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RESTRICTION OF HOLOMORPHIC DISCRETE SERIES TO

REAL FORMS

Abstract. Let G be a connected linear semisimple Lie group having a
Holomorphic Discrete Series representationπ. Let H be a connected re-
ductive subgroupofG so that the global symmetric space attached toH
is a real form of the Hermitian symmetric space associated toG. Fix a
maximal compact subgroupK of G so thatH ∩ K is a maximal compact
subgroup forH. Let τ be the lowestK−type forπ and letτ? denote the
restriction ofτ to H ∩ K . In this note we prove that the restriction ofπ to
H is unitarily equivalent to the unitary representation ofH induced byτ?.

1. Introduction

For any Lie group, we denote its Lie algebra by the corresponding German lower case
letter. In order to denote complexification of either a real Lie group or a real Lie algebra
we add the subindexc. Let G be a connected matrix semisimple Liegroup. Henceforth,
we assume that the homogeneous spaceG/K is Hermitian symmetric. LetH be a
connected semisimple subgroup ofG and fix a maximal compact subgroupK of G
such thatK1 := H ∩ K is a maximal compact subgroup ofH. From now on we assume
that H/K1 is a real form of the complex manifoldG/K . Let(π, V) be a Holomorphic
Discrete Series representation forG. Let (τ, W)be the lowestK−type for(π, V). For
the definition and properties of lowestK−type of a Discrete Series representation we
refer to [7]. Let(τ?, W) denote the restriction ofτ to K1. We then have:

THEOREM 1. The restriction of(π, V) to H is unitarily equivalent to the unitary
representation of H inducedby(τ?, W).

Thus, after the work of Harish-Chandra and Camporesi [1] we have that the restric-
tion of π to H is unitarily equivalent to

r∑
j =1

∫
ν∈a?

IndH
M AN(σ j ⊗ eiν ⊗ 1)dν.

Here,M AN is a minimal parabolic subgroup ofH so thatM ⊂ K1, andσ1, · · · , σr

are the irreducible factors ofτ restricted toM. Whenever,τ is a one dimensional
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representation, the sum is unitarily equivalent to
∫

ν∈a?/W(H,A)

IndH
M AN(1 ⊗ eiν ⊗ 1)dν

as it follows from the computation in [13], and, hence, our result agrees with the one
obtained by Olafsson and Orsted in [13].

The symmetric pairs(G, H ) that satisfy the above hypothesis have been classified
by A. Jaffee in [4, 5], A very good source about the subject is by Olafsson in [11], they
are:
(su(p, q), so(p, q)); (su(n, n), sl(n, C) + R));
(su(2p, 2q), sp(p, q)); (so?(2n), so(n, C)); (so?(4n), su?(2n) + R);
(so(2, p+ q), so(p, 1)+ so(p, 1)); (sp(n, R), sl(n, R)+ R)); (sp(2n, R), sp(n, C));
(e6(−14), sp(2, 2)); (e6(−14), f4(−20); (e7(−25), e6(−26) + R); (e7(−25), su?(8));
(su(p, q) × su(p, q), sl(p + q, C)); (so?(2n) × so?(2n), so(2n, C));
(so(2, n) × so(2, n), so(n + 2, C)); (sp(n, R) × sp(2n, R), sp(n, C));
(e6(−14) × e6(−14), e6); (e7(−25) × e7(−25), e7).

For classical groups we can compute specific examples of the decomposition ofτ re-
stricted toM by means of the results of Koike and other authors as stated in[9].

For an update of results on restriction of unitary irreducible representations we refer to
the excellent announcement, survey of T. Kobayashi [8] and references therein.

2. Proof of the Theorem

In order to prove the Theorem we need to recall some Theorems and prove a few
Lemmas. For this end, we fix compatible Iwasawa decompositionsG = K AN, H =
K1A1N1 with K1 = H ∩ K , A1 ⊂ A, N1 ⊂ N. We denote by‖X‖ =

√
−B(X, θ X)

the norm ofg determinated by the Killing formB and the Cartan involutionθ.

LEMMA 1. The restriction to H of any K−finite matrix coefficient of(π, V) is in
L2(H ).

Proof. We first consider the case that the real rank ofH is equal to the real rank
of G. Let f be a K−finite matrix coefficient of(π, V). For X ∈ a, we set
ρH (X) = 1

2trace(adH(X)|n1). For anad(a)−invariant subspaceR of g,let 9(a, R)

denote the roots ofa in R. Let A+
G, A+

H be the positive closed Weyl chambers for
9(a, n), 9(a, n1) respectively. ThenA+

G ⊂ A+
H . Let 91 := 9(a, n), . . . , 9s be the

positive root systems in9(a, g) such that9i ⊃ 9(a, n1). Let A+
i denote the positive

closed Weyl chamber associated to9i . Thus, A+
H = A+

1 ∪ . . . ∪ A+
s . For eachi , let

ρi (X) = 1
2trace(ad(X)|∑

α∈9i
gα

). For X ∈ A+
i we have thatρi (X) ≥ ρH (X). Indeed,

for α ∈ 9i , if α ∈ 9i ∩ 9(a, n1) = 9(a, n1), then the multiplicity ofα as ag− root
is equal to or bigger than the multiplicity ofα as ah−root, if α ∈ 9i − 9(a, n1), then
αi (X) ≥ 0 . Thus,

ρi (X) ≥ ρH (X) for every X ∈ A+
i .
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We now recall the4 andσ functions forG andH and the usual estimates for4.

(cf. [7] page 188). ForY ∈ a, x ∈ G putρG(Y) = 1
2trace(ad|n(Y), and

4G(x) =
∫

K
e−ρG(H(xk))dk.

Here,H (x) is uniquely defined by the equationx = kexp(H (x))n, (k ∈ K , H (x) ∈
a, n ∈ N). If x = kexp(X), (k ∈ K , X ∈ s, g = k ⊕ s, Cartan decomposition forg),
we putσG(x) = ‖X‖. Since the groupH might be reductive we follow [3] page 106,
129 in order to defineσH . Now, all the norms in a finite dimensional vector space are
equivalent. Thus, have thatσG << σH << σG. The estimates are:

4G(exp(X)) ≤ cGe−ρi (X)(1 + σG(exp(X)))r

with r > 0, 0 < cG < ∞, X ∈ A+
i , i = 1, · · · , s, and

e−ρH (X) ≤ 4H (exp(X)) ≤ cH e−ρH (X)(1 + σH (exp(X)))r1

Therefore, forX ∈ A+
i we have that

4G(expX) ≤ cG(1 + σG(expX))r e−ρi (X)

= e−ρH (X)cG(1 + σG(expX))r eρH (X)−ρi (X)

≤ 4H (expX)cG(1 + σG(expX))r eρH (X)−ρi (X).

Since onA+
i we have the inequalityρH (X) − ρi (X) ≤ 0, and i is arbitrary from

1, · · · , s, we obtain

4G(k1ak2) = 4G(a) ≤ 4H (a)cG(1 + σG(a))r

for a ∈ exp(A+
H ), k1, k2 ∈ K1.

Now, Trombi and Varadarajan [16], have proven that for anyK−finite matrix coeffi-
cient of a Discrete Series representation of the groupG the following estimate holds,

| f (x)| ≤ c f 4
1+γ

G (x)(1 + σG(x))q

∀ x ∈ G, with 0 < c f < ∞, γ > 0, q ≥ 0.

Hence, fora ∈ exp(A+
H), k1, k2 ∈ K1, we have:

| f (k1ak2)|2 ≤ C4H (a)2+2γ (1 + σG(a))2(q+r (γ+1))

≤ Ce(−2−2γ )ρH (loga)(1 + σG(a))2(q+γ r+r )(1 + σH (a))r1(1+γ ).

We setR = 2(q+γ r +r )+2r1(1+γ ), sinceσG(expY) = σH (expY). The integration
formula for the decompositionH = K1exp(A+

H )K1 yields:
∫

H
| f (x)|2dx =

∫
A+

H

1(Y)

∫
K1×K1

| f (k1exp(Y)k2)|2dk1dk2dY

≤ C
∫

A+
H

1(Y)e(−2−2γ )ρH(Y)(1 + σG(expY))RdY
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Since1(Y) ≤ CH e2ρH (Y) on A+
H , (CH < ∞) andσG(expY) is of polynomial growth

onY. We may conclude that the restriction toH of f is square integrable inH, proving
Lemma 1 for the equal rank case.
For the nonequal rank case letA+

H be the closed Weyl chamber ina1 corresponding
to N1. Let C1, · · · Cs be the closed Weyl chambers ina so thatinter ior(A+

H ) ∩ C j 6
∅, j = 1, · · · s. Thus,A+

H = ∪ j (A+
H ∩ C j ) and

∫
A+

H

| f (expY)|21(Y)dY ≤
∑

j

∫
C j ∩A+

H

| f (expY)|21(Y)dY.

Let ρ j (Y) = 1
2trace(ad(Y)|∑

α:α(Cj )>0 gα
). Then, as before, onC j ∩ A+

H we have

| f (expY)|2 << e2(ρH (Y)−ρ j (Y))(1 + ‖Y‖2)Re−2γρ j (Y).

If α ∈ 8(a, n(C j )), the restrictionβ of α to aH is either zero, or a restricted root
for (aH , n1), or a nonzero linear functional onaH . In the last two cases we have that
β(C j ∩ A+

H ) ≥ 0, and ifβ is a restricted root, the multiplicity ofβ is less or equal than
the multiplicity of α. Finally, we recall that anyβ ∈ 9(aH , n1) is the restriction of a
positive root forC j . Thus,e2(ρH (Y)−ρ j (Y)) ≤ 1, andρ j (Y) ≥ 0 for everyY ∈ A+

H .

Hence,| f (exp(Y))|21(Y) is dominated by an exponential whose integral is conver-
gent. This concludes the proof of Lemma 1.

REMARK 1. Under our hypothesis we have the inequality

4G(k1ak2) = 4G(a) ≤ 4H (a)cG(1 + σG(a))r

for a ∈ exp(A+
H ), k1, k2 ∈ K1.

Let (π, V) be a Holomorphic Discrete Series representation forG and let(τ, W)

denote the lowestK−type forπ. Let E be the homogeneous vector bundle overG/K
attached to(τ, W). G acts on the sections ofE by left translation. We fix aG−invariant
inner product on sections ofE. The corresponding space of square integrable sections
is denoted byL2(E). Since(π, V) is a holomorphic representation we may choose a
G−invariant holomorphic structure onG/K such that theL2−kernel of ∂̄ is a real-
ization of(π, V). That is,V := K er(∂̄ : L2(E) → C∞(E ⊗ T?(G/K )0,1). (cf. [7],
[10], [14]). SinceH ⊂ G and K1 = H ∩ K we have thatH/K1 ⊂ G/K and the
H−homogeneous vector bundleE? over H/K1, determined byτ? is contained inE.

Thus, we may restrict smooth sections ofE to E?. From now on, we think of(π, V) as
the L2−kernel of the∂̄ operator.

LEMMA 2. Let f be a holomorphic square integrable section of E and assume
that f is left K−finite. Then the restriction of f to H/K1 is also square integrable.

Proof. Since thē∂ operator is elliptic, theL2−topology on its kernelV is stronger than
the topology of uniform convergence on compact subsets. Therefore, the evaluation
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map at a point inG/K is a continuous map fromV to W in the L2−topology onV.

We denote byλ evaluation at the coseteK. Fix an orthonormal basisv1, . . . , vm for W.

Thusλ =
∑m

i=1 λi vi where theλi are in the topological dual toV. We claim that theλi

areK−finite. In fact: ifk ∈ K , v ∈ V, (Lkλ)( f ) =
∑

i [(Lkλi )( f )]⊗vi = f (k−1) =
τ (k) f (e) =

∑
i λi ( f )τ (k)vi =

∑
i
∑

j ci j (k)λi ( f )vi =
∑

i [
∑

j c j i λ j ( f )] ⊗ vi .

ThusLk(λi ) belongs to the subspace spanned byλ1, · · · , λm. Now, f (x) = λ(Lx f ) =∑
i λi (Lx f )vi =

∑
i < Lx f, λi > vi . Here,<,> denotes theG−invariant inner

product onV andλi the vector inV that represents the linear functionalλi . Since
f andλi are K−finite, Lemma 1 says that the functionsx =→< Lx f, λi > are in
L2(E?).

Therefore the restriction map fromV to L2(E?) is well defined on the subspace of
K−finite vectors inV. Let D be the subspace of functions onV such that their restric-
tion to H is square integrable. Lemma 2 implies thatD is a dense subspace inV.We
claim that the restriction mapr : D → L2(E?) is a closed linear transformation. In
fact, if fn is a sequence inDthat converges inL2 to f ∈ V and such thatr ( fn) con-
verges tog ∈ L2(E?), then, sincefn converges uniformly on compacts tof, g is equal
to r ( f )almost everywhere. That is,f ∈ D. Sincer is a closed linear transformation, it
is equal to the product

(1) r = U P

of a positive semidefinite linear operatorP on V times a unitarylinear mapU from V
to L2(E?). Moreover, if X is the closure of theimage ofr in L2(E?), then the image
of U is X. Besides, wheneverr is injective,U is an isometry ofV onto X ([2],13.9).
Sincer is H−equivariant we have thatU is H−equivariant ([2], 13.13). In order to
continue we need to recall the Borel embedding of a bounded symmetric domain and
to make more precise the realization of the holomorphic Discrete Series(π, V) as the
square integrable holomorphic sections of a holomorphic vector bundle. SinceG is a
linear Lie group,G is the identity connected component of the set of real pointsof a
complex connected semisimple Lie groupGc. TheG−invariant holomorphic structure
on G/K determines an splittingg = p− ⊕ k ⊕ p+ so thatp− becomes isomorphic to
the holomorphic tangentspace ofG/K at the identity coset. LetP−, KC, P+ be the
associated complex analytic subgroups ofGc Then, the mapP− × KC × P+ −→
Gc defined by multiplication is a diffeomorphism onto an open dense subset inGC.

Hence, for eachg ∈ G we may writeg = p−(g)k(g)p+(g) = p−k(g)p+ with p− ∈
P−, k(g) ∈ KC, p+ ∈ P+. Moreover, there exists a connected, open and bounded
domainD ⊂ p− such thatG ⊂ exp(D)KCP+ and such that the map

(2) g −→ p−(g)k(g)p+(g) −→ log(p−(g)) ∈ p−

gives rise to a byholomorphism betweenG/K andD. The identity coset corresponds to
0. Now we consider the embedding ofH into G. Our hypothesis onH implies that there
exists a real linear subspaceq0 of p− so thatdimRq0 = dimCp− andH · 0 = D ∩ q0.

In fact, let J denote complex multiplication on the tangent space ofG/K , thenq0 is
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the subspace{X − i J X} whereX runs over the tangent space ofH/K1 at the identity
coset. LetE be the holomorphic vector bundle overG/K attached to(τ, W). As it
was pointed out we assume that(π, V) is the space of square integrable holomorphic
sections forE. We consider the real analytic vector bundleE? over H/K1 attached to
(τ?, W). ThusE? ⊂ E The restriction mapr : C∞(E) −→ C∞(E?) maps theK−finite
vectorsVF of V into L2(E?). Because we are in the situationH/K1 = D ∩ q0 ⊂ D ⊂
p− andH/K1 is a real form ofG/K , r is one to one when restricted to the subspace
of holomorphic sections ofE. Thus,r : V −→ C∞(E?) is one to one. Hence,U gives
rise to a unitary equivalence (asH−module) fromV to a subrepresentation ofL2(E?).

We need to show that the mapU, defined in (1), is onto, equivalently to show that the
image ofr is dense. To this end, we use the fact that the holomorphic vector bundleE
is holomorphically trivial. We now follow [6]. We recall that

C
∞(E) = {F : G −→ W, F(gk) = τ (k)−1F(g) and smooth}.

O(E) = {F : G → W, F(gk) = τ (k)−1F(g) smooth andRY f = 0∀Y ∈ p+}.

We also recall that(τ, W) extends to a holomorphic representation ofKC in W and
to KC P+ as the trivial representation ofP+. We denote this extension byτ. Let
C∞(D, W) = { f : D −→ W, f is smooth}. Then, the following correspondence
defines a linear bijection fromC∞(E) to C

∞(D, W) :

C
∞(E) 3 F ↔ f ∈ C

∞(D, W)

F(g) = τ (k(g))−1 f (g · 0), f (z) = τ (k(g))F(g), z = g · 0(3)

Here,k(g) is as in (2). Note thatτ (k(gk)) = τ (k(g))τ (k). Moreover, the map (3)
takes holomorphic sections onto holomorphic functions. The action ofG in E by left
translation, corresponds to the following

(4) (g · f )(z) = τ (k(x))τ (k(g−1x))−1 f (g−1 · z) f or z = x . 0

Thus, (k · f )(z) = τ (k) f (k−1 · z), k ∈ K . The G−invariant inner product onE
corresponds to the inner product onC∞(D, W) whose norm is

(5) ‖ f ‖2 =
∫

G
‖τ (k(g))−1 f (g · 0) ‖2dg

Actually, the integral is over theG−invariant measure onD because the integrand is
invariant under the right action ofK on G. We denote byL2(τ ) the space of square
integrable functions fromD into W with respect to the inner product (5). Now, in [14]
it is proved that theK−finite holomorphic sections ofE are inL2(E). Hence, Lemma
2 implies that

(6) theK−finite holomorphic functions fromD into W are inL2(τ ).

Via the Killing from,p−, p+ are in duality. Thus, we identify the space of holomorphic
polynomial functions fromD into W with the spaceS(p+) ⊗ W. The action (4) ofK
becomes the tensor product of the adjoint action onS(p+) with the τ action ofK in
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W. Thus, (6) implies thatS(p+) ⊗ W are theK−finite vectors inL2(τ ) ∩ O(D, W).

In particular, the constant functions fromD to W are in L2(τ ). The sections of the
homogeneous vector bundleE? over H/K1 are the functions fromH to W such that
f (hk) = τ (k)−1 f (h), k ∈ K1, h ∈ H. We identify sections ofE? with functions
form D ∩ q0 into W via the map (3). Thus,L2(E?) is identified with the space of
functions

L2(τ?) := { f : D −→ W,

∫
H

‖τ (k(h))−1 f (h · 0)‖2dh < ∞}

The action onL2(τ?) is as in (4). Now, the restriction map for functions fromD into
W to functions fromD ∩ q0 into W is equal to the map (3) followed by restriction
of sections fromD to D ∩ q0 followed by (3). Therefore, Lemma 2 together with (6)
imply that the restriction toD ∩ q0 of a K−finite holomorphic function fromD to W
is and element ofL2(τ?). Sinceq0 is a real form ofp− when we restrict holomorphic
polynomials inp− to q0 we obtain all the polynomial functions inq0. Thus, all the
polynomial functions fromq0 into W are inL2(τ?). In particular, we have that

(7)
∫

H
‖τ (k(h))−1v‖2dh < ∞, ∀ v ∈ W

Now, givenε > 0 and a compactly supported continuous functionf fromD∩q0 to W,
the Stone-Weierstrass Theorem produces a polynomial function p from q0 into W so
that‖ f (x)− p(x)‖ ≤ ε, x ∈ D∩q0. Formula (7) says that‖ f − p‖L2(τ?)

≤ ε. Hence,
the image by the restriction map ofV = O(D, W)∩ L2(τ ) is a dense subset. Thus, the
linear transformationU in (1) is a unitary equivalence fromV to L2(τ?). Therefore,
Theorem 1 is proved.

REMARK 2. For a holomorphic unitary irreducible representations which is not
necessarily square integrable, condition (7) is exactly the condition used by Olafsson
in [12] to show an equivalent statement to Theorem 1.
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