformly on [0, b] by elements of Π(Λ \ {0}), so that f also belongs
to the closure of Π(Λ \ {0}) in C[a, b]. This means that if the Müntz condition is satisfied, then the
Müntz polynomials are dense in C[a, b].
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The difficult part is to prove that the Müntz condition is also necessary for intervals away
from the origin and, as we have already noted, this was proved for the first time and for the
particular case of nonnegative integer exponents by Clarkson and Erdős. Their work was continued
by L. Schwartz who proved a full Müntz theorem for intervals away from the origin and general
sequences of exponents. In particular, he noticed that if we assume 0 < a < b, then the monomials
xλ are continuous functions for all λ ∈ R so that it makes sense to ask for necessary and sufficient
conditions for arbitrary sequences of real numbers Λ = (λk)

∞
k=0 ⊂ R in order to make Π(Λ) a dense

subspace of C[a, b], and proved the following nice result.

Theorem 29 (Full Müntz Theorem away from the Origin) Let Λ = (λk)
∞
k=0 ⊂ R be a se-

quence of distinct real numbers, and let 0 < a < b. Then Π(Λ) is dense in C[a, b] if and only if∑
λk 6=0 1/ |λk| = ∞.

We devote this subsection to providing a proof of this result. Clearly, there is no loss of generality
if we assume that 0 < a < b = 1. We start by assuming that the exponents can be rearranged in
such a way that they form a biinfinite sequence (λk)

∞
k=−∞ satisfying the following restrictions:

• λk > 0 for all k > 0,

• λk < 0 for all k < 0,

• infk∈Z(λk − λk−1) > 0.

We define, for each polynomial p(z) =
∑

|k|≤n akz
λk , the associated polynomials

p+(z) :=
∑

0≤k≤n

akz
λk and p−(z) :=

∑

−n≤k<0

akz
λk .

Under these restrictions, it is possible to prove the following relations between the uniform
norms of the polynomials p+, p− and p:

Lemma 30 Let Λ = (λk)
∞
k=−∞ satisfy the conditions we have just described and let us also assume

that
∑

k∈Z\{0} 1/|λk| < ∞. Then there exists a constant c = c(Λ) such that

‖p+‖C[a,b] ≤ c‖p‖C[a,b] and ‖p−‖C[a,b] ≤ c‖p‖C[a,b]

hold for all p ∈ Π(Λ).

Proof. We assume that 0 < a < b = 1. It is sufficient to prove the first inequality of the lemma
since the other one is obtained from the first via the change of variable y = x−1. If we see the
map p 7→ p− as a linear projector L : Π(Λ) → Π((λk)

−1
k=−∞), the inequality we want to prove can

be reformulated as: L is bounded whenever we use the uniform norm in the interval [a, 1] for both
spaces Π(Λ) and Π((λk)

−1
k=−∞).

If L is unbounded then there exists a sequence (pn)∞n=0 ⊂ Π(Λ) such that ‖p−n ‖[a,1] = 1 for all n ≥
0 and limn→∞ ‖pn‖[a,1] = 0. This clearly implies that {p+

n }∞n=0 is a bounded subset of C[a, 1] (just
take into consideration that pn = p+

n +p−n for all n), so that it is also a bounded subset of C[0, 1], since
‖p+

n ‖[0,1] ≤ ca‖p+
n ‖[a,1] holds for all n. We can use Theorem 20 and Corollary 21 to prove that there

exists a sequence of natural numbers (ni)
∞
i=0 such that (p+

ni
)∞i=0 converges uniformly on compact
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subsets of [0, 1) to a certain function f+ =
∑∞

k=0 akz
λk analytic on D1 := (C\(−∞, 0])∩D(0, 1), and

the sequence (p−ni
)∞i=0 converges uniformly on compact subsets of (a,∞) to a certain function f− =∑−1

k=−∞ akz
λk which is analytic on Ea := (C\ (−∞, 0])∩ (C\D(0, a)). The last claim can be proved

by just making the change of variable t = a/x, since then r+
n (t) = p−n (a/x) ∈ Π((−λk)

−1
k=−∞) is a

Cauchy sequence in C[a, 1], so that we can assume that (r+
ni

)∞i=0 converges uniformly on compact

subsets of [0, 1) to a certain h+ =
∑−1

k=−∞ hkz
−λk which is analytic in D1 := (C\ (−∞, 0])∩D(0, 1),

for an adequate choice of (nk)
∞
k=0. We then go back with the change of variable, obtaining that

f− = h+(a/z) =
∑−1

k=−∞ akz
λk (where ak = hka

−λk for all k) is analytic in Ea and (p−nk
)∞k=0

converges uniformly to f− on compact subsets of (a,∞). Now, limn→∞ ‖pnk
‖[a,1] = 0 and pnk

=
p+

nk
+ p−nk

for all i, so that f+ + f− = 0 in (a, 1). This implies that

g(z) :=

{
f+(ez), Re(z) < 0,

−f−(ez), Re(z) > log a,

can be extended as a bounded entire function [5, page 181]. It follows from Liouville’s theorem
that g = const, so that g = 0 since limt→∞ f−(t) = 0. Hence f+ = 0 in [0, 1) and f− = 0 in (a,∞),
which implies limk→∞ ‖p−nk

‖[a,1] = 0, a contradiction. 2

We now characterize the closure of Π(Λ) whenever Λ = (λk)
∞
k=−∞ satisfies the additional con-

dition
∑

λk 6=0 1/ |λk| < ∞.

Theorem 31 Assume that Λ = (λk)
∞
k=−∞ satisfies λk > 0 for all k > 0, λk < 0 for all k < 0,

infk∈Z(λk−λk−1) > 0, and
∑

λk 6=0 1/ |λk| < ∞. Then the elements of the closure of Π(Λ) in C[a, b]
can be extended as analytic functions to the domain

{z : z ∈ C \ (−∞, 0], a < |z| < b}.

Proof. Let us assume, without loss of generality, that 0 < a < b = 1. We have already proved in
Lemma 30, under the hypotheses we have imposed on Λ, that if f belongs to the closure of Π(Λ) in
C[a, b] then f = f+ + f−, where f+ is analytic in D1 and f− is analytic in Ea. Hence f is analytic
in

D1 ∩ Ea = {z : z ∈ C \ (−∞, 0], a < |z| < 1},
and the proof is complete. 2

Proof of the Full Müntz theorem away from the Origin. Let us decompose the proof into
the following four cases:

Case 1. {λk}∞k=0 has some accumulation point λ 6= 0.
We can assume without loss of generality that λ > 0. (Otherwise, consider the map S : C[a, b] →

C[a, b] given by S(f)(x) = x−λ+1f(x) and take into account that S is a linear isomorphism of
Banach spaces, so that it transforms dense subspaces into dense subspaces and vice versa.) Hence
this case is an easy corollary of the Full Müntz Theorem for the interval [0, b].

Case 2. 0 is an accumulation point of {λk}∞k=0.
This case is reduced to Case 1 as follows: first we consider the sequence (λk + 1)∞k=0, which is

in Case 1, so that Π((λk + 1)∞k=0) is dense in C[a, b]. Now we consider the isomorphism of Banach
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spaces given by T : C[a, b] → C[a, b], (Tf)(x) := x−1f(x) and conclude that Π((λk)
∞
k=0) is dense in

C[a, b], since T (Π((λk + 1)∞k=0)) = Π((λk)
∞
k=0).

Case 3. {λk}∞k=0 has no accumulation points and
∑

λk>0
1
λk

= ∞ or
∑

λk<0
1

|λk|
= ∞.

In this case, we may assume, without loss of generality, that 0 /∈ {λk}∞k=0 since otherwise we
can take ε > 0 such that 0 /∈ {λk + ε}∞k=0 and (by using the same kind of arguments as in Case 2)
we have that the density of Π((λk)

∞
k=0) and the density of Π((λk + ε)∞k=0) are equivalent claims.

If
∑

λk>0
1
λk

= ∞, then we can use the Full Müntz Theorem on C[0, b] to conclude the proof.

If
∑

λk<0
1

|λk|
= ∞ but

∑
λk>0

1
λk

< ∞, then we use the change of variable t = 1/x, and that

S : C[a, b] → C[1/b, 1/a], S(f)(x) := f(1/x) is a linear isometry (‖S(f)‖C[1/b,1/a] = ‖f‖C[a,b] is
clear), to prove that Π((λk)

∞
k=0) is dense in C[a, b] if and only if S(Π((λk)

∞
k=0)) = Π((−λk)

∞
k=0) is

dense in C[1/b, 1/a], which puts us once more in the case
∑

λk>0
1
λk

= ∞.
Case 4.

∑
λk 6=0 1/ |λk| < ∞.

We rearrange the sequence (λk)
∞
k=0 as (λ∗

k)
∞
k=−∞ = (λk)

∞
k=0, with λ∗

k < λ∗
k+1 for all k ∈ Z,

λ∗
k < 0 if k < 0 and λ∗

k > 0 if k > 0. Then there exists a sequence Γ := (γk)
∞
k=−∞ such that

infk∈Z(γk − γk−1) > 0,
∑

k∈Z 1/|γk| < ∞, and γk < γk+1, |γk| < |λ∗
k| for all k ∈ Z, γk < 0 if k < 0

and γk > 0 if k ≥ 0. Now, it follows from Theorem 31 that there is an m such that xm /∈ Π(Γ) and
from the comparison theorem for real exponents (see also Remark 26) that xm /∈ Π(Λ).

This completes the proof of the Full Müntz Theorem away from the origin. 2

3.5 Full Müntz theorem for measurable sets

Borwein and Erdélyi have recently published several papers in which they prove a Full Müntz
Theorem for the spaces C(A) and

Lq
w(A) = {f :

(∫

A
|f(x)|pw(x) dx

)1/p

< ∞},

for sets A with positive Lebesgue measure and weight functions w (i.e., w > 0 is measurable in the
sense of Lebesgue). To be more precise, we state here one of their main results (see [6],[7], and [8]).

Theorem 32 (Borwein-Erdélyi) If Λ = (λk)
∞
k=−∞ ⊂ R is a sequence of distinct real numbers

with λk < 0 for all k < 0, λk ≥ 0 for all k ≥ 0 such that
∑

λk 6=0 1/|λk| < ∞ and A ⊂ (0,∞)
is a set with positive Lebesgue measure such that inf A > 0, then Π(Λ) is not dense in Lq

w(A)
for all weight functions w : A → [0,∞) with

∫
A w > 0 and all q ∈ (0,∞). Moreover, every

function that belongs to the closure of Π(Λ) in Lq
w(A) can be analytically extended to the domain

{z : z ∈ C \ (−∞, 0], aw < |z| < bw}, where

aw := inf{y ∈ [0,∞) :

∫

A∩(0,y)
w > 0},

bw := sup{y ∈ [0,∞) :

∫

A∩(y,∞)
w > 0}.

Finally, if
inf{λk − λk−1 : k ∈ Z} > 0
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then all functions that belong to the closure of Π(Λ) in Lq
w(A) admit a representation of the form

f(x) =
∞∑

k=−∞

akx
λk , x ∈ A ∩ (aw, bw).

The key idea in proving Theorem 32 is to use Egorov’s theorem and the following important
polynomial inequality (see [7]):

Theorem 33 (Remez Inequality for Müntz Polynomials) Let Λ = (λk)
∞
k=−∞ ⊂ R be an

arbitrary sequence of real numbers. If
∑

λk 6=0 1/ |λk| < ∞, then for all sets A ⊂ [0,∞) with
Lebesgue measure m(A) > 0 and all intervals [α, β] ⊂ (ess inf(A), ess sup(A)), there exists a con-
stant c = c(Λ, A, α, β) such that

‖p‖C[α,β] ≤ c ‖p‖C(A)

for all p ∈ Π(Λ).

In fact, it follows from this theorem that we can easily prove the following result, which is
a main step in the proof of the corresponding Full Müntz Theorem for sets of positive Lebesgue
measure:

Corollary 34 Let Λ = (λk)
∞
k=−∞ ⊂ R be an arbitrary sequence of real numbers such that∑

λk 6=0 1/ |λk| < ∞. Then, for any set A ⊂ [0,∞) with positive Lebesgue measure m(A) > 0,
we have that if the sequence of polynomials (pn)∞n=0 ⊂ Π(Λ) converges pointwise to f ∈ C(A), then
for all [α, β] ⊂ (a, b) := (ess inf(A), ess sup(A)), (pn)∞n=0 is a Cauchy sequence in C[α, β].

Proof. First of all, we would like to recall that Egorov’s theorem guarantees that if (fn) is a
sequence of measurable functions on A (where 0 < m(A) < ∞) that converges almost everywhere
to a certain function f (that is finite almost everywhere on A), then for all ε > 0 there exists a
measurable set B ⊂ A such that m(A \ B) < ε and (fn) converges uniformly on B to f .

Let (pn)∞n=0 and f satisfy the hypotheses of this corollary and let [α, β] ⊂ (a, b). It follows from
the definition of (a, b) and from Egorov’s theorem that there are sets of positive Lebesgue measure

B1 ⊂ A ∩ (0, α) and B2 ⊂ A ∩ (β,∞)

such that (pn)∞n=0 converges uniformly to f on B = B1 ∪ B2.
Now, the application of the Remez inequality for Müntz polynomials on [α, β] ⊂ (ρ, σ) (where

ρ := ess inf(B) and σ := ess sup(B)),

‖pi − pj‖[α,β] ≤ C(B, [α, β], Λ) ‖pi − pj‖B ,

proves that (pn)∞n=0 is a Cauchy sequence in C[α, β]. 2
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3.6 Full Müntz theorem for countable compact sets

It is quite surprising that for a long period of time the Müntz Theorem has been studied in many
cases but not for the space C(K) with K a countable compact set. This is surprising because, in
principle, this case should be the easiest one. This question has been addressed quite recently by
the author [2], and it transpires that in many cases the Müntz condition can be weakened in a
sensible way when dealing with countable compact sets. In particular, the following result holds.

Theorem 35 (Almira, 2006) Let K ⊂ [0,∞) be an infinite countable compact set and let Λ =
(λk)

∞
k=0 ⊂ R be a fixed sequence of exponents, satisfying λ0 = 0. Then the following holds:

i) If Λ ⊂ [0,∞) is an infinite bounded sequence and K \ {0} is compact then Π(Λ) is dense in
C(K).

ii) If Λ ⊂ [0,∞) and K does not contain strictly increasing infinite sequences then Π(Λ) is dense
in C(K) if and only if #Λ = ∞. Moreover, if Λ ⊂ (−∞, 0] and K does not contain strictly
decreasing infinite sequences then Π(Λ) is dense in C(K) if and only if #Λ = ∞.

Proof. The main idea in the proof is to use the Riesz Representation Theorem. Clearly, the
unique measures that exist for countable compact sets are atomic. Thus, if K = {0} ∪ {ti}∞i=1 then
L ∈ C∗(K) if and only if L(f) = α0f(0) +

∑∞
i=1 αif(ti) for a certain sequence (αi)

∞
i=0 such that∑∞

i=0 |αi| < ∞. Thus, as a consequence of the Hahn-Banach Theorem, span {xλk}∞k=0 is dense in
C(K) if and only if the following holds: if

∑∞
i=0 αi = 0,

∞∑

i=1

αit
λk

i = 0, k = 1, 2, . . . , and
∞∑

i=0

|αi| < ∞,

then αi = 0 for all i ≥ 0.
Thus, let us assume that

∞∑

i=0

αi = 0,
∞∑

i=1

αit
λk

i = 0, k = 1, 2, . . . , and
∞∑

i=0

|αi| < ∞.

Then we set Γ := {ti : i ≥ 1, αi 6= 0} and we take γ := sup Γ. Clearly, γ ∈ K since K is compact.
If Γ = ∅ then L(f) = α0f(0) and L(1) = 0 implies α0 = 0, which ends the proof. If Γ 6= ∅ then
γ > 0 and there exists ts ∈ K such that γ = ts. Thus, we take ta ∈ K such that ta < ts and we set
zλ := (ta/ts)

λ. Clearly, the equation z
pj

λ = (tj/ts)
λ is uniquely solved by pj = (ln(tj/ts))

/
ln(ta/ts),

which is a positive real number for all j 6= s . Hence L(xλk) = 0, k = 0, 1, 2, . . ., can be written in
the following equivalent way:

0 =
∞∑

i=0

αi and 0 = (ts)
λk

∑

ti∈Γ

αi

(
ti
ts

)λk

, k = 1, 2, . . . .

Hence ϕ(zλk
) = 0 for all k ≥ 1, where

ϕ(z) :=
∑

ti∈Γ

αiz
pi .
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We decompose the proof into several steps, according to the boundedness properties of the
sequence of exponents Λ.
Step 1. Λ ⊂ [0,∞) and limk→∞ λk = ∞ and K does not contain strictly increasing infinite
sequences.

Under these conditions, it is clear that ts ∈ Γ and limk→∞ zλk
= 0. Thus ϕ(0) = limk→∞ ϕ(zλk

)
= 0 since ϕ(z) is continuous at the origin. On the other hand, ts ∈ Γ implies that αs 6= 0. Hence
we can use the fact that ϕ(z) =

∑
ti∈Γ\{ts}

αiz
pi +αs (since ps = (ln 1)/ ln(ta/ts) = 0) to claim that

ϕ(0) = αs 6= 0, a contradiction.
Step 2. Λ = (λk)

∞
k=0 ⊂ [0,∞) is bounded, 0 6= limk→∞ λk.

Clearly, we can assume without loss of generality that Λ is itself a convergent sequence. We
note that ϕ(z) =

∑
ti∈Γ αiz

pi is analytic in the open set Ω = {z : |z| < 1, |1 − z| < 1}. If
limk→∞ λk = λ∗ 6= 0 then limk→∞ zλk

= zλ∗ ∈ (0, 1) ⊂ Ω. Hence ϕ vanishes on a set with
accumulation points inside Ω, so that ϕ(z) vanishes identically on Ω and αi = 0 for all i > 0. If
0 6∈ K the proof is complete. On the other hand, if 0 ∈ K then 0 = L(1) =

∑
ti∈Γ αi + α0 = α0

and the proof is also complete.
Step 3. limk→∞ λk = 0 and K \ {0} is compact.

In this case, we can use the following trick: the equations

0 =
∑

ti∈Γ

αit
λk

i , k = 1, . . .

can be rewritten as
0 =

∑

ti∈Γ

βit
λ∗

k

i , k = 1, . . . ,

where βi := αi/ti for all i and λ∗
k := λk + 1 for all k (taking into account that

∑
ti∈Γ |βi| < ∞ since

K \ {0} is compact). Thus limk→∞ λ∗
k = 1 and we conclude that αj/tj = 0 for all j. The proof

follows.
Step 4. Λ ⊂ R and K \ {0} is compact.

Clearly, if Λ is an infinite set then it contains either infinitely many positive elements or infinitely
many negative elements. Thus, we may assume that either Λ ⊂ [0,∞) or Λ ⊂ (−∞, 0]. The first
case has been already studied in Steps 1 and 2. Thus, let us assume that Λ ⊂ (−∞, 0] and
L(f) = α0f(0) +

∑∞
j=1 αjf(tj) ∈ C∗(K). Then the equations L(xλk) = 0, k = 0, 1, . . ., can be

rewritten as
∞∑

i=0

αi = 0 and
∞∑

i=1

αi(1/ti)
λk = 0, k = 1, 2, . . . .

This means that the functional given by

S(f) := α0f(0) +
∞∑

j=1

αjf(1/tj),

which belongs to C∗(E), where E := {0}∪{1/tj}∞j=1, which is a countable compact subset of [0,∞)

since K \ {0} is compact, satisfies S(x−λk) = 0 for all k ≥ 0. Moreover, if K does not contain
decreasing sequences then E does not contain increasing sequences. Now, we use the results proved
in Steps 1, 2 and 3 to conclude that αi = 0 for all i. 2
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Remark 36 There is another proof of step 2. Taking into consideration that tλk

i = exp(λk log ti)
for all i, we have that the relations

∑

ti∈Γ

αit
λk

i = 0, k = 1, 2, . . .

are equivalent to the relations
Ψ(λk) = 0, k = 1, 2, . . .

where
Ψ(z) :=

∑

ti∈Γ

αi exp((log ti)z)

is an entire function of exponential type. This means, in particular, that Λ cannot be an infinite
bounded sequence (otherwise, Ψ should vanish everywhere).

Remark 37 Clearly, if Λ is bounded then |λk|−1 ≥ 1/ sup Λ for all λk 6= 0. Hence
∑∞

k=1 |λk|−1 =
∞ and case (i) of Theorem 35 follows from the Müntz Theorem away from the origin (Theorem
29) whenever 0 6∈ K. This proof uses a very difficult result in order to prove a simpler one. This is
the reason we gave our own elementary proof of this fact.

Remark 38 There are many countable compact sets with the property that they do not have
(strictly) increasing sequences. An interesting example is given by:

K = {0} ∪ {1/n}∞n=1 ∪ {1/n + 1/m}∞n,m=1 .

Obviously, this compact set has infinitely many accumulation points and it has no increasing
sequences! These cases are covered by Theorem 35 above.

Open question. We have already shown that in order to give a Full Müntz Theorem for the
general case (i.e., for arbitrary countable compact sets K ⊂ [0,∞)), it is a good idea to study the
zero sets of the Müntz type series

ϕ(z) =
∞∑

i=1

αjz
pj ,

where (pj)
∞
j=1 decreases to zero,

∑∞
j=1 |αj | < ∞ and, for the case in which K \ {0} = {ti}∞i=1 is

compact, the zero sets of the entire functions of exponential type given by

Ψ(z) =
∑

ti∈Γ

αi exp((log ti)z) where
∞∑

j=1

|αj | < ∞.

Is it possible to find a series ϕ(z) with a sequence of infinitely many zeros (zk)
∞
k=0 that converges

to zero? What about a function Ψ(z) with infinitely many zeros? These questions seem to be still
open and not easy to solve.

Acknowledgement. The author is infinitely grateful to the referee of a previous version of this
paper. With his (her) help the manuscript improved not only its readability but also the details in
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[18] V. I. Gurariy, W. Lusky, Geometry of Müntz Spaces and Related Questions, Lecture Notes
in Mathematics Vol. 1870, Springer, 2005.

[19] G. H. Hardy, J. E. Littlewood, A further note on the converse of Abel’s theorem, Proc.
London Math. Soc. 25 (1926) 219-236.



J. M. Almira 194

[20] I. I. Hirschman Jr., D. V. Widder, Generalized Bernstein Polynomials, Duke Math. J. 16
(1949) 433–438.

[21] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962.

[22] A. N. Kolmogorov, Une généralisation de l’inégalité de M. J. Hadamard entre les bornes
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