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DIFFERENTIAL EQUATIONS WITH INDEFINITE WEIGHT:

BOUNDARY VALUE PROBLEMS AND QUALITATIVE

PROPERTIES OF THE SOLUTIONS

Abstract. We describe the qualitative properties of the solutions of the
second order scalar equationẍ + q(t)g(x) = 0, whereq is a changing
sign function, and consider the problem of existence and multiplicity of
solutions which satisfy various different boundary conditions. In partic-
ular we outline some difficulties which arise in the use of theshooting
approach.

1. Introduction

We discuss the second-order scalar nonlinear ordinary differential equation:

(1) ẍ + q(t)g(x) = 0,

where:

• g : R → R is continuous (maybe locally Lipschitz continuous onR or onR\{0})
and such thatg(s) · s > 0 for everys 6= 0

• the “weight” q : R → R is continuous (sometimes more stronger regularity as-
sumptions will be needed and, in some applications, like thetwo point boundary
value problem, it will be enough thatq is defined in an intervalI ).

EXAMPLE 1. A simple case of (1) is the nonlinear Hill’s equation:

(2) ẍ + q(t)|x|γ−1x = 0, γ > 0

(recall that the classical Hill’s equation is the one withγ = 1).

The expression “indefinite weight” means that the functionq changes sign.

Waltman [86] in a paper of 1965 studied the oscillating solutions of

ẍ + q(t)x2n+1 = 0 n ∈ N,
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when the weightq is allowed to change sign. Many authors studied the oscillatory
properties of equations like (1): Bhatia [16], Bobisud [17], Butler [19, 20], Kiguradze
[52], Kwong and Wong [54], Onose [68], Wong [94, 95, 96].

The existence of periodic solutions for a large class of equations (including (2))
was considered by Butler: in the superlinear case (γ > 1) he found infinitely many
“large solutions” [22] while in the sublinear one (γ < 1) he found infinitely many
“small solutions” [23]. In both cases there are periodic solutions with an arbitrarily
large number of zeros and Butler’s results, which are valid with respect to a quite wide
class of nonlinearities, have been improved in the superlinear case by Papini in [69, 70]
and in the sublinear case by Bandle Pozio and Tesei [12], for the existence of small
solutions, and by Liu and Zanolin [59] for what concerns large solutions.

Recently, many authors considered generalizations of (1) both in the direction of
Hamiltonian systems (with respect to the problem of finding periodic or homoclinic so-
lutions) and elliptic partial differential equations withDirichlet boundary conditions. In
particular Hamiltonian systems with changing sign weightswere studied by Lassoued
[55, 56], Avila and Felmer [10], Antonacci and Magrone [9], Ben Naoum, Troestler
and Willem [13], Caldiroli and Montecchiari [25], Fei [37],Ding and Girardi [33], Gi-
rardi and Matzeu [41], Le and Schmitt [57], Liu [58], Schmittand Wang [76], Felmer
and Silva [39], Felmer [38], Ambrosetti and Badiale [8], Jiang [50]. On the other hand,
the partial differential case was developed by Alama and DelPino [1], Alama and
Tarantello [2, 3], Amann and Lopez-Gómez [7], Badiale and Nabana [11], Berestycki,
Capuzzo-Dolcetta and Nirenberg [14, 15], Khanfir and Lassoued [51], Le and Schmitt
[57], Ramos, Terracini and Troestler [74]. Equations of theform:

ẍ + q(t)x2n+1 = m(t)x + h(t),

with a changing signq, were considered by Terracini and Verzini in [85] paired with
either Dirichlet or periodic boundary conditions. They applied a suitable version of
the Nehari method [67] in order to find solutions of the boundary value problem with
prescribed nodal behavior. More precisely, if the domain [0, T ] of q is decomposed
into the union of consecutive and adjacent closed intervalsI +

1 , I −
1 , I +

2 , I −
2 , . . . , I +

k
such that:

q ≥ 0, q 6≡ 0 in I +
i and q ≤ 0, q 6≡ 0 in I −

i ,

then they foundk natural numbersm∗
1, . . . ,m

∗
k, one for each interval of positivityI +

i ,

in such a way that, for every choice ofk natural numbersm1, . . . ,mk, with mi ≥ m∗
i

for all i = 1, . . . , k, there are two solutions of the boundary value problem which have
exactlymi zeros inI +

i and one zero inI −
i .

An analogous situation was considered in [70, 71, 72] where,via a shooting ap-
proach, boundary value problems associated to (1) were studied, with a general nonlin-
earityg which has to be superlinear at infinity in some sense. In this case, after having
arbitrarily chosen the natural numbersmi ≥ m∗

i and a(k − 1)-tuple (δ1, . . . , δk−1),

with δi ∈ {0,1}, we found two solutions withmi zeros inI +
i andδi zeros inI −

i .

On the other hand Capietto, Dambrosio and Papini [26] focused their attention on
the existence of globally defined solutions of (1) with prescribed nodal behavior again
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in the case ofg superlinear at infinity andq changing sign. They showed that the
Poincaré map associated to (1) exhibits chaotic features.

It is the aim of these lectures to discuss some qualitative properties of the solutions
and some difficulties which arise in the use of the shooting approach.

2. The shooting method

Equation (1) can be written as a first order system in the phaseplane:

(3)

{
ẋ = y

ẏ = −q(t)g(x)

If we assume that the uniqueness for the Cauchy problems for (3) holds, then we de-
note byz(t; t0, p) = (x(t; t0, p), y(t; t0, p)) the solution of (3) withz(t0; t0, p) =
p = (x0, y0) ∈ R

2. The shooting method is based on the theorem on the continuous
dependence of the solutions with respect to the initial data: if z(t; t0, p) is defined on
an interval [α, β] 3 t0 for somet0 ∈ R and somep ∈ R

2, thenz(t; t0, p1) is defined
on [α, β] for eachp1 “near” p and we have thatz(·; t0, p1) → z(·; t0, p) uniformly on
[α, β] as p1 → p.

Therefore there is a couple of problems if we wish to apply this method for the
study of boundary value problems associated to (1) and (3). The first one is about the
uniqueness, which is granted wheneverq is locally integrable andg is locally Lipschitz
continuous: in particular, ifg behaves like|x|γ−1x near zero and 0< γ < 1,we might
loose the uniqueness at zero.

The second problem is the global existence of the solutions,since the sole continu-
ity of q does not imply that all the maximal solutions of (1) are globally defined, even if
q is assumed to be greater than a positive constant, as shown byCoffman and Ullrich in
[28]. Indeed they produce a weightq(t) = 1+ δ(t), with a functionδ : [0,+∞[ → R

which is positive and continuous, but has unbounded variation in every left neighbor-
hood of somêt > 0, and they show that the equation:

ẍ + (1 + δ(t))x3 = 0

has a solution which starts fromt0 = 0 and blows up ast tends tot̂ from the left. On
the other hand they prove that, ifq is positive, continuous and has bounded variation
in an interval [a,b], then every solution of:

ẍ + q(t)x2n+1 = 0

has [a,b] as maximal interval of definition. If we consider a positiveweightq which is
continuously differentiable on [a,b] and a functiong such thatg(x) · x > 0 for x 6= 0,
it is not difficult to show that the same conclusion holds for (1). Indeed, let us consider
a solutionx of (1) starting fromt = a and define the auxiliary function:

v(t) = 1

2
ẋ2(t)+ q(t)G(x(t)),
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whereG(x) =
∫ x

0 g(s)ds is nonnegative by the sign assumption ong. The functionv
is surely defined in an intervalJ ⊆ [a,b] with a as left end-point. For everyt in J we
have:

v̇(t) = ẍ(t)ẋ(t)+ q(t)g(x(t))ẋ(t)+ q̇(t)G(x(t))

= q̇(t)G(x(t)).

Sinceq is strictly positive anḋq is continuous on [a,b] there is a constantM ≥ 1 such
that:

q̇(t) ≤ Mq(t) ∀ t ∈ [a,b],

so that we obtain:

v̇(t) ≤ Mq(t)G(x(t)) ≤ Mv(t) ∀ t ∈ J.

Hencev satisfies the inequality:

v(t) ≤ MeM(t−a) ∀ t ∈ J

and turns out to be bounded inJ. This implies that|ẋ(t)| and, therefore,|x(t)| are
bounded, too, and, thus,x must be defined up tob.

The argument just employed can be modified in order to cover also some cases in
which q is nonnegative and vanishes somewhere. Indeed Butler observed that if one
starts fromt = a then the solution is defined up to (and including) the first zero t0 > a
of q provided thaṫq ≤ 0 (or, more generally,q is decreasing) in a left neighborhood of
t0. Then the solution surely proceeds furthert0 simply by Peano’s theorem about local
existence. Similarly, if one looks for backward continuability, every solution starting
from t = b reaches the first zerot1 < b of q provided thatq is monotone increasing in
a right neighborhood oft1. Therefore, if every interval [a,b] in which q is nonnegative
can be expressed as the union of a finite number of closed intervals (possibly degener-
ating to a single point) whereq vanishes and of a finite number of open sub-intervals
]t0, t1[ , such thatq is strictly positive in such intervals and is monotone increasing in a
right neighborhood oft0 and decreasing in a left neighborhood oft1, then the argument
above can be repeated a finite number of times in order to obtain the continuability of
the solutions across [a,b].

EXAMPLE 2. Let us see how the shooting method can be used to solve a Dirich-
let boundary value problem associated to a superlinear Hill’s equation like (2) with a
nonnegative weight. To be precise we look for solutions of:





ẋ = y

ẏ = −q(t)|x|γ−1x
t ∈ [0, T ]

x(0) = x(T) = 0

assuming thatγ > 1 and thatq is a nonnegative continuous function in [0, T ] which
also satisfies the regularity assumptions discussed above in such a way that all the
solutions of the differential equation are continuable along the interval [0, T ].
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The idea is to consider all the solutions which have value 0 and slopek ∈ R for
t = 0, that isz(·; 0, (0, k)) with the notation previously introduced, and to determine
for which values ofk we havex(T; 0, (0, k)) = 0. In other words, we are considering
the set of the solutions which start att = 0 from they-axis of the phase plane and
we wish to select those which come back to they-axis att = T. One way to do this
is to measure the angle spanned in the phase plane by the solution vectorz(t; 0, p) as
t runs in [0, T ]; indeed, if p lies on they-axis, thenz(T; 0, p) is again on thex-axis
if and only if the angle spanned byz(t; 0, p) on [0, T ] is an integer multiple ofπ.
Now, if z(t) = (x(t), y(t)) is a nontrivial solution of the differential equation, then
z(t) 6= (0,0) for every t ∈ [0,1] by the uniqueness of the constant solution(0,0);
hence we can define an angular functionθ(t) such that:

x(t) = |z(t)| cosθ(t) and y(t) = |z(t)| sinθ(t)

and it is easy to see that it satisfies:

−θ̇ (t) = y2(t)+ q(t)|x(t)|γ+1

y2(t)+ x2(t)
.

Therefore the measure of the angle spanned byz(t) can be obtained by integrating the
last expression and it is given by:

rot(p) = 1

π

∫ T

0

y2(t; 0, p)+ q(t)|x(t; 0, p)|γ+1

y2(t; 0, p)+ x2(t; 0, p)
dt.

Thusz(·; 0, (0, k)) is a solution of the Dirichlet boundary value problem if and only if
rot((0, k)) ∈ Z. Now, rot(p) is clearly a continuous function ofp and in this case it
can be proved that:

rot(p) → +∞ as |p| → +∞,

therefore, by the intermediate values theorem, our boundary value problem has in-
finitely many solutions. Moreover, the value rot(p) clearly gives information about
how many times the curvez(t; 0, p) crosses they-axis in the phase plane ast runs
from 0 toT and, more precisely, we have that if rot((0, k)) = j ∈ N thenx(·; 0, (0, k))
has exactlyj zeros in [0, T [ .

The same technique can be used to solve Sturm–Liouville boundary value problems
like the following one:





ẋ = y

ẏ = −q(t)|x|γ−1x
t ∈ [0, T ]

a1x(0)+ b1y(0) = 0

a2x(T)+ b2y(T) = 0

wherea2
i + b2

i 6= 0, i = 1,2, since the boundary conditions just mean that one looks
for solutions which start att = 0 on the straight linea1x + b1y = 0 in the phase plane
and end att = T on the straight linea2x + b2y = 0.
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On the other hand other boundary value problems, like the periodic one, are more
difficult to be solved by the shooting method, as one has to useless trivial fixed points
theorems.

What about if we do not have the continuability of the solutions? Hartman [44]
avoids the use of the global continuability for an equation of the form:

ẍ + f (t, x) = 0 with lim
x→±∞

f (t, x)

x
= +∞ uniformly w.r.t. t,

by assuming that:

f (t,0) ≡ 0 and that
f (t, x)

x
is bounded in a neighborhood ofx = 0.

The idea is that, if, on one hand, small solutions (that are those starting at a point
suitably near to the origin of the phase plane) are continuable up toT by the theorem
on continuous dependence on initial data, on the other, if a solution blows up before
t = T, then it oscillates infinitely many times. Therefore rot(p) can be defined at least
in a neighborhood ofp = (0,0), and it becomes unbounded either as|p| → +∞ for
the superlinearity assumption onf or for thosep’s nearby some blowing up solution
and, thus, the shooting argument can be still used.

Now we come to the general situation of (1). We denote byG(x) =
∫ x

0 g(s)ds
the primitive of the nonlinearityg and we assume thatG(x) → +∞ ass → ±∞.

Let G−1
l : [0,+∞[ → ]−∞,0] andG−1

r : [0,+∞[ → [0,+∞[ be, respectively, the
left and the right inverse functions ofG. We describe the phase plane portrait of two
autonomous equations which model the situation ofq ≥ 0 andq ≤ 0, respectively.

Consider a constant weightq ≡ 1; then equation (1) becomes:

ẍ + g(x) = 0

or, equivalently:

(4)

{
ẋ = y

ẏ = −g(x)

Each non trivial solution(x, y) of (4) satisfies:

1

2
y2(t)+ G(x(t)) = c ∀ t

for some constantc > 0. Since the level sets of the function(x, y) 7→ 1
2 y2 + G(x) are

closed curves around the origin, every solution of (4) is periodic with a periodτ+(c)
which depends only on the “energy”c of the solution and can be explicitly evaluated:

τ+(c) =
√

2
∫ G−1

r (c)

G−1
l (c)

ds√
c − G(s)

, c > 0.
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Figure 1: The phase portrait for (5)
with e = |c|.

It is well known that the following facts hold:

• lim
s→±∞

g(s)

s
= +∞ H⇒ lim

c→+∞
τ+(c) = 0;

• if the ratio g(s)/s monotonically increasesto +∞ as s → ±∞ then τ+(c)
monotonically decreasesto 0 asc → +∞.

On the other hand, if we take a constant weightq ≡ −1, then (1) becomes:

ẍ − g(x) = 0

or, equivalently:

(5)

{
ẋ = y

ẏ = g(x)

and each solution(x, y) of (5) satisfies:

1

2
y2(t)− G(x(t)) = c ∀ t

for some real constantc.

The phase portrait is that of a saddle (see Figure 1) in which the four nontrivial
and unbounded trajectories with “energy”c = 0 correspond to the stable (II and IV
quadrants) and to the unstable (I and III quadrants) manifolds with respect to the only
critical point (0,0). For each negative valuec there are two unbounded trajectories
with energyc : one of them lies in the half planex > 0, crosses the positivex-axis
at (G−1

r (−c),0) and corresponds to convex and positive solutionsx, and the other lies
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in x < 0, crosses the negativex-axis at(G−1
l (−c),0) and corresponds to concave and

negative solutionsx. On the other hand, for each positivec there are two unbounded
trajectories with energyc : one of them lies iny > 0, crosses the positivey-axis
at (0,

√
2c) and corresponds to solutionsx which are monotone increasing and have

exactly one zero, while the other lies iny < 0, crosses the negativey-axis at(0,−
√

2c)
and corresponds to solutionsx which are monotone decreasing and have exactly one
zero.

In this case we do not have any nontrivial periodic solution and, therefore, any
period to evaluate; however, wheng grows in a superlinear way towards infinity,all
solutions with nonzero energy have a blow-up in finite time, both in the future and in the
past (see [18]). Then we can compute the length of the maximalinterval of existence
of each trajectory and it turns out to be a function of the energy of the trajectory itself.
Indeed, in the case of each of the two trajectories with positive energyc, that length is:

1√
2

∫ +∞

−∞

ds√
c + G(s)

,

while for the trajectories with negative energy we have to distinguish between that on
x > 0, whose maximal interval length is:

√
2
∫ +∞

G−1
r (−c)

ds√
c + G(s)

,

and the other onx < 0, for which the length is:

√
2

∫ G−1
l (−c)

−∞

ds√
c + G(s)

.

If for every nonzeroc we sum the length of the maximal intervals of the two corre-
sponding trajectories, we obtain the following function:

τ−(c) =





√
2
∫ +∞

−∞

ds√
c + G(s)

if c > 0

√
2
∫ G−1

l (−c)

−∞

ds√
c + G(s)

+
√

2
∫ +∞

G−1
r (−c)

ds√
c + G(s)

if c < 0

which, likeτ+, is infinitesimal forc → ±∞ in the superlinear case:

lim
s→±∞

g(s)

s
= +∞,

∣∣∣∣
∫ ±∞ ds

G(s)

∣∣∣∣ < +∞, lim inf
s→+∞

G(ks)

G(s)
> 1 H⇒ lim

c→±∞
τ−(c) = 0

(k is some constant larger than 1).

EXAMPLE 3. Consider again Hill’s equation (2) with exponentγ > 1 and a piece-
wise constant weight functionq which changes sign:

q(t) =
{

+1 if 0 ≤ t ≤ t0

−1 if t0 < t ≤ T
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for somet0 ∈ ]0, T [ . Let us consider the behavior on [0, T ] of the solutionxk such
that xk(0) = 0 andẋk(0) = k > 0 as the initial slopek increases. The problem is:
is xk defined on [0, T ] and which is its shape? Clearly a blow-up can appear only in
]t0, T ] and it depends on which trajectory of (5) the point(xk(t0), ẋk(t0)) belongs to.
Indeed we have thatτ−(c) tends to zero, asc tends to±∞, for our g(s) = |s|γ−1s
and, thus, all the orbits of (5) with an energyc such that|c| � 0 have a very small
maximal interval of existence and are not defined on the whole[t0, T ]. On the other
hand, all the solutions of (5) passing sufficiently near the two stable manifolds (that
are the trajectories of (5) with zero energy which lie in the second and in the fourth
quadrant) have a maximal interval of existence which is larger than [t0, T ].

Now, we observe that all the trajectories of (4) intersect the stable manifolds of (5),
but for some values ofk the point(xk(t0), ẋk(t0)) will be near to the stable manifolds,
while for others it will lie far: it depends essentially on the value rot((0, k)), that is
on the measure of the angle spanned by the vector(x(t), ẋ(t)) ast goes from 0 tot0.
Since rot((0, k)) tends to+∞ together withk, it is possible to select a sequence of
successive and disjoint intervals:

I0 = [0, k0[ , I1 = ]h1, k1[ , . . . , I j =
]
h j , k j

[
, . . .

such that:

• if k ∈ I j then(xk(t0), ẋk(t0)) lies near the stable manifolds of (5) and, hence,xk

is defined on [0, T ];

• initial slopes belonging to the sameI j determine solutions with the same number
of zeros in [0, t0], but such a number increases together withj .

Moreover, since the stable manifolds separates the trajectories of (5) with positive and
negative energy, it is possible to distinguish inside eachI j those initial slopesk such
that xk is monotone in [t0, T ] and with exactly one zero therein, from those such that
xk has constant sign and is convex/concave in [t0, T ]. A generalization of this example
is given by Lemma 4.

We remark that, wheng is superlinear at infinity andq is an arbitrary function, the
blow-up always occurs in the intervals whereq < 0 at least for some “large” initial
conditions, no matter how muchq andg are regular. This was shown by Burton and
Grimmer in [18]: they actually proved that, ifq < 0, the convergence of one of the
following two integrals:

∫

−∞

ds√
G(s)

and
∫ +∞ ds√

G(s)
,

is a necessary and sufficient condition for the existence of at least one exploding solu-
tion of (1).
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3. Butler’s theorems

In [21] Butler considers the problem of finding periodic solutions of equation (1), or of
its equivalent first order system (3), assuming that:

• g : R → R is a locally Lipschitz continuous function such thatg(s) · s > 0 for
s 6= 0;

• lim
s→±∞

g(s)

s
= +∞;

•
∣∣∣∣
∫ ±∞ 1√

G(s)
ds

∣∣∣∣ < +∞.

For example, a functiong satisfying the first condition and:

|g(s)| ≥ k|s| logα |s| if s � 1,

for somek > 0 andα > 2, satisfies also the other two assumptions. With respect
to the weight functionq, he supposes that it is aT-periodic and continuous function
changing sign a finite number of times and that it is enough regular in the intervals in
which it is nonnegative (e.g.q is piecewise monotone), in such a way that in these
intervals the solutions cannot blow up; therefore, up to a time-shift, there arej zeros
of q, 0< t1 < t2 < · · · < t j < T, such that:

• q ≤ 0 andq 6≡ 0 in [0, t1] and in [t j −1, t j ];

• q ≥ 0 andq 6≡ 0 in [t j , T ];

• q 6≡ 0 and eitherq ≥ 0 orq ≤ 0 in each other interval [ti , ti+1].

Using the notation introduced at the beginning of Section 2 and recalling what has
been said in [18], the valuez(t; t0, p) is surely not defined for somep ∈ R

2 if the
interval betweent0 and t contains points in whichq is negative. Therefore Butler
introduces the following set of “good” initial conditions with respect to a fixed time
interval:

�b
a = {p ∈ R

2 : z(t; a, p) is defined in the closed interval betweena andb}.

In general very little can be said about the shape of�b
a : the theorem about the contin-

uous dependence on initial data implies that it is open and our assumptions guarantee
that it always contains the origin, since (1) admits the constant solutionx ≡ 0. If q ≥ 0
in [a,b], then�b

a = R
2, of course, and in particular one has that�T

0 = �
t j

0 . Clearly,
if b lies betweena andc then�c

a ⊂ �b
a.

One way to findT-periodic solutions of (1) or (3) is to write theT-periodic bound-
ary conditionz(T) = z(0) in a way which puts in evidence the dependence on the
initial valuez(0) = p; indeed, we are essentially looking for initial conditionsp ∈ R

2
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such thatz(T; 0, p) = p, that is we search points in the plane where the vector field
p 7→ z(T; 0, p)− p vanishes. If we introduce the following two auxililary functions:

φ(p) = ‖z(T; 0, p)‖ − ‖p‖

ψ(p) =
∫ T

0

y2(t; 0, p)+ q(t)g(x(t; 0, p))x(t; 0, p)

y2(t; 0, p)+ x2(t; 0, p)
dt,

then the solution departing fromp at t = 0 is T-periodic if and only if:
{
φ(p) = 0

ψ(p) = 2kπ for somek ∈ Z.

Before entering more in the details of Butler’s technique, let us fix some notation. If
r is a positive number, thenCr will denote the circumference{p ∈ R

2 : ‖p‖ = r } with
radiusr ; if, moreover,R > r, then A[r, R] will be the closed annulus with boundary
Cr ∪ CR. By the word “continuum” we mean, as usual, a compact and connected set.

Here is a first lemma about what happens in any interval of positivity for q.

LEMMA 1. Assume that q≥ 0 and q 6≡ 0 in [a,b]. Then for every M> 0 and
n ∈ N there exist r= r (M,n) and R= R(M,n), with 0< r < R, such that:

1. ‖z(t; a, p)‖ ≥ M for all t ∈ [a,b] and‖p‖ ≥ r ;

2. 0 3 p 7→ argz(b; a, p) is a n-fold covering of S1, for any continuum0 ⊂
A[r, R] which does not intersect both axes and satisfies0 ∩ Cr 6= ∅ 6= 0 ∩ CR.

Roughly speaking, the second statement just means that the map p 7→ z(b; a, p)
transforms any continuum crossing the annulusA[r, R] into a continuum which turns
around the origin at leastn times. Observe that it is required that0 “does not intersect
both axes”, that is it must be contained in one of the four half-planes generated by the
coordinate axes: this prevents0 itself from turning around the origin and escaping the
twisting effect of the mapp 7→ z(b; a, p).

REMARK 1. If q is nonnegative in [a,b], then the mappingsp 7→ z(b; a, p) and
p 7→ z(a; b, p) are defined onR2, continuous and each one is the inverse of the other.
Thus they are homeomorphisms ofR

2 onto itself and, in particular, map bounded sets
into bounded sets.

Even if little can be said in general about the structure of a set �b
a (it might be

disconnected and its boundary might not be a continuous arc), Butler actually proved
the following, when [a,b] is an interval of negativity forq.

LEMMA 2. Assume that q≤ 0 and q 6≡ 0 on [a,b]. If J ⊂ R is any compact
interval, then�b

a ∩ J × R is non-empty and bounded.
The same holds for�a

b.
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This result is simple ifq ≡ −1, since in this case it turns out that, on one hand, the
set�b

a must contain the stable manifoldsy = −
√

2G(x), for x > 0, andy =
√

2G(x),
for x < 0, while, on the other, it cannot contain any point from the trajectoriesy =
±

√
2(c + G(x)), if c > 0 is such thatτ−(c) < b − a and this happens for every

sufficiently largec.

LEMMA 3. There areα < 0 < β and a continuous arcγ = (γ1, γ2) : ]α, β[ →
�T

0 such that:

1. γ (0) = (0,0);

2. lim
s→α+

γ1(s) = lim
s→α+

γ2(s) = lim
s→β−

γ1(s) = lim
s→β−

γ2(s) = ∞;

3. ‖z(t j ; 0, γ (s))‖ and‖z(T; 0, γ (s))‖ are uniformly bounded for s∈ ]α, β[ .

Proof. Let us consider just the casej = 1, in which t j −1 = 0 and t1 = t j . The
intersection between�0

t j
and they-axis{0} × R determines, by Lemma 2, a bounded

and open (relatively to the topology of the straight line) set which contains the origin.
Therefore there areα < 0 < β such that the segment{0} × ]α, β[ is contained in�0

t j

while its end-points(0, α) and(0, β) belong to∂�0
t j
. By construction each solution

departing from{0} × ]α, β[ at timet j is defined at least up to 0, hence we can set:

γ (s) = z(0; t j , (0, s)) for s ∈ ]α, β[ .

Sinceγ (s) is the value at time 0 of a solution defined on [0, t j ],we have that the support

of γ lies in�
t j
0 , which in turn coincides with�T

0 because in the last interval [t j , T ] q
is nonnegative and, therefore, solutions cannot blow up therein by our assumptions on
q.

Clearly statement 1 is satisfied and Statement 2 follows fromthe fact that the points
(0, α) and(0, β) do not belong to�0

t j
: hencez(t; t j , (0, α)) andz(t; t j , (0, β)) blow

up somewhere in [0, t j ] and an argument based on the continuous dependence on initial
data shows thatγi (s) is unbounded whens ranges nearα andβ.

The definition ofγ implies that:

z(t j ; 0, γ (s)) = (0, s) for s ∈ ]α, β[ ,

thus‖z(t j ; 0, γ (s))‖ is bounded by max{−α, β}. Finally, observe thatz(T; 0, γ (s)) =
z(T; t j , (0, s)) and thatq is nonnegative on [t j , T ]; then also Statement 3 holds by
Remark 1.

THEOREM 1. Equation(1) has infinitely many T -periodic solutions.

Proof. We start fixing some constants. By Lemma 2 the intersection ofthey-axis with
the set�

t j −1
t j

is bounded by a constantA1; therefore, ifz(t j ; 0, p) lies on they-axis then
‖z(t j ; 0, p)‖ = |y(t j ; 0, p)| ≤ A1. Moreover, by Remark 1 the following constant:

A2 = max{‖z(T; t j , p)‖ : ‖p‖ ≤ A1}
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exists and is finite. In particular, ifγ is the curve given in Lemma 3, we have that:

‖z(t j ; 0, γ (s))‖ ≤ A1 and ‖z(T; 0, γ (s))‖ ≤ A2 for s ∈ ]α, β[ .

Now let A3 be any real number such thatA3 > A2 and letL1 be the vertical straight
line {A3} × R. Let� be the connected component of�T

0 which contains the support
of γ. By Lemma 2 and the fact that� ⊂ �

t1
0 , we have that the setL1 ∩ � is bounded

and we can define:

A4 = sup{‖p‖ : p ∈ L1 ∩�} < +∞ (H⇒ A4 > A3).

Now takeM = 2A4 andany natural number nand consider the two radiir = r (M,n+
1) andR = R(M,n + 1) which are obtained applying Lemma 1 in the interval [t j , T ].
We set:

A5 = max{‖z(T; t j , p)‖ : ‖p‖ ≤ R}
and callL2 the vertical straight line{A3 + A5} × R. Now, Statement 2 in Lemma 3
guarantees thatγ crosses at least one of the two vertical strips [A3, A3 + A5] × R and
[−A3 − A5,−A3] × R : assume that it crosses the first one (if it crosses the other one,
one can argue in a similar way) and call itS[L1, L2]. By Lemma 2, the intersection of
� with the vertical stripS[L1, L2] is bounded, therefore:

A6 = sup{‖p‖ : p ∈ � ∩ [ A3, A3 + A5] × R} < +∞.

The curveγ, passing fromL1 to L2, divides�∩ S[L1, L2] into two bounded regions.
If p ∈ S[L1, L2] belongs to the support ofγ, then‖z(T; 0, p)‖ ≤ A2 < A3 ≤ ‖p‖;
hence:

p ∈ γ (]α, β[) ∩ S[L1, L2] H⇒ φ(p) ≤ 0.

On the other hand, ifp lies in� ∩ S[L1, L2] near∂�, then‖p‖ remains bounded by
A6, but ‖z(T; 0, p)‖ can be made arbitrarily large, sincep is near “bad” points with
respect to the interval [0, T ]; thus:

φ(p) → +∞ if p → ∂�, p ∈ � ∩ S[L1, L2].

Therefore, on every curveσ contained in� ∩ S[L1, L2] and such that it connects a
point ofγ with a point of∂�, we can find a pointp in whichφ(p) = 0. This implies
(but it is not a trivial topological fact) that there exists acontinuum00 contained in
� ∩ S[L1, L2] and intersecting alsoL1 andL2 such that:

(6) p ∈ 00 H⇒ ‖z(T; 0, p)‖ = ‖p‖.

The set:
0 j = {z(t j ; 0, p) : p ∈ 00}

is still a continuum since it is the image of00 through the continuous map�T
0 3

p 7→ z(t j ; 0, p). 0 j does not intersect they-axis, since, if x(t j ; 0, p) = 0,
then one has‖z(t j ; 0, p)‖ ≤ A1, by the definition of A1, and ‖z(T; 0, p)‖ =
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‖z(T; t j , z(t j ; 0, p))‖ ≤ A2 < A3, by the definition ofA2, while ‖z(T; 0, p)‖ =
‖p‖ ≥ A3 if p ∈ 00.Moreover, fixp ∈ L1 ∩ 00 andq ∈ L2 ∩ 00; we have:

‖z(T; t j , z(t j ; 0, p)‖ = ‖z(T; 0, p)‖ = ‖p‖ ≤ A4 < M H⇒ ‖z(t j ; 0, p)‖ < r

by the definition ofA4 and Statement 1 in Lemma 1; and also:

‖z(T; t j , z(t j ; 0,q)‖ = ‖z(T; 0,q)‖ = ‖q‖ ≥ A3 + A5 > A5 H⇒ ‖z(t j ; 0,q)‖ > R

by the definition ofA5. Thus, we have found one point of0 j inside the ball of radiusr
and another point of0 j outside that of radiusR and we can say that0 j is a continuum
crossing the annulusA[r, R]. Hence0 j fulfills all the requirements of Statement 2 in
Lemma 1. In particular we have that the mapp 7→ argz(T; 0, p) coversS1 at least
n + 1 times asp ranges in00. Let us see what it means in terms of angles and of the
functionψ. We can select a continuous angular coordinateθ : [0, T ] × 00 → R such
that:

1. z(t; 0, p) = (‖z(t; 0, p)‖ cosθ(t, p), ‖z(t; 0, p)‖ sinθ(t, p)) for (t, p) ∈
[0, T ] × 00;

2. −π
2
< θ(0, p) <

π

2
for p ∈ 00 (recall that00 is contained in the right half-

plane).

With this choices, the functionψ can be written as:

ψ(p) = θ(0, p)− θ(T, p).

The fact that00 3 p 7→ argz(T; 0, p) coversS1 at leastn + 1 times, means that the
image ofθ(T, ·) contains a 2(n + 1)π-long interval. Sinceθ(0, ·) is forced in aπ-long
interval, we have thatψ(p) reaches at leastn successive integer multiples of 2π as
p ranges in00. Therefore (1) has at leastn T-periodic solutions, withn arbitrarily
chosen.

We have seen that the superlinear growth at infinity of the nonlinear termg in (1)
leads to the blow-up of solutions in the intervals whereq attains negative values. On the
other hand, ifg is sublinear around 0, there is the possibility of solutions reaching the
origin in finite time, since the uniqueness of the zero solution is no more guaranteed.
This case was studied by Butler in [23].

EXAMPLE 4. Let us consider the autonomous system (4) with a functiong which
is sublinear in zero, that is:

lim
x→0

g(x)

x
= +∞.

The uniqueness of the solution of Cauchy problems is still guaranteed, but, now,
smaller solutions oscillate more and more.
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On the other hand, if we look to the zero-energy solutions of (5), which satisfy
1
2 ẋ2 − G(x) = 0, we found that the time that they take to reach(0,0) from the value
x = x0 > 0 is given by the integral:

∫ x0

0

ds√
2G(s)

which isfinite wheng(s) is a sublinear function likes|s|γ−1, with 0 < γ < 1. There-
fore the uniqueness of the zero-solution holds no more.

In [48] Heidel gives conditions that prevent solutions of (1) from reaching the origin
in finite time in the case of a nonnegative weightq. In particular assumingq ∈ C1 and
q being piecewise monotone around its zeros turns out to be sufficient to this aim and
is what Butler needs in [23]. Indeed, Butler proves that, ifg is sublinear around the
origin andq is a T-periodic weight which changes sign and is enough regular, then
(1) has infinitely manyT-periodic solutions with an arbitrarily large number of small
oscillations in the intervals of positivity ofq.

On the other hand such solutions may be identically zero in some subintervals of
the intervals of negativity ofq. Indeed, let us consider a weightqε such thatqε ≡ −1
in [0,2[ , qε ≡ ε > 0 in [2,4[ and which is 4-periodic. Then Butler shows thatε can
be chosen sufficiently small in such a way that every solutionof:

ẍ + qε(t)x
1
3 = 0

which is nowhere trivial must be strictly monotone (and, hence, nonperiodic) on some
half line.

4. Another possible approach: generalized Sturm–Liouville conditions

Let us consider a situation in whichq : [a, c] → R is such that:

q ≥ 0 in [a,b] and q ≤ 0 in [b, c],

and assume thatg in (1) is superlinear at infinity in the sense that:

lim
c→+∞

τ+(c) = lim
c→±∞

τ−(c) = 0.

Let Q1 = [0,+∞[× [0,+∞[ , Q2 = ]−∞,0]× [0,+∞[ , Q3 = ]−∞,0]× ]−∞,0]
andQ4 = [0,+∞[ × ]−∞,0] be the four closed quadrants of the plane. Then we have
the following result.

LEMMA 4. There exists R∗ > 0 (depending only on g and q|[b,c]) such that, for
every R> 0 there is a natural number n∗ = n∗

R with the property that for every natural
numbers n> n∗ and δ ∈ {0,1} and for any pathγ : [α, β[ → [0,+∞[ × R, with
‖γ (α)‖ ≤ R and‖γ (s)‖ → +∞ as s → β, we can select an interval I⊂ ]α, β[ ,
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with I = ]αn, βn] , if δ = 0, and I = [βn, αn[ , if δ = 1, in such a way that for each
s ∈ I we have:

• z(c; a, γ (s)) is defined

• x(·; a, γ (s)) has exactly n zeros in]a,b[ , δ zeros in]b, c[ and exactly1 − δ

changes of sign of the derivative in]b, c[

• the curveγn(s) = z(c; a, γ (s)), s ∈ I , satisfies‖γn(βn)‖ ≤ R∗, ‖γn(s)‖ →
+∞ as s→ αn and its support lies either in Q1 (if n + δ is even) or in Q3 (if
n + δ is odd).

The same holds when the support of the curveγ lies in the left half plane]−∞,0] × R

by simply interchanging the role of Q1 and Q3.

Let us see how to use Lemma 4 in order to find multiple solutionsof (1) satisfying
the two-point boundary condition:

(7) x(0) = x(T) = 0.

We assume that there areti , with i = 0, . . . ,2 j + 1, such that 0= t0 < t1 < · · · <
t2 j +1 = T and:

q ≥ 0, q 6≡ 0 in [t2i−2, t2i−1] and q ≤ 0, q 6≡ 0 in [t2i−1, t2i ],

for i = 1, . . . , j + 1, soq is positive near both 0 andT. Let us apply Lemma 4 in the
interval [0, t2] to the unbounded curveγ0(s) = (0, s), for s ≥ 0, which parametrizes
the positivey-axis in the phase plane: each solutionx of (1)–(7) with ẋ(0) > 0 should
start from the support ofγ0 at time t = 0. Let R∗

1 > 0 andn∗
1 ∈ N be respectively

the numbersR∗ andn∗
R given by Lemma 4 with an arbitrarily smallR > 0 (since

γ0(0) = (0,0)) and fix anyn1 > n∗
1 andδ1 ∈ {0,1} : then, we obtain an interval

I1 = ]α1, β1[ ⊂ [0,+∞[ such that the solution of (1) starting att = 0 from γ0(s)
has nodal behavior in [0, t2] prescribed by the couple(n1, δ1), as in Lemma 4, ifs
belongs toI1, and, moreover, the curveγ1(s) = z(t2; 0, γ0(s)) is defined fors ∈ I1,

is contained either in the first or the third quadrant, it is unbounded whens tends to
one of the endpoints ofI1, while it lies inside a circle of radiusR∗

1 for s belonging
to a neighborhood of the other endpoint. Therefore we can apply Lemma 4 on the
successive interval [t2, t4] and to the curveγ1 with the choiceR = R∗

1.

After j successive applications of Lemma 4 to the intervals [t2i−2, t2i ], for i =
1, . . . , j , we getR∗

j > 0 and j positive integersn∗
1, . . . ,n

∗
j such that, for everyj -tuple

(n1, . . . ,n j ) ∈ N
j , with ni > n∗

i , and for everyj -tuple(δ1, . . . , δ j ) ∈ {0,1} j , there
is a final intervalI j ⊂ [0,+∞[ with the following properties:

• the curveγ (s) = z(t2 j ; 0, (0, s)) is defined fors ∈ I j , lies in the first or in the
third quadrant (it depends on the parity ofn1+δ1+· · ·+n j +δ j ), it is unbounded
whens tends to one of the endpoints ofI j , while it is inside the circle of radius
R∗

j if s belongs to a neighborhood of the other endpoint;
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• if s ∈ I j and i = 1, . . . , j , the solutionx(t; 0, (0, s)) has a nodal behavior in
[t2i−2, t2i ] which is described by the couple(ni , δi ) as in Lemma 4.

It remains to find somes in the intervalI j such that the solution starting att = t2 j from
γ (s) reaches they-axis exactly att = T and this can be done by a result of Struwe
[83], since the weightq is nonnegative in the interval [t2 j , T ] (see Example 2 for an
idea of the argument).

Clearly another set of solutions can be found starting from the negativey-axis and
it is not difficult to obtain the same kind of result ifq is negative either neart = 0 or
neart = T or both. However, a more important fact is perhaps that we canadjust the
technique explained above in order to find multiple solutions of more general boundary
value problems for (1), namely all those problems whose boundary conditions can be
expressed by:

(x(0), ẋ(0)) ∈ 00 and (x(T), ẋ(T)) ∈ 0T ,

where00 and0T are suitable subsets of the phase plane. They are called “gener-
alized” Sturm–Liouville boundary conditions (see [83]) since they coincide with the
usual Sturm–Liouville conditions when00 and0T are two straight lines. In particular,
whenq is positive near 0 andT, it is possible to adapt the technique to cover all the
cases in which00 and0T are two unbounded continua (i.e. connected, closed and un-
bounded sets) contained, for instance, in some half-planes: in fact, by approximating
bounded portions of continua by means of supports of continuous curves, it is possible
to prove a generalization of Lemma 4 which holds also when thepathγ is substituted
by an unbounded continuum0 contained either in the right half plane or in the left one.

4.1. Application to homoclinic solutions

Assume that:
q(t) ≤ 0 ∀ t ∈ ]−∞,a] ∪ [b,+∞[

and that: ∫

−∞
q =

∫ +∞
q = −∞.

Then, using an argument similar to that employed by Conley in[29], it is possible to
show that there are four unbounded continua0+

a ⊂ Q1, 0
−
a ⊂ Q3, 0

+
b ⊂ Q4 and

0−
b ⊂ Q2 such that:

• lim
t→−∞

z(t; a, p) = (0,0) for everyp ∈ 0±
a ;

• lim
t→+∞

z(t; b, p) = (0,0) for everyp ∈ 0±
b

(see Lemmas 5 and 7 in [72] for precise statements and proof).Therefore the problem
of finding homoclinics solutions of (1) is reduced to that of determining solutions of
(1) in [a,b] which satisfy the generalized Sturm–Liouville boundary condition:

(x(a), ẋ(a)) ∈ 0±
a (x(b), ẋ(b)) ∈ 0±

b
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and this can be done in the superlinear case by the technique already explained in this
section (Lemma 4 plus Struwe’s result [83]).

4.2. Application to blow-up solutions

In [61] (see also [62]) the problem of finding solutions of (1)which blow up at a precise
time was considered wheng has a superlinear growth at infinity andq : ]0,1[ → R

is a continuous weight such thatq is nonpositive in some neighborhood of 0 and of 1
and both 0 and 1 are accumulation points of the set in whichq is strictly negative. See
the paper [27] for recent results about the analogous problem for partial differential
equations.

To be precise, let us assume thatq is nonpositive in ]0,a] and in [b,1[ ; then there
are two unbounded continua00 and01 which are contained in the right half plane
x ≥ 0 and moreover:

1. there areR> r > 0 andε > 0 such that:

00 ∩ [0, r ] × R ⊂ [0, r ] × ]−∞,−ε]
00 ∩ [ R,+∞[ × R ⊂ [ R,+∞[ × [ε,+∞[
01 ∩ [0, r ] × R ⊂ [0, r ] × [ε,+∞[
01 ∩ [ R,+∞[ × R ⊂ [ R,+∞[ × ]−∞,−ε]

2. lim
t→0

x(t; a, p) = lim
t→1

x(t; b,q) = +∞ if p ∈ 00 andq ∈ 01.

If q ≤ 0 in the whole ]0,1[ , then we can choosea = b = 1/2 and the localization
properties in statement 1 imply that00 ∩01 6= ∅ and this proves that there is a positive
solution which blows up at 0 and 1.

On the other hand, ifq changes sign a finite number of times inside ]0,1[ , we can
consider the generalized Sturm–Liouville boundary value conditions:

(x(a), ẋ(a)) ∈ 00 (x(b), ẋ(b)) ∈ 01

and apply the procedure previously explained in order to findsolutions of (1) in ]0,1[
which blows up at 0 and 1 and have a prescribed nodal behavior inside the interval.

5. Chaotic-like dynamics

The chaotic features of (1) were studied in the papers [85] and [26] wheng is super-
linear at infinity. Here we would like to give an interpretation of chaos in the sense
of “coin-tossing”, as it is defined in [53] for the discrete dynamical system generated
by the iterations of a continuous planar mapψ which is not required to be defined in
the whole plane (like the Poincaré map associated to our equation (1) wheng is super-
linear at infinity andq is somewhere negative). To be more precise, consider the set
X which is the union of two disjoint, nonempty and compact setsK0 andK1. We say
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that the discrete dynamical system generated by the iterates of a continuous mapping
ψ is chaotic in the sense of coin-tossingif, for every doubly infinite sequence of binary
digits (δi )i∈Z ∈ {0,1}Z, there is a doubly infinite sequence(pi )i∈Z of points ofX such
that:

1. ψ(pi ) = pi+1

2. pi ∈ Kδi

for everyi ∈ Z. The first condition states that the sequence(pi )i∈Z is anorbit of the
dynamical system generated byψ; the second one guarantees the possibility of finding
orbits which touch at each time the prescribed component ofX.

We remark that in this definitionψ is not necessarily defined in the wholeX and it
is not required to be 1-to-1.Actually we are interested in the case of planar maps, since
we wish to study the Poincaré map associated to (1), and, in particular, we will consider
compact setsK i with a particular structure: we call anoriented cella couple(A,A−)
whereA ⊂ R

2 is a two-dimensional cell (i.e., a subset of the plane homeomorphic to
the unit squareQ = [−1,1]2) andA− ⊂ ∂A is the union of two disjoint compact arcs.
The two components ofA− will be denoted byA−

l andA−
r and conventionally called

the left and the right sides ofA. The order in which we make the choice of namingA
−
l

andA−
r is immaterial in what follows.

If ψ is a continuous mapR2 ⊃ Dom(ψ) → R
2 and(A,A−), (B,B−) are two

oriented cells, we say thatψ stretches(A,A−) to (B,B−) and write:

ψ : (A,A−) C (B,B−),

if:

• ψ is properonA, which means that|ψ(p)| → +∞ whenever Dom(ψ) ∩ A 3
p → p0 ∈ ∂ Dom(ψ) ∩ A;

• for any path0 ⊂ A such that0 ∩ A
−
l 6= ∅ and0 ∩ A−

r 6= ∅, there is a path
0′ ⊂ 0 ∩ Dom(ψ) such that:

ψ(0′) ⊂ B, ψ(0′) ∩ B
−
l 6= ∅, ψ(0′) ∩ B

−
r 6= ∅.

THEOREM 2. If ψ : (A,A−) C (A,A−), thenψ has at least one fixed point in
A.

Sketch of the proof.Let us consider just the case ofA = [0,1] × [0,1], with A
−
l =

{0} × [0,1] andA−
r = {1} × [0,1], and letψ(x1, x2) = (ψ1(x1, x2), ψ2(x1, x2)).

If 0 ⊂ A is a path joining the vertical sides ofA, let 0′ ⊂ 0 be the subpath such
thatψ(0′) is again a path inA which joins its vertical sides and, in particular, let
p = (p1, p2) andq = (q1,q2) two points in0′ such thatψ(p) ∈ {0} × [0,1] and
ψ(q) ∈ {1} × [0,1]. Therefore we have:

ψ1(p1, p2)− p1 = −p1 ≤ 0 and ψ1(q1,q2)− q1 = 1 − q1 ≥ 0.
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Hence, every path inA joining the vertical sides meets the closed set in which the func-
tionψ1(x1, x2)− x1 vanishes and this implies that actually there is a whole continuum
01 ⊂ A joining thehorizontalsides ofA such thatψ1(x1, x2)− x1 vanishes in01 and
ψ(01) ⊂ A (see the argument to find00 in (6)). Again, this implies that the function
ψ2(x1, x2)− x2 changes sign on01 : there is a point in01 where alsoψ2(x1, x2)− x2
vanishes, and such a point is clearly a fixed point ofψ.

THEOREM 3. Let (A0,A
−
0 ) and (A1,A

−
1 ) be two oriented cells. Ifψ stretches

each of them to itself and to the other one:

ψ : (Ai ,A
−
i ) C (A j ,A

−
j ), for (i , j ) ∈ {0,1}2,

thenψ shows a chaotic dynamics of coin-tossing type.

These results can be applied, for instance, to the followingsituation:

(8) ẍ + [αq+(t)− βq−(t)]g(x) = 0,

where α and β are positive constants,q+(t) = max{q(t),0} and q−(t) =
max{−q(t),0} are respectively the positive and the negative part of a continuous and
periodic functionq which changes sign, andg is a nonlinear function such that:

0< g′(0) � g′(∞).

The parameterα regulates the twisting effect of the Poincaré map along theintervals
of positivity of q, while β controls the stretching of the arcs along the intervals of
negativity ofq. Assume, for simplicity, thatq is T-periodic with exactly one change of
sign inτ ∈ ]0, T [ in such a way that:

q > 0 in ]0, τ [ and q < 0 in ]τ, T [ .

For every fixedn ∈ N, using the theorems stated above, it is possible to findαn > 0
such that, for everyα > αn, there isβα > 0 such that for eachβ > βα we have the
following results (see Theorem 2.1 in [30]):

1. for anym ∈ N and anym-tuple of binary digits(δ1, . . . , δm) ∈ {0,1}m such
thatmn+ δ1 + · · · + δm is an even number, there are at least twomT-periodic
solutionsx+ andx− of (8) which have exactlyn zeros in [(i −1)T, (i −1)T +τ ]
andδi zeros in [(i − 1)T + τ, i T ], for eachi = 1, . . . ,m; moreoverx+(0) > 0
andx−(0) < 0;

2. for any doubly infinite sequence of binary digits(δi )i∈Z ∈ {0,1}Z, there is at
least a globally defined solutionx of (8) which has exactlyn zeros in [i T, i T +τ ]
andδi zeros in [i T + τ, (i + 1)T ], for all i ∈ Z.
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6. Subharmonic solutions

Our aim here is to consider large solutions of equations like(1) in which the nonlinear-
ity g is sublinear at infinity, as in Hill’s equation (2) when 0< γ < 1. The results we
are going to present are contained in a joint work with B. Liu [59] and are valid also
for the forced version of (1):

ẍ + q(t)g(x) = e(t).

Throughout this section we assume thatg : R → R is a continuous function such that:

• g(0) = 0;

• there isR0 ≥ 0 such thatg(s) · s> 0 andg′(s) ≥ 0 if |s| > R0 (H⇒ g(−∞) <

0< g(+∞));

• lim
s→±∞

g(s)

s
= 0.

The third condition is the so-called condition of sublinearity at infinity. Moreover we
will suppose thatq is a continuous andT-periodic function, even if continuity is not
necessary: local integrability would be enough.

THEOREM 4. Besides the assumptions stated above, suppose that:

(9) q = 1

T

∫ T

0
q(t)dt > 0.

Then for each integer j≥ 1 there is m∗
j ∈ N such that, for every m≥ m∗

j equation
(1) has at least one mT -periodic solution xj ,m which has exactly2 j -zeros in[0,mT[ .
Moreover, for each m≥ 1 there is Mm > 0 such that any mT -periodic solution x of
(1) satisfies:

‖x‖C1 ≤ Mm;

on the other hand, for every fixed j≥ 1 we have:

lim
m→+∞

(|x j ,m(t)| + |ẋ j ,m(t)|) = +∞,

uniformly with respect to t∈ R.

EXAMPLE 5. Theorem 4 holds, for instance, for the following Hill’s equation:

ẍ + [k + cos(t + θ)]|x|γ−1x = 0,

where 0< γ < 1, k > 0 andθ ∈ R. The same is true if we substitute|x|γ−1x with
another sublinear function likex/(1 + |x|), for instance.
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We remark that condition (9) was already considered by otherauthors dealing with
the superlinear case (see for instance [76]). A partial converse, with respect to this
assumption, holds in the case of Hill’s equation (2) for 0< γ < 1; in this case, if
q < 0, there is a constantB > 0, such that every solution of (2) satisfying:

|x(0)| + |ẋ(0)| > B

is unbounded, that is:
sup
t∈R

(|x(t)| + |ẋ(t)|) = +∞.

REMARK 2. In the book [34, p. 129] it is pointed out that “the questionis whether
we can findfor each k≥ 2 a subharmonicxk [that is akT-periodic solution] such that
the xk are pairwise distinct. No result is known in the subquadratic case”. The same
question was pointed out by Các and Lazer in [24]. Of course we deal with a scalar
model, which is a very simple case of a Hamiltonian system.

The trick to study (1) is the introduction of the so-called “Riccati integral equation”
associated to (1):

ẋ(t)

g(x(t))
= ẋ(s)

g(x(s))
−

∫ t

s

[
ẋ(ξ)

g(x(ξ))

]2

g′(x(ξ))dξ −
∫ t

s
q(ξ)dξ,

which is easily deduced recalling that:

ẍ(t)

g(x(t))
= −q(t),

by equation (1). This integral equation was already used by people working in oscilla-
tion theory.

We use here a small variant of a notation already introduced.If z is a solution of
(3), we denote by rot(z; t1, t2) the amplitude of the angle spanned by the vectorz(t)
ast varies fromt1 to t2, measured in clockwise sense. Thus we do not normalize any
more by dividing byπ , as we did in the previous sections.

Sketch of the proof.For simplicity we assume the uniqueness property for the Cauchy
problems associated to (1) and divide the proof into severallemmas.

1. The continuability of the solutions:the sublinear growth ofg at infinity implies
that every maximal solution of (1) is defined onR.

2. There isν > 1/2 such that for every R1 > R0 there exists R2 > R1 such that, if
z(t) = (x(t), y(t)) is any solution of(3) satisfying‖z(t1)‖ = R1, ‖z(t2)‖ = R2
(or ‖z(t2)‖ = R1, ‖z(t1)‖ = R2) and R1 ≤ ‖z(t)‖ ≤ R2, for all t ∈ [t1, t2], it
follows that:

rot(z; t1, t2) > ν2π.

This lemma can be proved by arguments similar to those used in[44, 35, 32].
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3. Iteration of Step 2:let us writeν = δ + 1/2, so thatδ > 0; we fix R1 > R0 and
apply Step 2 obtainingR2 > R1; then we apply again Step 2 withR2 in place
of R1 obtainingR3 > R2. Let z be a solution of (3) such that‖z(t1)‖ = R3,

‖z(t2)‖ = R1 and R1 ≤ ‖z(t)‖ ≤ R3 for t ∈ [t1, t2], and consider the first
instants1 and the last instants2 in [t1, t2] such that‖z(s)‖ = R2. Since the
trajectories of (3) cross the positivey-axis from the left to the right hand side and
the negativey-axis from the right to the left one, it is easy to see that actually
rot(z; s1, s2) > −π, therefore we obtain:

rot(z; t1, t2) = rot(z; t1, s1)+ rot(z; s1, s2)+ rot(z; s2, t2)

> ν2π − π + ν2π =
(

1

2
+ 2δ

)
2π.

Therefore, for everyj > 0, it is possible to find sufficiently large annuli such
that every solution which crosses them must rotate around the origin at leastj
times.

4. If A is a sufficiently large annulus and z is a solution such that z(t) ∈ A for all
t ≥ t0, then:

rot(z; t0, t) → +∞ as t → +∞,

uniformly with respect to t0 ∈ [0, T ].

5. Large solutions rotate little:using the sublinear condition at infinity it is possible
to show that for everyL > 0 there isR̂L > R0 such that, if 0< t1 − t2 ≤ L and
z is any solution satisfying‖z(t)‖ ≥ R̂L for all t ∈ [t1, t2], then:

rot(z; t1, t2) < 2π.

Now, let us fix j and, by Step 3, considerR0 < R1 < R2 < R3 such that each solution
crossing eitherB[ R2] \ B(R1) or B[ R3] \ B(R2) turns at leastj + 1 times around the
origin. LetA = B[ R3] \ B(R1). By Step 4, there ism∗

j such that:

m ≥ m∗
j H⇒ rot(z; 0,mT) > j 2π if R1 ≤ ‖z(t)‖ ≤ R3 ∀ t ∈ [0,mT].

Consider any solution with‖z(0)‖ = R2 : eitherz(t) remains inA for all t ∈ [0,mT]
or there is a first instant̂t in which the solutionz exits the annulusA. In the former case
we already know that rot(z; 0,mT) > j 2π; in the latter one we can select an interval
[t1, t2] ⊂ [0,mT] such that:

• either‖z(t1)‖ = R2, ‖z(t2)‖ = R1 andR1 ≤ ‖z(t)‖ ≤ R2 for all t ∈ [t1, t2]

• or ‖z(t1)‖ = R2, ‖z(t2)‖ = R3 andR2 ≤ ‖z(t)‖ ≤ R3 for all t ∈ [t1, t2].

In both these situations we can conclude that rot(z; t1, t2) > ( j +1)2π by the choice of
R1, R2 andR3. Therefore, arguing as in Step 3, we conclude again that rot(z; 0,mT) >
j 2π.We can summarize this by the following implication:

‖z(0)‖ = R2 H⇒ rot(z; 0,mT) > j 2π.
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Let us fix nowm ≥ m∗
j and apply Step 5 withL = mT : we getS1 ≥ R2 such that

the conclusion of Step 5 holds if‖z(t)‖ ≥ S1 for all [0,mT]. By the continuability of
all the solutions of (3) (Step 1), it is possible to findS2 ≥ S1 such that‖z(t)‖ ≥ S1 for
everyt ∈ [0,mT], if ‖z(0)‖ = S2. Hence:

‖z(0)‖ = S2 H⇒ rot(z; 0,mT) < 2π.

Finally, consider themT-Poincaré map:

B(S2) \ B[ R2] 3 p 7→ z(mT; 0, p)

whose fixed points are themT-periodic solutions of (3). It turns out that themT-
Poincaré map satisfies the Poincaré–Birkhoff fixed point theorem by the discussion
carried above, and, therefore, it has a fixed point such that the correspondingmT-
periodic solution rotate exactlyj times around the origin in [0,mT] and, hence, has
exactly 2j zeros in [0,mT[ .

We remark that if,j andm are coprime numbers andx is themT-periodic solution
of (1) given by Theorem 4 with these choices, then it turns outthatmT is actually the
minimal period ofx in the class of the integral multiples ofT.
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sults via a variational approach, Ann. Inst. Henri Poincaré, Anal. Non Linéaire
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