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AN ALTERNATIVE INTERPRETATION OF THE BEHAVIOR

LAW OF MATTER BY MEANS OF A GENERALIZED

STOCHASTIC PROCESS

Abstract. Discrepancy between discrete models and continuous theoretical ones
is a common concern with the behavior laws of matter. We propose an alternative
frame in which the transition from a discrete to a continuousmodel becomes very
natural. A statistical description of matter laws is given in this contexte.

1. Introduction

The aim of this paper is to present a new mathematical background which allows to modelize
in a natural way the mechanical behavior of matter. In such a model the transition from the
discrete microscopic structure to the macroscopic behavior is very easy. This point of view, in-
volves an alternative mathematical theory called “Radically Frequentist Statistics” (RFS), based
on an idealized concept ofvery large finite sequence of outcomes. Such an idealization cannot
be performed within the classical mathematical frame basedon Zermelo-Fraenkel’s set theory.
Therefore we use an extended frame based on a conservative extensions with a double scale
of magnitude order of ZF, where the concepts of large numbersand small fluctuations can be
formalized in a way which is very close to the statistical language. The use of a conservative ex-
tentions of ZF with one scale of magnitude order as a mathematical background for modelisation
is not news in mechanics (see [2], [3], [4], [5]).

The structure of the paper is the following: first we present roughly an intuitive statistical
description of matter; then we present the mathematical model considered . In section 3 we
introduced the RFS theory; we end in section 4 with the description of matter laws within RFS.

2. Intuitive statistical description

Consider a numbers of macroscopically identical samples of some matter, say plates of concrete
or a generalized composite. Divide each sample into adjacent cells of the same size (this last
hypothesis is not essential).

Let Xi, j ,k be a mechanical parameter of interest (Young modulus, shearmodulus...).and

xa
i, j ,k its value for theath sample. The range ofXi, j ,k is discretized into finite numbers of little

intervals. Thus we may suppose thatXi, j ,k takes its values in a finite setE. For a ∈ E, we
define the frequency

f r
(

Xi, j ,k = a
)

=
1

s
card

{

a
�

s, xa
i, j ,k = a

}

181



182 M. Magno - M. Musio

and the conditional frequency

f r
(

Xi, j ,k = a | Xi1, j1,k1 = a1, Xi2, j2,k2 = a2, · · · , Xir , jr ,kr = ar
)

=

=
f r
(

Xi, j ,k = aXi1, j1,k1 = a1, Xi2, j2,k2 = a2, · · · , Xir , jr ,kr = ar
)

f r
(

Xi1, j1,k1 = a1, Xi2, j2,k2 = a2, · · · , Xir , jr ,kr = ar
)

which measures the dependence of the mechanical propertiesof one cell with respect to ther
other cells.

The knowledge of all these frequencies gives an approximative description of the statistical
behavior law of this material.

A first way to transform this description into a mathematicalmodel is to introduce a family
of random variablesXε

i, j ,k whereε is the size of the cells andf ε
i, j ,k denotes the associated

conditional probabilities relying each cell to the others.Forε → 0 the corresponding continuous
model is rather to manage since we must handle the intricacies of continuous stochastic processes
with moderate parameter space. In the present work we introduce an alternative mathematical
model, which remains in the ream of finite combinatorics but replaced limit procedures by perfect
approximations. This is possible in a slight extension of classical mathematics where absolute
orders of magnitude are formalized.

3. The mathematical framework ZFL2

Scientists often deal in an intuitive way with orders of magnitude, large, little, very large, near,
very near... and they manipulate informally these fuzzy concepts in order to support their rea-
soning about real integers. But these concepts have no counterpart within classical mathematics.
This is a fundamental weakness of mathematics, in particular as concerns modelisation where
the link between micro et macroscopic levels has to be described. Fortunately there are now,
since the emergence of A.Robinson’sNon Standard Analysis[10] in the sixties, various conser-
vative extensions of ZF where absolute orders of magnitude can be introduced in a very natural
way. The most famous is E.Nelson’sInternal Set Theory(IST) [8], an axiomatic setting ofNon
Standard Analysis. Weaker extensions may also be useful to the probabilist, asNelson showed
in his book onRadically Elementary Probability Theory [9] (see also [1]).

In the present paper we introduce an elementary conservative extension of ZF with a dou-
ble hierarchy of orders of magnitude in which we develop the theory of Radically Frequentist
Statistics. Classical mathematics may be formalized in thecontext of Zermelo-Freankel’s set
theory (called here ZF). To get the extension ZFL2 (second order Leibniz extension of ZF),we
call internal the formulas of ZF we add to the language of ZF the two unary external predicates
moderate and weakly moderate and the following axiom rule:

1) 1 is moderate

2) every integer which is lower than a moderate integer is moderate;

3) every integer which is lower than a weakly moderate integer is weakly moderate;

4) if n andm are moderate integers, so aren + m, nmandnm;

5) all moderate integers are weakly moderate;

6) there exists a weakly moderate integer which is not moderate;

7) there exists an integer which is not weakly moderate;

It is possible to prove (see [1]) that ZFL2 is a conservative extension of ZF. This means that
:



An alternative interpretation 183

(i) every internal statement which is a theorem in ZFL2 is also a theorem in ZF;

(ii) all theorems of ZF are theorems within ZFL2.

Thus ZFL2 enriches classical mathematics with new concepts, but doesnot alter the status of
internal statements: they are neither more nor less theorems in ZFL2 than in ZF. This legitimates,
from the logical point of view the use of ZFL2 as a basis for the mathematical practice. But we
have external theorems which may be of help in modelisation procedures. Among all external
concepts expressible in the language of ZFL2 we have the following:

DEFINITION 1. A real number is called moderate (resp. weakly moderate) if and only if its
absolute value has a moderate (resp. weakly moderate) integral part. A positive real number
which is not moderate (resp weakly moderate) is called large(write � ∞) (resp. very large
(write � ∞)). A real number is called small (resp. very small ) if and only if it is 0 or its inverse
is not moderate (resp. weakly moderate). Two real numbers x and y are called close (write
x � y) (resp. very close (write x� y)) if their difference is small (resp. very small)

The orders of magnitude satisfy the following generalized Leibniz rules:

Concerning the first scale:

THEOREM1. Moderate + moderate = moderate,
moderate× moderate=moderate,
small + small = small,
small× moderate = small.

Concerning the second scale:

THEOREM2. Weakly moderate + weakly moderate = weakly moderate,
weakly moderate× weakly moderate = weakly moderate,
very small + very small = very small,
very small× weakly moderate = very small.

The two scales are linked by the following relations:

THEOREM3. Very small⇒ small,
very large⇒ large,
moderate⇒ weakly moderate.

The proofs are easy consequences of the external axioms (see[1] ).

Notice that a good model for the macroscopic continuous is a finite setx1 < x2 < · · · < xn
with x1≈x2≈···≈xn wherex1 ≈ −∞ and xn ≈ +∞. If we use the weak scale, we have an
intermediate near-continuous where a very large numbers ofxi remain at a small distance.

4. The theory RFS

In a ZFL2 context we introduce the Radically Frequentist Statistics(RFS) theory which can be
considered as an alternative mathematical foundation of statistics (see [6], [7]). The mean fact
about RFS is that all results of Probability Theory which arerelevant in statistics have a more
general counterpart in RFS. Moreover, these probabilisticstatements can be deduced from their
RFS counterpart through a purely logical procedure. Thus RFS contains the whole scientific



184 M. Magno - M. Musio

power of Probability Theory as concerns statistical modelisation.

The fundamental concept of RFS is that ofrandom number,i.e. a finite sequenceX =

(x1, ..., xs) ∈ Rs with very large sizes and such thatf r {|X| > m} ≈ 0 for everym ≈ ∞..

Its mean value M(X), variance V(X), deviationσ(X) anddistribution functionare defined as
usual by the formulas

M(X) =
1

s

s
∑

j =1

x j

V(X) = M((X − M(X))2) = M(X2) − (M(X))2,

σ (X) =
√

V(X),

FX(t) = f r {X ≤ t} .

We say thattwo random numbersX andY have common distributionif and only if f r {X ∈ I } ≈

f r {Y ∈ I } for each intervalI . Starting from the concept of random number, we define alarge
random sampleas a finite sequence of random numbersS = (X1, ..., Xn) with n large but not
very large. In other words we have a matrix(si j ) with n rows ands columns, where each column

is asample realization. Then writeµ(S) for the average ofS, µ(S) =

∑
Xi

n .

The concept of large random sample can be interpreted as an idealization of the informal
discourse which is usual in statistics: if very long independent sampling could be performed
repeatedly a large number of times, we would know the phenomenon nearly perfectly.

Let T = {t0, · · · , tn} be a set ofn real numbers witht0 < · · · < tn andn weakly mod-
erate. A one-dimensional stochastic process indexed byT is a sequence of random numbers
Xt0, · · · , Xtn with the same very large sizes. As a random sample, also a stochastic process can
be visualized by anxsmatrix, whose columns are the trajectories of the process.

In order to express the low of matter we have introduce thecharacteristic function8X (t) =

M (exp(i t X)) of a random numberX which satisfies :

(i ) if X andY have common (resp. weakly common) distribution, then8X (t) ≈ 8Y (t)
(resp.∼) for every weakly moderate (resp. moderate)t ;

(i i ) inversion formula:

f r (a < X ≤ b) +
1

2
f r {X = a} −

1

2
f r {X = b}

� 1

2π

∫

+T

−T

exp(−i ta) − exp(−i tb)

i t
8X(t)dt

for everya < b, every very largeT ;

(i i i ) for every continuous probability densityf with
∫

+T

−∞

f (x)dx �
∫

∞

T
f (x)dx � 0

for all very largeT , there is a random numberX such that
∫ x j

−∞

f (x) dx =
j

s + 1
.

Then

8X(t) �
∫

+∞

−∞

exp(i t x) f (x)dx
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for all weakly moderatet ;

(i v) if X is L Ln for some weakly moderaten, then

8X(t + h) = 8X(t) +

n
∑

k=1

hk

k!
M((i X)kexp(i t X)) + hnε

whereε
� 0 for all h � 0 and weakly moderatet ;

(v) if S= (X1, ..., Xn) is a sample of independent random numbers then

8X1+···+Xn(t) � 8X1(t) · · ·8Xn(t).

For the proof we refer to [6].

5. Theoretic model inside the RFS context

To formalize the empirical statistical description of §1 weintroduce a random numberXi, j ,k for
every cell(i, j , k) where 1

�
i
�

n, 1
�

j
�

p, 1
�

k
�

q . These random numbers take their
values in a discrete finite setE and the numbersn, p, q are large whiles is a very large. The
cells are supposed to be of small size. Thus the model can be visualized by a multidimensional
tablexa

i, j ,k , 1
�

a
�

s.

We have then the following cases:

a linear material is represented by anxsmatrix;

a bidimensional material is represented by a cubicnxpxsmatrix;

a tridimensional material is represented by an hypercubicnxpxqxsmatrix.

The statistical matter behavior law can be expressed by means of the following conditional
frequencies:

f r (Xi, j ,k = a | Xi1, j1,k1 = a1, Xi2, j2,k2 = a2, · · · , Xir , jr ,kr = ar ).

The model suggests the following rough classification of behaviors:

A) Local behaviors: among them we distinguish between the independent case

∀a ∈ E , ∀a1, · · · , ar ∈ E
∣

∣

∣

∣

f r
(

Xi, j ,k = a | Xi1, j1,k1 = a1, Xi2, j2,k2 = a2, · · · , Xir , jr ,kr = ar
)

−

f r
(

Xi, j ,k = a
)

∣

∣

∣

∣

≈ 0

and the weakly dependence case expressed by the conditions

∀a ∈ E , ∀a1, · · · , ar ∈ E
∣

∣

∣

∣

f r
(

Xi, j ,k = a | Xi1, j1,k1 = a1, Xi2, j2,k2 = a2, · · · , Xir , jr ,kr = ar
)

−

f r
(

Xi, j ,k = a
)

∣

∣

∣

∣

∼ 0

B) Non local behavior, where we distinguish between the short range dependence expressed
by the two conditions

∀a ∈ E , ∀a1, · · · , ar ∈ E
∣

∣ f r
(

Xi, j ,k = a
)

− f r
(

Xi, j ,k = a | Xir , jr ,kr = ar
)
∣

∣ not ≈ 0
∣

∣

∣

∣

f r
(

Xi, j ,k = a | Xi1, j1,k1 = a1, Xi2, j2,k2 = a2, · · · , Xir , jr ,kr = ar
)

−

f r
(

Xi, j ,k = a | Xir , jr ,kr = ar
)

∣

∣

∣

∣

≈ 0

and the weak short range dependence case expressed by:
∣

∣ f r
(

Xi, j ,k = a
)

− f r
(

Xi, j ,k = a | Xir , jr ,kr = ar
)
∣

∣ not ≈ 0
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∣

∣

∣

∣

f r
(

Xi, j ,k = a | Xi1, j1,k1 = a1, Xi2, j2,k2 = a2, · · · , Xir , jr ,kr = ar
)

−

f r
(

Xi, j ,k = a | Xir , jr ,kr = ar
)

∣

∣

∣

∣

∼ 0

the cells(i r , jr , kr ) range into the neighborhood of the(i, j , k)cell;

C) the long range dependence case expressed by the conditions:

∀a ∈ E , ∀a1, · · · , ar ∈ E
∣

∣ f r
(

Xi, j ,k = a
)

− f r
(

Xi, j ,k = a | Xir , jr ,kr = ar
)∣

∣ not ≈ 0

and
∣

∣ f r
(

Xi, j ,k = a
)

− f r
(

Xi, j ,k = a | Xir , jr ,kr = ar
)∣

∣ � 0

where the cells(i r , jr , kr )are not necessary in the neighborhood of the(i, j , k)cell.

This classification may be refined if one relates the dependences with the distances. The
inversion formula of the characteristic function may be useful to treat the information in order
to eliminate the white noise and to put in evidence the intrinsic characteristic distances of the
concerned matter.

6. Conclusion

This model gives a formal tool to characterize the behavior of matter in terms of local and non-
local interactions.

A theoretical model inside the probabilistic context wouldreplace the random numbers by
the random variable and frequency by the probabilities. Such a modelization hides the intuitive
interpretation of the model since the probability is a mathematical concept, which has no direct
statistical interpretation. However, in the statistical context of RFS, which works within the
mathematical framework of ZFL2 the description of the behavior is at the same time intuitive
and formal.
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STRAIN SOLITARY WAVES IN AN ELASTIC ROD WITH

MICROSTRUCTURE

Abstract. The nonlinear longitudinal strain solitary waves are studied inside cylin-
drical elastic rod with microstructure. The problem is solved using the pseudo-
continuum Cosserat model and the Le Roux continuum model. A procedure is
developed for derivation of a governing equation for longitudinal nonlinear strain
waves. Exact solution of the equation has the form of a travelling bell-shaped soli-
tary wave. The influence of microstructure on the solitary wave propagation is
studied. Possible experimental determination of the parameters of the microstruc-
ture is discussed.

1. Introduction

Sometimes classic elastic theory cannot account for phenomenon caused by the microstructure
of a material. A particular case is a dispersion of strain waves in an elastic medium. The influ-
ence of microstructure may provide dissipative effects [14, 6, 2], however, here consideration is
restricted by non-dissipative case. The theory of microstructure has been developed recently,
see [6, 7, 15, 17] and references therein. Most of results belong to the linear theory of elasticity,
however, there are findings in the field of the nonlinear theory [6, 7]. Strain waves were studied
mainly in the linear approximation [7, 15, 17]. Only a few works are devoted to the nonlinear
waves in microstructured non-dissipative media [6, 19, 20,10, 9]. Waves in elasticwave-guides
with microstructure were out of considerable investigation. Also the values of the parameters
characterizing microstructure, are unknown as a rule, onlya few data may be mentioned [20].

It is known that the balance between nonlinearity and dispersion may result in an appear-
ance of bulk localized long bell-shaped strain waves of permanent form (solitary waves or soli-
tons) which may propagate and transfer energy over the long distance along an elastic wave
guide. The amplification of them may cause the appearance of plasticity zones or microcracks
in a wave guide. This is of importance for an assessment of durability of elastic materials and
structures, methods of nondestructive testing, determination of the physical properties of elastic
materials, particularly, polymeric solids, and ceramics.Bulk waves provide better suited de-
tection requirements than surface strain waves in setting up a valuable nondestructive test for
pipelines.

Recently, the theory has been developed to account for long longitudinal strain solitary
waves propagating in a free lateral surface elastic rod [5, 21, 22]. The procedure has been pro-
posed to obtain model equations using boundary conditions on the rod surface [18]. The nonlin-
earity, caused by both the finite stress values and elastic material properties, and the dispersion
resulting from the finite transverse size of the rod, when in balance allow the propagation of

∗This research has been supported by the INTAS under Grant 99-0167.
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strain solitary wavesv. The equation governing this process is of Boussinesq type,namely, a
double dispersive equation

vt t − α1 vxx − α2( v2)xx + α3 vxxt t − α4 vxxxx = 0.

The coefficientsαi depend upon the elastic parameters of the rod material. Exact solution of the
equation has the form of a travelling bell-shaped solitary wave. The amplitude and the velocity
of the solitary wave are explicitly connected with the elastic moduli. It allows to propose the
estimation of the Murnaghan third order elastic moduli using measurement of the solitary wave
parameters [1]. Motivated by analytical theoretical predictions, there has been successful exper-
imental generation of strain solitons in a polystyrene freelateral surface rod using holographic
interferometry [3]. The procedure developed in Ref.[18], has been successfully applied for the
more complicated modelling of strain waves in a narrowing rod[4] and in a rod interacting with
an another external elastic medium [1].

The present paper refers to the study of nonlinear solitary waves inside cylindrical rod with
microstructure. The problem is solved using the ”pseudocontinuum” Cosserat model and the
Le Roux continuum model. A procedure is developed for derivation of the model equation for
long longitudinal strain waves inside the rod. The influenceof the microstructure on the solitary
wave propagation is studied. Possible experimental determination of the parameters of the
microstructure is discussed.

2. Modelling of elastic medium with microstructure

Recall some basic ideas following Eringen [7]. Suppose the macroelement of an elastic body
contains discrete micromaterial elements. At any time the position of a material point of theαth
microelement may be expressed as

x(α) = x + ξ (α),

wherex is the position vector of the center of mass of the macroelement, ξ (α) is the position
of a point in the microelement relative to the center of mass.The motion of the center of mass
depends upon the initial positionX and timet , x = x(X, t), while for ξ (α) the axiom of affine
motion is assumed,

ξ (α) = χK (X, t) 4
(α)
K ,

where4(α) characterizes initial position of a point relative to the center of mass. Then the square
of the arc length is(ds(α))2 = dx(α)dx(α), and the difference between the squares of arc length
in the deformed and undeformed body is

(ds(α))2 − (dS(α))2 = (xk,K xk,L − δK L + 2xk,K χkM,L 4M(1)

+ χkM,K χkN,L 4M 4N )d XK d XL

+ 2
(

xk,K χkL − δK L + χkL χkM 4M
)

d XK d4L

+ χkK χkLd4K d4L .

whereδK L is the Kronecker delta. Let us introduce vector of macrodisplacements,U(X, t) and
tensor of microdisplacements,8(X, t),

xk,K = (δL K + UL ,K )δkL,

χkK = (δL K + 8L K )δkL



Strain solitary waves 191

Then three tensors characterizing the behavior of microstructured medium follow from (1),

CK L =
1

2

(

UK ,L + UL ,K + UM,K UM,L
)

,

EK L = 8K L + UL ,K + UM,K 8M L ,

0K L M = 8K L ,M + UN,K 8N L,M ,

whereCK L is the Cauchy-Green macrostrain tensor,EK L is the tensor of a reference distortion,
0K L M is the tensor of microdistortion. Tensor of the second rankEK L accounts for the mi-
croelements motion relative to the center of mass of the macroelement, while tensor of the third
rank0K L M characterizes relative motion of the microelements of one another.

The density of the potential energy5 should be the function of these tensors,
5 = 5(CK L , EK L , 0K L M ), more precisely upon the invariants of them. The bulk density of
the kinetic energy has the form [15]

(2) K =
1

2
ρ0

(

U2
M,t + JK N 8K M,t 8N M,t

)

,

whereρ0 is macrodensity of the elastic material,JK N is the inertia tensor. Elastic media with
central symmetry posses simpler representation,JK N = J∗δK N .

One of the main problem is to define integrity basis of three tensorsCK L , EK L , 0K L M
[23, 8]. Moreover, the basic invariants of the third and higher rank tensors have not been studied.
That is why the models were developed based on the additionalassumption on a relationship
betweenU and8. One of them is the pseudocontinuum Cosserat model. According to it

(3) 8K L = −εK L M8M , 8M =
1

2
εM L K UK ,L ,

whereεK L M is the alternating tensor. The first relationship represents to the classic Cosserat
model when only rotations of solid microelements are possible. The last expression in (3)
accounts for the pseudocontinuum Cosserat model when microrotation vector8 coincides
with the macro rotation vector. In this case the density of the potential energy my be either
5 = 5(CK L , 0K L M ) or 5 = 5(CK L,8K ,L ) [17, 20]. TensorEK L has the form

EK L =
1

2

(

UK ,L + UL ,K + UM,K UM,L − UM,K UL ,M
)

,

and only linear part ofEK L coincides with those ofCK L . Assume the microstructure is suf-
ficiently weak to be considered in the linear approximation[17, 20], and the Murnaghan model
[5, 12, 16] is valid for macro motion. Then the density of the potential energy may be written as

5 =
λ + 2µ

2
I 2
1 − 2µI2 +

l + 2m

3
I 3
1 − 2mI1 I2 + nI3(4)

+ 2µM2(8K ,L8K ,L + η8K ,L8L ,K + β8K ,K 8L ,L),

whereλ andµ are the Lamé coefficients, (l , m, n) are the third order elastic moduli, or the Mur-
naghan moduli,M, η andβ are the microstructure constants,I p, p = 1, 2, 3 are the invariants
of the tensorC:

(5) I1(C) = tr C, I2(C) = [(tr C)2 − tr C2]/2, I3(C) = detC.
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Another simplified microstructure model was used by some authors, see [15, 19, 10]. Sometimes
it is referred to as the Le Roux continuum [9]. According to it

8K L = −UL ,K , 0K L M = −UL ,K M .

When microstructure is weak and may be considered in the linear approximation the linear part
of EK L is zero tensor. It means that there is no difference between deformation of elastic mi-
croelement and elastic macrostructure. In this case5 = 5(CK L, 0K L M ). Assume again the
Murnaghan model for the macro part of the energy density and use the linear Mindlin’s model
[15] for its micro part one can obtain

5 =
λ + 2µ

2
I 2
1 − 2µI2 +

l + 2m

3
I 3
1 − 2mI1 I2 + nI3 + a10K K M0M L L +

a20K L L0K M M + a30K K M0L L M + a402
K L M + a50K L M0M L K .(6)

whereai , i = 1 − 5, are the constant microstructure parameters.

3. Nonlinear waves in a rod with pseudocontinuum Cosserat microstructure

Let us consider the propagation of a longitudinal strain wave in an isotropic cylindricalcom-
pressiblenonlinearly elastic rod. We take cylindrical Lagrangian coordinates (x, r, ϕ) wherex
is directed along the axis of the rod,−∞ < x < ∞; r is the coordinate along the rod radius,
0 ≤ r ≤ R; ϕ is a polar angle,ϕ ε[0, 2π ]. Neglecting torsions the displacement vector is
U = (u, w, 0). Then nonzero components of the macrostrain tensorC are

Cxx = ux +
1

2
(u2

x + w2
x), Crr = wr +

1

2
(u2

r + w2
r ), Cϕϕ =

w

r
+

w2

2r 2
,

Crx = Cxr =
1

2
(ur + wx + uxur + wxwr ) .(7)

while nonzero components of the rotation tensor8K L are

(8) 8ϕ,x = wxx − urx , 8ϕ,r = wxr − urr .

The governing equations together with the boundary conditions are obtained using the
Hamilton variational principle, i.e., setting to zero the variation of the action functional,

(9) δS = δ

∫ t1

t0
dt

[

2π

∫

∞

−∞

dx
∫ R

0
r �dr

]

= 0,

where the Lagrangian density per unit volume,�=K − 5, with K and5 defined by Eqs.(2)
(4) correspondingly. The integration in brackets in (9) is carried out at the initial timet = t0.
Initially, the rod is supposed to be in its natural, equilibrium state.

The following boundary conditions (b.c.) are imposed:

w → 0 , at r → 0,(10)

Prr = 0 , at r = R,(11)

Prx = 0 , at r = R,(12)
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where the componentsPrr , Prx of the modified Piola - Kirchhoff stress tensorP are defined
from (9) with (4 ), (2), (7) and (8) being taken into account:

Prr = (λ + 2µ) wr + λ
w

r
+ λ ux +

λ + 2µ + m

2
u2

r +

3λ + 6µ + 2l + 4m

2
w2

r + (λ + 2l ) wr
w

r
+

λ + 2l

2

w2

r 2
+

(λ + 2l ) uxwr + (2l − 2m + n) ux
w

r
+

λ + 2l

2
u2

x +

λ + 2µ + m

2
w2

x + (µ + m) ur wx + 4µM2 (urrx − wxxr) ,(13)

Prx = µ (ur + wx) + (λ + 2µ + m) ur wr + (2λ + 2m − n) ur
w

r
+

(λ + 2µ + m) uxur +
2m − n

2
wx

w

r
+ (µ + m) wxwr +

(µ + m) uxwx + 4µM2[wxxx − uxxr +
1

r
(r (wxr − urr ))r −

1

2
J∗(urt t − wxt t)].(14)

Exception of torsions provides transformation of the initial 3D problem into a 2D one. Sub-
sequent simplification is caused by the consideration of only long elastic waves with the ratio
between the rod radiusR and typical wavelengthL is R/L � 1. The typical elastic strain mag-
nitude B is also small,B � 1. The Hamilton principle (9) yields a set of coupled equations
for u andw together with the b.c. (11 ), (12). To obtain a solution in universal way one usually
proceeds to the dimensionless form of the equations and looks for the unknown displacement
vector components in the form of power series in the small parameters of the problem (for ex-
ampleR/L), hence, leading to an asymptotic solution of the problem. However, this procedure
has some disadvantages. In particular, comparison of the predictions from the dimensionless
solution to the experiments suffers from the fact that bothB andL , are not well defined. Further,
the coefficients of the nonlinear terms usually contain combinations of elastic moduli which may
be also small in addition to the smallness ofB [21, 22] something not predicted beforehand.
Finally, this procedure gives equations of only first order in time,t , while general equations for
displacementsu andw are of the second order in time. Therefore the solution of themodel equa-
tion will not satisfy two independent initial conditions onlongitudinal strains or displacements
[21].

An alternative is to simplify the problem making some assumptions about the behavior of
longitudinal and/or shear displacements and/or strains inthe elastic wave-guide. Referring to the
elastic rod these relationships give explicit dependence of u andw upon the radius, while their
variations along the rod axis are described by some unknown function and its derivatives along
the axis of the rod. Then the application of Hamilton’s principle (9) yields the governing equation
in dimensional form for this function. This equation is of the second order of time, hence its
solution can satisfy two independent initial conditions. Any combinations of elastic moduli
appear in the coefficients of the equation, hence, subsequent scaling may take into account their
orders when introducing small parameters.

For an elastic rod, the simplest assumption is the plane cross section hypothesis [13]: the
longitudinal deformation process is similar to the beards movement on the thread. Then every
cross-section of the rod remains flat, hence,u = U(x, t) does not change along the radius
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r . However, this assumption is not enough due to the Poisson effect, i.e., longitudinal and shear
deformations are related. That is why Love proposed to use a relationship betweenw andu: w =

−r ν Ux , with ν the Poisson coefficient[11]. Unfortunately, the plane cross-section hypothesis
and Love’s hypothesis do not satisfy the boundary conditions that demand vanishing of both the
normal and tangential stresses,Prr and Prx , at the lateral surface of the rod with prescribed
precision.

Another theory has been proposed in [18] to find the relationships between displacement
vector components satisfying b.c. on the lateral surface ofthe rod (11), (12) as well as the
condition forw (10).

Since pure elastic wave are studied,B � 1, the ”linear” and ”nonlinear” parts of the re-
lationships may be obtained separately. A power series approximations is used, as generally
done for long wave processes. An additional parameterγ = M2/R2 is introduced to charac-
terize the microstructure contribution. Accordingly, thelongitudinal and shear displacement in
dimensionalform are:

u = uL + uN L,

uL = u0(x, t) + r u1(x, t) + r 2u2(x, t) + ...,

uN L = uN L0(x, t) + r uN L1(x, t) + ...,(15)

w = wL + wN L,

wL = w0(x, t) + r w1(x, t) + r 2w2(x, t) + ....,

wN L = wN L0(x, t) + r wN L1(x, t) + ...(16)

Substituting the linear partsuL andwL (15), (16) into the b.c. (10) and in the linear parts
of b.c. (11 ), (12), and equating to zero terms at equal powersof r one obtainsuk andwk. Using
these results the nonlinear partsuN L , wN L are similarly obtained from the full b.c. We get

(17) u = U(x, t) +
νr 2

2

1 + 4γ

1 − 4γ
Uxx,

w = −νrUx −
ν

2(3 − 2ν)(1 − 4γ )
[ν + 4γ (2 + ν)] r 3Uxxx −

[

ν(1 + ν)

2
+

(1 − 2ν)(1 + ν)

E

(

l (1 − 2ν)2 + 2m(1 + ν) − nν

)

]

rU 2
x ,(18)

whereν is the Poisson ratio,E is the Young modulus. Other terms from the series (15), (16)
for i > 3 may be found in the same way, however, they are omitted here because of no
influence on the final model equation for the strain waves. Substituting (17), (18) into (9), and
using Hamilton’s principle we obtain that longitudinal strains,v = Ux, obey a double dispersive
nonlinear equation:

(19) vt t − α1 vxx − α2( v2)xx + α3 vxxt t − α4 vxxxx = 0,

whereα1 = c2
∗ = E/ρ0, α2 = β/(2ρ0), β = ( 3E +2l (1−2ν)3 +4m(1+ν)2(1−2ν)+6nν2),

α3 = ν(1 − ν)R2/2,

α4 =
νE R2

2ρ0

1 + 4γ

1 − 4γ
.
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Hence the microstructure affects only dispersion in Eq.(19). The solitary wave solution of
Eq.(19) is

(20) v =
6νE R2k2

β

(

1 + 4γ

1 − 4γ
−

(1 − ν)V2

c2
∗

)

cosh−2(k (x − V t)),

whereV is a free parameter while the wave numberk is defined by

(21) k2 =
2ρ0(V

2 − c2
∗)

νE R2
(

1+4γ
1−4γ

−
(1−ν)V2

c2
∗

) .

Therefore the contribution of the microstructure results in the widening of the permitted
solitary wave velocities,

1 <
V2

c2
∗

<
1

1 − ν

1 + 4γ

1 − 4γ
.

Also the characteristic width of the solitary wave proportional to 1/k becomes larger relative
to the wave width in pure elastic case,γ = 0. We considerγ to be rather small due to the
experimental data from Ref. [20]. Then the type of the solitary wave (compression/tensile) is
defined by the sign of the nonlinearity parameterβ like in case without microstructure.

4. Nonlinear waves in a rod with Le Roux continuum microstructure

The procedure of obtaining the governing equations is similar to those used in previous section.
The nonzero components of the tensor0K L M are

0xxx = −uxx, 0xxr = 0rxx = −uxr , 0xrx = −wxr ,

0xrr = 0rrx = −wxr , 0rxr = −urr , 0rrr = −wrr .

The b.c. (11), (12) are satisfied for the strain tensor components

Prr = (λ + 2µ) wr + λ
w

r
+ λ ux +

λ + 2µ + m

2
u2

r +
3λ + 6µ + 2l + 4m

2
w2

r +

(λ + 2l ) wr
w

r
+

λ + 2l

2

w2

r 2
+ (λ + 2l ) uxwr + (2l − 2m + n) ux

w

r
+

λ + 2l

2
u2

x +
λ + 2µ + m

2
w2

x + (µ + m) ur wx + 2J∗ (2uxt t + wrt t ) −

2a1uxxx − 2(a1 + 2a2)wxxr − 2(a1 + a2)
1

r
(r (wrr ))r − a1

1

r
(r (uxr ))r ,(22)

Prx = µ (ur + wx) + (λ + 2µ + m) ur wr + (2λ + 2m − n) ur
w

r
+

(λ + 2µ + m) uxur +
2m − n

2
wx

w

r
+ (µ + m) wxwr +

(µ + m) uxwx + 2J∗urt t − a1wxrr − 2(a1 + 2a2)uxxr − 2a2
1

r
(r (urr ))r .(23)

Then the approximations for the components of the displacement vector have the form

(24) u = U(x, t) +
νr 2

2

1

1 − N
Uxx,
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w = −νrUx −
4J∗(2 − ν)(1 + ν)(1 − 2ν)

E(3 − 2ν)R2
r 3Uxt t −

ν2 − (1 − 2ν)(1 − N)(G(1 − ν) − 2νN)

2(3 − 2ν)(1 − N)
r 3Uxxx −

[

ν(1 + ν)

2
+

(1 − 2ν)(1 + ν)

E

(

l (1 − 2ν)2 + 2m(1 + ν) − nν
)

]

rU 2
x ,(25)

whereG = 2a1/µR2, N = 2a2/µR2. Like in previous section the governing equation for
longitudinal strainv = Ux is the double dispersive equation (19) whose coefficients are defined
now as

α1 = c2
∗, α2 =

β

2ρ0
, α3 =

νR2

2(1 − N)
−

ν2R2

2
+ 2J∗ν(2 − ν), α4 =

νc2
∗ R2

2(1 − N)
.

Solitary wave solution has the form

(26) v =
6νE R2k2

β

(

1

1 − N
−

[

1

1 − N
− ν +

4J∗(2 − ν)

R2

]

V2

c2
∗

)

cosh−2(k (x − V t)),

whereV is a free parameter, and the wave numberk is defined by

(27) k2 =
2(1 − N)ρ0(V2 − c2

∗)

νE R2
[

c2
∗ − V2

(

1 − ν(1 − N) + 4J∗(1 − N)(2 − ν)/R2
)

] .

Physically reasonable case corresponds to rather smallN, N < 1. Then the influence of the
microstructure yields an alteration of the permitted solitary wave velocities interval,

1 <
V2

c2
∗

<
1

1 − ν(1 − N) + 4J∗(1 − N)(2 − ν)/R2
.

The widening or narrowing of the interval depends upon the relationship betweenN and the
parameter of microinertiaJ∗. Like in previous section the type of the solitary wave is governed
by the sign of the nonlinearity parameterβ. At the same time the characteristic width of the
solitary wave proportional to 1/k turns out smaller than the wave width in a pure macroelastic
case,N = 0, J∗ = 0.

5. Discussion

It is found that the double dispersive equation (19) accounts for longitudinal strain wave propa-
gation inside the rod even in presence of the microstructure, and only dispersion term coefficients
alter in comparison with the pure macroelastic case. The procedure proposed in [18] is profitably
applied for the derivation of the governing equation in dimensional form for both the Cosserat
and the Le Roux models. The assumption of the linear contribution of the microstructure is
correct since its nonlinear contribution, being weaker, may provide alterations only in the ne-
glected higher order nonlinear and dispersion terms in the governing equation. Hence we don’t
need in an additional nonlinear terms in the density of the potential energy5 thus avoiding the
additional unknown parameters (like Murnaghan’s third order moduli) describing the nonlinear
contribution of the microstructure.
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The alterations of the amplitude and the wave width, caused by the microstructure, have
been found in both case under study. The important result is in the opposite changing of the
wave width which gives a possibility to distinguish the Cosserat and the Le Roux models in
possible experiments.

The dispersion caused by the microstructure may be observedexperimentally, and numer-
ical data on microstructure parameters my be obtained[20].In experiments on solitary waves
propagation [3] the amplitude and the velocity of the wave may be measured. Therefore ex-
pressions (20), (21) provide possible estimation of the parameterM in the pseudocontinuum
Cosserat model. In case of the Le Roux continuum there is an extra parameterJ∗, see (26), (27),
and parametersN andJ∗ cannot be estimated separately.
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