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AN ALTERNATIVE INTERPRETATION OF THE BEHAVIOR
LAW OF MATTER BY MEANS OF A GENERALIZED
STOCHASTIC PROCESS

Abstract. Discrepancy between discrete models and continuous tiigadrenes
is a common concern with the behavior laws of matter. We pefm alternative
frame in which the transition from a discrete to a continuouglel becomes very
natural. A statistical description of matter laws is givarhis contexte.

1. Introduction

The aim of this paper is to present a new mathematical backdravhich allows to modelize
in a natural way the mechanical behavior of matter. In suchodahthe transition from the
discrete microscopic structure to the macroscopic behawigery easy. This point of view, in-
volves an alternative mathematical theory called “Radliidalequentist Statistics” (RFS), based
on an idealized concept okry large finite sequence of outcom&ich an idealization cannot
be performed within the classical mathematical frame basedermelo-Fraenkel’s set theory.
Therefore we use an extended frame based on a conservatéresiexs with a double scale
of magnitude order of ZF, where the concepts of large numaedssmall fluctuations can be
formalized in a way which is very close to the statisticagaage. The use of a conservative ex-
tentions of ZF with one scale of magnitude order as a mathieahéackground for modelisation
is not news in mechanics (see [2], [3], [4], [5])-

The structure of the paper is the following: first we presenighly an intuitive statistical
description of matter; then we present the mathematicaleicohsidered . In section 3 we
introduced the RFS theory; we end in section 4 with the dpsori of matter laws within RFS.

2. Intuitive statistical description

Consider a numbes of macroscopically identical samples of some matter, sateplof concrete
or a generalized composite. Divide each sample into adjamls of the same size (this last
hypothesis is not essential).

Let Xj j k be a mechanical parameter of interest (Young modulus, shedulus...).and
xfj’k its value for thea!" sample. The range of;, j k is discretized into finite numbers of little
intervals. Thus we may suppose th§tj k takes its values in a finite s&. Fora € E, we
define the frequency

1
fr(Xi,jk=2a) = Scard {a <s X = a}
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and the conditional frequency

fr(Xijk=2alXipjik = a1 Xig.joke =82+ Xir jr .k =ar) =
i (Xijk = aXip ik = a1 Xig ok =320 X ok = &)
fr (Xip, jobky = 81 Xig,joko = 82,5 Xip i ke = @)

which measures the dependence of the mechanical propefttese cell with respect to the
other cells.

The knowledge of all these frequencies gives an approximatscription of the statistical
behavior law of this material.

A first way to transform this description into a mathematicaidel is to introduce a family
of random varlableé(g K wheree is the size of the cells ancﬂgJ i denotes the associated
conditional probabllltles relying each cell to the othd¥sre — 0 the corresponding continuous
model is rather to manage since we must handle the intrieaf@ntinuous stochastic processes
with moderate parameter space. In the present work we intedn alternative mathematical
model, which remains in the ream of finite combinatorics bptaced limit procedures by perfect
approximations. This is possible in a slight extension aésical mathematics where absolute
orders of magnitude are formalized.

3. The mathematical framework ZFL»

Scientists often deal in an intuitive way with orders of mitwpte, large, little, very large, near,
very near... and they manipulate informally these fuzzycepits in order to support their rea-
soning about real integers. But these concepts have noarpant within classical mathematics.
This is a fundamental weakness of mathematics, in parti@daoncerns modelisation where
the link between micro et macroscopic levels has to be destri Fortunately there are now,
since the emergence of A.RobinsoNen Standard Analysid.0] in the sixties, various conser-
vative extensions of ZF where absolute orders of magnitadebe introduced in a very natural
way. The most famous is E.Nelsorirgernal Set Theory(IST) [8], an axiomatic setting dflon
Standard AnalysisWeaker extensions may also be useful to the probabilistiedson showed
in his book onRadically Elementary Probability Thegr[9] (see also [1]).

In the present paper we introduce an elementary consezvatiension of ZF with a dou-
ble hierarchy of orders of magnitude in which we develop treoty of Radically Frequentist
Statistics. Classical mathematics may be formalized incth@ext of Zermelo-Freankel's set
theory (called here ZF). To get the extension ZRKkecond order Leibniz extension of ZF),we
call internal the formulas of ZF we add to the language of Z~ttto unary external predicates
moderate and weakly moderate and the following axiom rule:

1) 1 is moderate

2) every integer which is lower than a moderate integer iserete;

3) every integer which is lower than a weakly moderate intégeeakly moderate;

4) if n andm are moderate integers, so arg- m, nmandnm;

5) all moderate integers are weakly moderate;

6) there exists a weakly moderate integer which is not maegra

7) there exists an integer which is not weakly moderate;

Itis possible to prove (see [1]) that ZFlis a conservative extension of ZF. This means that
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(i) every internal statement which is a theorem in 2k4 also a theorem in ZF;

(ii) all theorems of ZF are theorems within ZgL

Thus ZFL, enriches classical mathematics with new concepts, butrtiester the status of
internal statements: they are neither more nor less theoire&FL, than in ZF. This legitimates,
from the logical point of view the use of Zklas a basis for the mathematical practice. But we
have external theorems which may be of help in modelisationgaures. Among all external
concepts expressible in the language of Zkte have the following:

DEFINITION 1. A real number is called moderate (resp. weakly moderate)dfanly if its
absolute value has a moderate (resp. weakly moderate)raitpgrt. A positive real number
which is not moderate (resp weakly moderate) is called I4{mgete ~ oo) (resp. very large
(write = 00)). A real number is called small (resp. very small ) if andyoifiit is O or its inverse
is not moderate (resp. weakly moderate). Two real numberadkyaare called close (write
X ~y) (resp. very close (write x y)) if their difference is small (resp. very small)

The orders of magnitude satisfy the following generalizeébhiz rules:
Concerning the first scale:

THEOREM1. Moderate + moderate = moderate,
moderatex moderate=moderate,

small + small = small,

small x moderate = small.

Concerning the second scale:

THEOREM2. Weakly moderate + weakly moderate = weakly moderate,
weakly moderatex weakly moderate = weakly moderate,

very small + very small = very small,

very smallx weakly moderate = very small.

The two scales are linked by the following relations:

THEOREM3. Very small= small,
very large= large,
moderate= weakly moderate.

The proofs are easy consequences of the external axiomfl{9ee

Notice that a good model for the macroscopic continuous isitefsetx; < Xo < -+ < Xp
With X1aXo~..aXn Wherex; = —oo andxn ~ +oo. If we use the weak scale, we have an
intermediate near-continuous where a very large numbexsmmain at a small distance.

4. The theory RFS

In a ZFL, context we introduce the Radically Frequentist StatigiRiSS) theory which can be
considered as an alternative mathematical foundationatits (see [6], [7]). The mean fact
about RFS is that all results of Probability Theory which aglevant in statistics have a more
general counterpart in RFS. Moreover, these probabilsséitements can be deduced from their
RFS counterpart through a purely logical procedure. ThuS Béntains the whole scientific
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power of Probability Theory as concerns statistical maagion.

The fundamental concept of RFS is thatrahdom numberj.e. a finite sequencX =
(X1, ..., Xs) € RS with very large sizes and such thatfr {|X| > m} ~ 0 for everym =~ oo..
Its mean value MX), variance V(X), deviationo (X) anddistribution functionare defined as
usual by the formulas

l S
M(X) = gZXJ
j=1

V(X) = M((X—M(X)?) =M(X3) — (M(X))?,
a(X) = VX,
Fx(t) = fr{X<t}.

We say thatwo random numberX andY have common distributiaghand only if fr{X € I} ~
fr{Y e 1} for each interval . Starting from the concept of random number, we defitege
random sampl@s a finite sequence of random numb8rs: (X1, ..., Xpn) with n large but not
very large. In other words we have a matfs ) with n rows ands columns, where each column

is asample realizationThen write (S) for the average 08, 1 (S) = %

The concept of large random sample can be interpreted asealization of the informal
discourse which is usual in statistics: if very long indegiemt sampling could be performed
repeatedly a large number of times, we would know the phenomeearly perfectly.

LetT = {tg,---,tn} be a set oh real numbers withg < --- < ty andn weakly mod-
erate. A one-dimensional stochastic process indexed s/a sequence of random numbers
Xtg, - -+ » Xt, With the same very large size As a random sample, also a stochastic process can
be visualized by axsmatrix, whose columns are the trajectories of the process.

In order to express the low of matter we have introducet@@acteristic functiord x (t) =
M (exp(it X)) of a random numbeK which satisfies :

(i) if X andY have common (resp. weakly common) distribution, tdeg (t) ~ v (t)
(resp.~) for every weakly moderate (resp. moderdate)

(ii) inversion formula:

fra<X=<h + %fr{xza}—:—;fr{xzb}

1 /+T exp(—ita) — exp(—ith)
27 J_T1 it

~
~

Dy (t)dt

for everya < b, every very largdl ;
(iii ) for every continuous probability densitlywith

+T 00
/ f(x)dxz/ f(x)dx=0
—00 T
for all very largeT, there is a random numbet such that
/XJ f(xX)dx= ]
oo T s+ 1
Then
+00
Dy (t) = / expitx) f (x)dx

—00



An alternative interpretation 185

for all weakly moderate;
(iv) if Xis LL" for some weakly moderate then

n k
Ox(t+h) =dx)+ Y %M((iX)kexp(itX)) +h"e
k=1

wheree = 0 for allh = 0 and weakly moderate
(v) if S= (X4, ..., Xp) is a sample of independent random numbers then

Bxy o X (1) R Dy (1) - D, (1),

For the proof we refer to [6].

5. Theoretic model inside the RFS context

To formalize the empirical statistical description of §1 iweoduce a random numbe; for
every cell(i, j,k) where 1< i < n, 1< j € p, 1<k < q. These random numbers take their
values in a discrete finite s& and the numbers, p, q are large whiles is a very large. The
cells are supposed to be of small size. Thus the model carshalized by a multidimensional
tablexfj’k ,1<ax<s.
We have then the following cases:

a linear material is represented byas matrix;

a bidimensional material is represented by a cubipxsmatrix;

a tridimensional material is represented by an hypercakjoxgxsmatrix.

The statistical matter behavior law can be expressed by srafathe following conditional
frequencies:

friXijk=2alXig,jk =aw Xy, joky =82, » Xig jr ke = a)-

The model suggests the following rough classification ofvédrs:

A) Local behaviors: among them we distinguish between tbependent case
Vae E,Vay,---,a € E

‘ fr (Xijk =2l Xipjik = a1 Xig.joke = 2.+ Xig jr ke =ar) = ‘ ~0

fr (Xi,j,k = a)
and the weakly dependence case expressed by the conditions
Vae E,Vay,---,a € E
‘ fr (Xijk =2l Xigjiky =81 Xip joke =82, Xirjrk =a) = | _ g
fr (Xi,j,k = a)

B) Non local behavior, where we distinguish between thetslamge dependence expressed
by the two conditions

Vae E,Va,---,a € E
|f|’ (Xi,j,k =a) — fr (Xi,j,k =al X j .k =ar)|not%0
‘ fr (Xijk=al Xiy,jyky = a1 Xiy, jok, = 82, Xig jr ke = ar) = ‘ ~0
fr(Xijk=al X j.k =a)
and the weak short range dependence case expressed by:
\fr (Xi,j,k =a) — fr (Xi,j,k =a| X j .k =ar)\not%0
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fr(Xijk=alXigjik = a1 Xig joko =82+ X jr k. =) =
fr (Xijk=al X j.k =a)
the cells(iy, jr, kr) range into the neighborhood of tite j, k)cell;
C) the long range dependence case expressed by the cosdition
Vae E,Vay,---,a € E
| fr (Xi,j,k = a) — fr (Xi,j,k =al| X j .k = ar)| not~ 0
and
[fr(Xijk=a) = fr (Xijk=2alX_ j.k =a)[ =0
where the cellsir, jr, kr)are not necessary in the neighborhood of(ihe, k)cell.

This classification may be refined if one relates the depearedewith the distances. The
inversion formula of the characteristic function may befukt treat the information in order
to eliminate the white noise and to put in evidence the istcitharacteristic distances of the
concerned matter.

~0

6. Conclusion

This model gives a formal tool to characterize the behavienatter in terms of local and non-
local interactions.

A theoretical model inside the probabilistic context wotdghlace the random numbers by
the random variable and frequency by the probabilities hSumodelization hides the intuitive
interpretation of the model since the probability is a matagcal concept, which has no direct
statistical interpretation. However, in the statisticahtext of RFS, which works within the
mathematical framework of ZFLthe description of the behavior is at the same time intuitive
and formal.
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STRAIN SOLITARY WAVES IN AN ELASTIC ROD WITH
MICROSTRUCTURE

Abstract. The nonlinear longitudinal strain solitary waves are stddnside cylin-
drical elastic rod with microstructure. The problem is salwsing the pseudo-
continuum Cosserat model and the Le Roux continuum modelrogeglure is
developed for derivation of a governing equation for loadihal nonlinear strain
waves. Exact solution of the equation has the form of a thiaggbell-shaped soli-
tary wave. The influence of microstructure on the solitaryavpropagation is
studied. Possible experimental determination of the patars of the microstruc-
ture is discussed.

1. Introduction

Sometimes classic elastic theory cannot account for phenomcaused by the microstructure
of a material. A particular case is a dispersion of strainesawn an elastic medium. The influ-
ence of microstructure may provide dissipative effects gl 4], however, here consideration is
restricted by non-dissipative case. The theory of micuzstre has been developed recently,
see [6, 7, 15, 17] and references therein. Most of resultsigab the linear theory of elasticity,
however, there are findings in the field of the nonlinear th¢ér7]. Strain waves were studied
mainly in the linear approximation [7, 15, 17]. Only a few \Werare devoted to the nonlinear
waves in microstructured non-dissipative media [6, 19,120 9]. Waves in elastimave-guides
with microstructure were out of considerable investigatid\so the values of the parameters
characterizing microstructure, are unknown as a rule, arigwv data may be mentioned [20].

It is known that the balance between nonlinearity and dgper may result in an appear-
ance of bulk localized long bell-shaped strain waves of pent form (solitary waves or soli-
tons) which may propagate and transfer energy over the listgrite along an elastic wave
guide. The amplification of them may cause the appearanckastigty zones or microcracks
in a wave guide. This is of importance for an assessment afility of elastic materials and
structures, methods of nondestructive testing, detetinimaf the physical properties of elastic
materials, particularly, polymeric solids, and cerami@&ulk waves provide better suited de-
tection requirements than surface strain waves in setting ualuable nondestructive test for
pipelines.

Recently, the theory has been developed to account for longitudinal strain solitary
waves propagating in a free lateral surface elastic rod1522]. The procedure has been pro-
posed to obtain model equations using boundary conditinrie@rod surface [18]. The nonlin-
earity, caused by both the finite stress values and elasterialaproperties, and the dispersion
resulting from the finite transverse size of the rod, whenafahce allow the propagation of

*This research has been supported by the INTAS under Grab168-
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strain solitary waves. The equation governing this process is of Boussinesq tyamely, a
double dispersive equation

2
vt — a1 Uxx — o2( V) xx + @3 Uxxtt — o4 vxxxx = 0.

The coefficients; depend upon the elastic parameters of the rod material.t Bgadion of the
equation has the form of a travelling bell-shaped solitaayev The amplitude and the velocity
of the solitary wave are explicitly connected with the @tastoduli. It allows to propose the
estimation of the Murnaghan third order elastic moduli ggimeasurement of the solitary wave
parameters [1]. Motivated by analytical theoretical pcidns, there has been successful exper-
imental generation of strain solitons in a polystyrene fegeral surface rod using holographic
interferometry [3]. The procedure developed in Ref.[1&]s bbeen successfully applied for the
more complicated modelling of strain waves in a narrowirg{4pand in a rod interacting with
an another external elastic medium [1].

The present paper refers to the study of nonlinear solitayes inside cylindrical rod with
microstructure. The problem is solved using the "pseudticonm” Cosserat model and the
Le Roux continuum model. A procedure is developed for déaowaof the model equation for
long longitudinal strain waves inside the rod. The influeatthe microstructure on the solitary
wave propagation is studied. Possible experimental détation of the parameters of the
microstructure is discussed.

2. Modelling of elastic medium with microstructure

Recall some basic ideas following Eringen [7]. Suppose theroelement of an elastic body
contains discrete micromaterial elements. At any time tiggtjpn of a material point of theth
microelement may be expressed as

@ — x4+ @),

wherex is the position vector of the center of mass of the macroetengé® is the position
of a point in the microelement relative to the center of m8$® motion of the center of mass
depends upon the initial position and timet, x = x(X, t), while for £ the axiom of affine
motion is assumed,

£ = xe 6,1 8¢,

whereZ(® characterizes initial position of a point relative to thetes of mass. Then the square
of the arc length igds®))2 = dx@dx(®, and the difference between the squares of arc length
in the deformed and undeformed body is

1) @ds®)2 - @dSY)? = (XK XL — OKL + 2X K XKML EM
+  XkM.K XkN,L Em En)d Xk d XL
+  2(Xk K xkL — 8K L + xkL xkm Em) d Xk dE
+  XkK XkLJEK dEL.

wheredk | is the Kronecker delta. Let us introduce vector of macrddisgmentsy(X, t) and
tensor of microdisplacement®,(X, t),

Ok + UL k)KL,
OLk + PLK)KL

Xk, K
XKkK
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Then three tensors characterizing the behavior of miarosired medium follow from (1),

1
CkL = E(UK,L-I-UL,K +UmkUm.L),
EkL = ®kL+ULk+Uwmk ML,
F'kem = Pk,m +UnK ONL M

whereCy | is the Cauchy-Green macrostrain ten&fy, is the tensor of a reference distortion,
'k LM is the tensor of microdistortion. Tensor of the second r&Rl accounts for the mi-
croelements motion relative to the center of mass of the ogdéement, while tensor of the third
rankk L characterizes relative motion of the microelements of ovoeteer.

The density of the potential ener@y should be the function of these tensors,
IT =TI(CkL, EkL, CkLm), more precisely upon the invariants of them. The bulk dgrit
the kinetic energy has the form [15]

@) K =%po (UI%A_I'*'JKN ‘DKM,t‘DNM,t),
wherepg is macrodensity of the elastic materidk y is the inertia tensor. Elastic media with
central symmetry posses simpler representatigny = J*Sk N -

One of the main problem is to define integrity basis of thremsaesCk |, ExL, TkLmMm
[23, 8]. Moreover, the basic invariants of the third and leigtank tensors have not been studied.
That is why the models were developed based on the additassaimption on a relationship
betweenJ and®. One of them is the pseudocontinuum Cosserat model. Acuptdiit

1
(3 kL =—ekLM DM, <I>M=§8MLKUK,|_,

whereegk v is the alternating tensor. The first relationship represémthe classic Cosserat
model when only rotations of solid microelements are pdssibiThe last expression in (3)
accounts for the pseudocontinuum Cosserat model when mitation vector® coincides
with the macro rotation vector. In this case the density ef plotential energy my be either
I =I(CkL,TkLm) or 1 = I(Ck L, Pk, ) [17, 20]. TensoiEk . has the form

1
Exi =5 (Uk.L +ULk + UM kUm.L —UmkUL M)
and only linear part oEk | coincides with those o€k | . Assume the microstructure is suf-
ficiently weak to be considered in the linear approximatldn[20], and the Murnaghan model
[5, 12, 16] is valid for macro motion. Then the density of tleeemtial energy may be written as

A4 21 | +2m
2

+ ZMMZ@K,L(DK,L + 1Pk, LOL K +BPK,KDL,L),

4 n 13 —2mlyly +nli3

12 —2ulp +

wherel andu are the Lamé coefficientd, n, n) are the third order elastic moduli, or the Mur-
naghan moduli,M, n andg are the microstructure constantg, p = 1, 2, 3 are the invariants
of the tensocC:

(5) 11(C) = trC, 12(C) = [(trC)% —trC?]/2, 13(C) = detC.
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Another simplified microstructure model was used by someast see [15, 19, 10]. Sometimes
it is referred to as the Le Roux continuum [9]. According to it

dkL =-Ur k., TkLm =-UL km-

When microstructure is weak and may be considered in thadiapproximation the linear part
of Ex L is zero tensor. It means that there is no difference betweésrmation of elastic mi-

croelement and elastic macrostructure. In this dése IT(Ck L, 'kLm).- Assume again the
Murnaghan model for the macro part of the energy density aedhe linear Mindlin’s model

[15] for its micro part one can obtain

A+2u | +2m
n = > |f—2ﬂ|2+Tlf—2m|1|2+n|3+a1FKKMFMLL—|—
(6) 8K LLTKMM + 83Tk KMTLLM + 84l |y + 3Tk LMTMLK -
whereg;, i = 1— 5, are the constant microstructure parameters.

3. Nonlinear waves in a rod with pseudocontinuum Cosserat narostructure

Let us consider the propagation of a longitudinal strainevewan isotropic cylindricatom-
pressiblenonlinearly elastic rod. We take cylindrical Lagrangiambnates X, r, ¢) wherex

is directed along the axis of the rodoo < X < oo; r is the coordinate along the rod radius,
0 <r < R;gpisapolaranglep €[0, 27r]. Neglecting torsions the displacement vector is
U = (u, w, 0). Then nonzero components of the macrostrain te@sare

r r2’

1 1
Cxx = Ux+§(U§+w>2<)vCrr=wr+§(ur2+wr2)vc<ﬂ<ﬂ=

\e]

1
@) Cix = Cxr= E (Ur + wx + UxUr + wxwr).

while nonzero components of the rotation tenégr are
8 Dy, x = wxx — Urx, Dy r = wxr — Urr.

The governing equations together with the boundary canditi are obtained using the
Hamilton variational principle, i.e., setting to zero thaiation of the action functional,

t1 00 R
9 58:5/ dt 271/ dx/ r £dr | =0,
to —00 0

where the Lagrangian density per unit volunfesK — TIT, with K andIT defined by Egs.(2)
(4) correspondingly. The integration in brackets in (9)asrizd out at the initial time = tg.
Initially, the rod is supposed to be in its natural, equilibn state.

The following boundary conditions (b.c.) are imposed:

(10) w — 0, atr — 0,
(11) Pr = 0, atr = R,
(12) Px = 0, atr = R,



Strain solitary waves 193

where the component$;, Prx of the modified Piola - Kirchhoff stress tens®rare defined
from (9) with (4), (2), (7) and (8) being taken into account:

At2u+m o

2 r
A+ 2 w2
2 2’
w A+2 5

A+ 2) uxwr + (2 —2m+n) UXT+T u2 +

w
Pr = ()»+2M)wr+)»?+)hux+

3L +6u+ 2 +4m
2

w
wr2+(k+2l>wrr—+

A+2u+m

(13) !

w>2< + (1 + M) Ur wx +4MM2 (Urrx — wxxr) ,

w
Prx = U +wx)+OG+2u+m)Uwr + (24 +2m—n) Ur —+

2m
A+ 2+ m) uxuy + ————

w
> wx?‘l'(l/-‘l'm) wxwr +

1
(1 +m) uxwx + 4MM2[wxxx — Uxxr + v (r (wxr — Urr )y —

(14) %J*(Urtt — wxtt)].

Exception of torsions provides transformation of the aliiD problem into a 2D one. Sub-
sequent simplification is caused by the consideration of tnig elastic waves with the ratio
between the rod radiuR and typical wavelength is R/L « 1. The typical elastic strain mag-
nitude B is also smallB « 1. The Hamilton principle (9) yields a set of coupled equagio
for u andw together with the b.c. (11 ), (12). To obtain a solution invensal way one usually
proceeds to the dimensionless form of the equations and lfmykthe unknown displacement
vector components in the form of power series in the smalpaters of the problem (for ex-
ampleR/L), hence, leading to an asymptotic solution of the problemwéler, this procedure
has some disadvantages. In particular, comparison of #dighions from the dimensionless
solution to the experiments suffers from the fact that d@mdL, are not well defined. Further,
the coefficients of the nonlinear terms usually contain doations of elastic moduli which may
be also small in addition to the smallness®f21, 22] something not predicted beforehand.
Finally, this procedure gives equations of only first ordetiine, t, while general equations for
displacements andw are of the second order in time. Therefore the solution ofrtbdel equa-
tion will not satisfy two independent initial conditions ¢tongitudinal strains or displacements
[21].

An alternative is to simplify the problem making some asstioms about the behavior of
longitudinal and/or shear displacements and/or straitisilastic wave-guide. Referring to the
elastic rod these relationships give explicit dependerfiaeandw upon the radius, while their
variations along the rod axis are described by some unknawcetibn and its derivatives along
the axis of the rod. Then the application of Hamilton’s pijate (9) yields the governing equation
in dimensional form for this function. This equation is okteecond order of time, hence its
solution can satisfy two independent initial conditionsnyAcombinations of elastic moduli
appear in the coefficients of the equation, hence, subseqaaling may take into account their
orders when introducing small parameters.

For an elastic rod, the simplest assumption is the planes estion hypothesis [13]: the
longitudinal deformation process is similar to the beards@ment on the thread. Then every
cross-section of the rod remains flat, henge= U (x,t) does not change along the radius
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r. However, this assumption is not enough due to the Poisseatgfe., longitudinal and shear
deformations are related. That is why Love proposed to usatianship betweew andu: w =

—r v Uy, with v the Poisson coefficient[11]. Unfortunately, the plane sfesction hypothesis
and Love’s hypothesis do not satisfy the boundary conditibat demand vanishing of both the
normal and tangential stressé%; and Prx, at the lateral surface of the rod with prescribed
precision.

Another theory has been proposed in [18] to find the relakipssbetween displacement
vector components satisfying b.c. on the lateral surfacthefrod (11), (12) as well as the
condition forw (10).

Since pure elastic wave are studid®®l,< 1, the "linear” and "nonlinear” parts of the re-
lationships may be obtained separately. A power seriesoappations is used, as generally
done for long wave processes. An additional paramgter MZ/ R? is introduced to charac-
terize the microstructure contribution. Accordingly, tbagitudinal and shear displacement in
dimensionaform are:

u = uL+unNL,
uL = Up(X,t) +rusp(x,t) + r2u2(x,t)+...,
(15) UNL = UnLoX ) +runpaxt) + ...,
w = WL+ WNL,
wl = wo 1) 4+ wiX, t) + rZwa(X, t) + ...,
(16) wNL = wNLoX ) +rwnLi(X, D + ..

Substituting the linear partg. andw| (15), (16) into the b.c. (10) and in the linear parts
of b.c. (11), (12), and equating to zero terms at equal poafar®ne obtainsl, andwy. Using
these results the nonlinear pamg,_ , wy L are similarly obtained from the full b.c. We get

2

vre 144y
17 u=U(,t —
7 x, )+ 2 1 2y

XX

_ _ v 3 _
w = —vrUx 2G-20)(1—4y) [v+ 4y 2+ v)]r°Uxxx
|:v(l+v) L A-2v)1+v)

2 E

(18) (1a—-20)2+2m(1+v) —nv)]ruxz,

wherev is the Poisson ratioE is the Young modulus. Other terms from the series (15), (16)
fori > 3 may be found in the same way, however, they are omitted hetause of no
influence on the final model equation for the strain waves.stuiing (17), (18) into (9), and
using Hamilton’s principle we obtain that longitudinalatrs,v = Uy, obey a double dispersive
nonlinear equation:

(19) vt — g vxx — a( UZ)Xx+063 vxxtt — o4 vxxxx = 0,

wherea1 = ¢2 = E/pg, a2 = B/(2p0), B = (3E+2 (1—2v)3 +4m(14v)2(1—2v) +6nv2),
azg=v(l—-v) R2/2,
VE R? 1+4y

20 14y’

ag =
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Hence the microstructure affects only dispersion in EQ.(The solitary wave solution of
Eq.(19) is

20) v=6vER2k2 (1+4y_(1—v)V2

5 T2 2 ) coshi2(k (x — V),

whereV is a free parameter while the wave numkeés defined by
2o (V2 — 2
1) k2 _ 00( C5)

- 2 (1+4y _ 1-v)V2\’
VER (—1_4V - Agv )

Therefore the contribution of the microstructure resuttshie widening of the permitted
solitary wave velocities,
V2 1 1+4y
1< ——<— .
2 1-vl-4y
Also the characteristic width of the solitary wave propamtl to I/ k becomes larger relative
to the wave width in pure elastic case,= 0. We considely to be rather small due to the
experimental data from Ref. [20]. Then the type of the splitsave (compression/tensile) is
defined by the sign of the nonlinearity paramegdike in case without microstructure.

4. Nonlinear waves in a rod with Le Roux continuum microstrudure

The procedure of obtaining the governing equations is ainbd those used in previous section.
The nonzero components of the tenEgy \ are

Ixxx = —Uxx, D'xxr = T'rxx = —Uxr, Dxrx = —wxr,

Cxrr = Trrx = —wxr, Drxr = —Urr, Tyer = —wyr .

The b.c. (11), (12) are satisfied for the strain tensor coraptsn

A+2n+m 3A+6u+ 2 +4m
g ur2 Mz wr2+

w
Prr = ()\-+2H«)wl‘+)\-r_+ )VUX+

w A+ 2 w? w
()\.+2|)wrr—+Tr—2+()\.+2|)UXWr+(2| —2m+n) er—+
A+2 5 A4+2pu+m

u
2 X 2

w2 + (i + M) Up wy + 23* uxtt + wrtt) —

1 1
(22) 2a1Uxxx — 2(a1 + 2ax)wxxr — 2(ag + aZ)F (r (wrr )y — a- (r (uxr))r ,

T
x
Il

w
w (Ur +wx) + (A + 20 +m) urwr+(2A+2m—n)ur?+

2m—n
2

w
()\.+2M+m) UxUr + er—+(/L+m) wyxWwr +

1
(23) (n+m) uxwyx + 23" urtt — agwxrr — 2(ag + 2a)Uxxr — 23-2F (r (Urr )y -

Then the approximations for the components of the displac¢wector have the form

w2 1

(24) u=U,t)+ > muxx,
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4352 —v)(L+v)(L—2v) 4
EG— 2n)R2 r Ut -
12— (1—20)(1— N)(G(L —v) —2vN) g5
r“Uxxx —
23— 21)(1— N)
v(l+v) A-2v)(1+v)
R

w = —vrUyx —

(25)

(| (1—20)2 4+ 2m(1 + v) — nv)] ru2,

whereG = 2a;/u R2, N = 2a0/ 14 R2. Like in previous section the governing equation for
longitudinal strainv = Uy is the double dispersive equation (19) whose coefficierslafined
now as

R2 2R2 CZRZ
v re +23*v2—v), a4 = o

2
=C_, = = — — =
=592 20—-N) 2 20— N)
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200’

Solitary wave solution has the form

6vE R2k? 1 1 43¥*2—v) V2
(26) v = ( _|:1—N v+ R2 ]

B 1-N —2) cosh2(k (x — V1)),

%k
whereV is a free parameter, and the wave number defined by

2(1— N)po(V2 —c2)
VE R2 [cﬁ —V2(1—v(1— N) +4J*(1— N)(2 — v)/Rz)] '

27) k2 =

Physically reasonable case corresponds to rather $indl < 1. Then the influence of the
microstructure yields an alteration of the permitted sojitwave velocities interval,

V2 1

1<—2< .
2  1-v(1—N)+43*1-N)2-v)/R2

The widening or narrowing of the interval depends upon thetimship betweeMN and the
parameter of microinertid*. Like in previous section the type of the solitary wave isgmed
by the sign of the nonlinearity paramet@r At the same time the characteristic width of the
solitary wave proportional to/k turns out smaller than the wave width in a pure macroelastic
caseN =0,J* =0.

5. Discussion

It is found that the double dispersive equation (19) accotmtlongitudinal strain wave propa-
gation inside the rod even in presence of the microstructuma only dispersion term coefficients
alter in comparison with the pure macroelastic case. Theguhare proposed in [18] is profitably
applied for the derivation of the governing equation in digienal form for both the Cosserat
and the Le Roux models. The assumption of the linear coritoibbiof the microstructure is
correct since its nonlinear contribution, being weakery piovide alterations only in the ne-
glected higher order nonlinear and dispersion terms in tiverming equation. Hence we don’t
need in an additional nonlinear terms in the density of theq@l energyl1 thus avoiding the
additional unknown parameters (like Murnaghan’s thirdeonshoduli) describing the nonlinear
contribution of the microstructure.
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The alterations of the amplitude and the wave width, causethd microstructure, have
been found in both case under study. The important result feé opposite changing of the
wave width which gives a possibility to distinguish the Garsg and the Le Roux models in
possible experiments.

The dispersion caused by the microstructure may be obsexmetimentally, and numer-
ical data on microstructure parameters my be obtained[ROExperiments on solitary waves
propagation [3] the amplitude and the velocity of the wavey rha measured. Therefore ex-
pressions (20), (21) provide possible estimation of thempaterM in the pseudocontinuum
Cosserat model. In case of the Le Roux continuum there istaa parameted*, see (26), (27),
and parameterSl and J* cannot be estimated separately.
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