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CONSTITUTIVE THEORY IN GENERAL RELATIVITY:

SPIN-MATERIAL IN SPACES WITH TORSION

Abstract. Some of the problems arising in general relativistic constitutive the-
ory can be solved by using the Riemann-Cartan geometry, a generalization of the
Riemann geometry containing torsion. As an example the ideal spinning fluid
(Weyssenhoff fluid) is discussed and different results for Einstein and Einstein-
Cartan theories are compared.

1. Introduction

It is possible to formulate a relativistic constitutive theory in the framework of Einstein’s theory
of gravitation [1], but there are several unsatisfying points. One problem is that only symmet-
ric energy-momentum tensors are compatible with the field equations, another problem is that
the energy-momentum tensor has to have a vanishing divergence (this is also a consequence of
the field equations). Other problems arise from the principle of minimal coupling. One can
expect, that at least some problems can be solved by using a generalized theory of gravitation
that includes spin (angular momentum) as source of gravitation. The Einstein-Cartan theory of
gravitation is such a generalized theory, it is based on a spacetime with curvature and torsion,
the Riemann-Cartan geometry.

2. Einstein-Cartan theory

2.1. Geometry

There is a general connection0, which is different from the Christoffel symbol. This connection
is not symmetric, the antisymmetric part defines the torsion

�
, which is a tensor of degree 3. The

torsion vector is defined by a contraction of the torsion withrespect to the first and third indices:
� · ·κ
µλ · := 0κ

[µλ]

�
λ :=

3

2

� · ·µ
µλ ·

It is possible to represent the connection as a combination of the Christoffel symbol and the
so-called contorsion:

0κ
µλ = { κ

µλ}
︸︷︷︸

Christoffel symbols

+
� · ·κ
µλ · −

� ·κ ·
λ ·µ +

� κ · ·
·µλ

︸ ︷︷ ︸

Contorsion
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The tensor of curvature and the Ricci tensor are defined as usual:

R · · ·κ
νµλ = 2∂[ν0κ

µ]λ + 20κ
[ν|ρ|0

ρ
µ]λ

Rµλ := R · · ·κ
κµλ

The covariant derivatives are defined in the same way as in Riemann geometry, but the symmetric
Christoffel symbols are replaced by the non-symmetric connection0:

uν
· ;µ = uν

· ,µ + 0ν
λµuλ

uλ;µ = uλ,µ − 0ν
λµuν

2.2. Field equations

It is possible to derive field equations by a variation principle [2]. The variation of the special
Lagrange density�(gµν, 0α

µν, φ, ∂muφ) given in [2] with respect to tetrades and connection
results in two sets of field equations with curvature and torsion:

Rµν −
1

2
gµν R = κTµν(1)

� · ·µ
αβ

+ 3δ
µ
[α
�
β] = κS· ·µ

αβ

geometry ⇔ material

The first set of field equations reads the same as in Einstein theory, but neither the Ricci tensor
nor the energy-momentum tensor are symmetric. Both sides ofthis equation are not divergence-
free, in contrast to Einstein’s theory. The second set of thefield equations connects the torsion
with the spin-tensor, which is a constitutive function.

Differentiating the Einstein-Cartan tensor, i.e. the leftside of the first set of field-equations
(1) and contracting over the second index results in the following equations (the contracted
Bianchi identity):

∇κ (R ·κ
ν −

1

2
δκ
ν R) = 2

� · ·ρ
νκ R ·κ

ρ −
� · ·ρ
κµ R · ·µκ

νρ

Using the field equation one finds that the divergence of the energy-momentum tensor is given
by:

H⇒ κ∇κ T ·κ
ν = 2

� · ·ρ
νκ R ·κ

ρ −
� · ·ρ
κµ R · ·µκ

νρ

In contrast to the Einstein theory the divergence of the energy-momentum tensor does not vanish
anymore, but is geometrically determined.

2.3. Balances

It is possible to derive balances for the energy-momentum and for the spin from the field equa-
tions. This can be done by splitting the first set of field equations into a symmetric and an
antisymmetric part:

R(µν) −
1

2
g(µν)R = κT(µν)

R[µν] = κT[µν]
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By taking the divergence of the symmetric equation and usingthe contracted Bianchi identity
one can derive the balance of energy-momentum:

(2) (∇ν − 3
�
ν)Tν

·µ + 2
� · ·α
µβ Tβ

·α + S· ·ν
αβ Rαβ

· ·µν = 0

The balance of angular momentum can be directly derived fromthe antisymmetric part by using
a geometrical identity for the antisymmetric part of the Ricci tensor and the second set of field
equations:

(∇α − 3
�
α) (

� · ·α
µλ + 3δα

[µ
�
λ])

︸ ︷︷ ︸

κS· ·α
µλ

= κT[µν](3)

The balance of angular momentum connects the change of the spin tensor to the antisymmetric
part of the energy-momentum-tensor.

3. Weyssenhoff fluid

3.1. Heuristic description

Now the Weyssenhoff fluid [3] will be discussed as it is done byObukhov and Korotky [4].

The Weyssenhoff fluid is defined as an ideal spinning fluid. A spin density is now introduced
as a skew-symmetric tensor:

Sµν = −Sνµ

The spin density is spacelike, what is ensured by the Frenkelcondition:

Sµνuν = 0

The constitutive assumptions (postulates) for a Weyssenhoff fluid are as follows:

• The spin tensor is a function of the spin density and the following constitutive equation is
assumed:

S· ·µ
αβ

= uµSαβ

• The energy-momentum tensor should be a function of the energy-momentum density, and
is defined as follows:

Tµ
·α = uµ Pα

Next one calculate the explicit form of the energy-momentum-densityPα. This can be done by
starting out with the antisymmetric part of the energy-momentum tensor (3) and (4):

2T[µν] = uµ Pν − uν Pµ = 2(∇α − 3
�
α)S· ·α

µν

• and with the usual definition of the internal-energy

uµ Pµ
!
= ε

one obtains:
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−c2Pν = εuν + 2uµ(∇α − 3
�
α)(uα Sµν)

Tµ
·ν = −

1

c2
εuµuν −

1

c2
2uµuα∇β S· ·β

αν

If it is now assumed, that the interaction between the elements of the fluid is given in such a way
that

• Pascal law is valid, one has to modify the equations by an isotropic pressure:

T̂µ
·ν = +

1

c2
pδ

µ
ν −

1

c2
uµ(uν(ε + p) + 2uα∇β S· ·β

αν )

3.2. Exploiting the 2nd law

Balances

From the thermodynamical point of view the correct way wouldbe to write down the balances
and the constraints and for deriving restrictions to the constitutive equations by use of the Liu
procedure.

First there is the balance of particle number density which is given in the same way as in
Einstein’s theory:

∇µNµ = 0 = (nuµ);µ

Next there are the balances of energy-momentum and angular momentum, which are given by
the geometrical identities (2) and (3):

(∇ν − 3
�
ν)Tν

·µ + 2
� · ·α
µβ Tβ

·α + S· ·ν
αβ Rαβ

· ·µν = 0

(∇α − 3
�
α)S· ·α

µλ = T[µν]

The next equation one needs is the balance of entropy, representing the second law of thermody-
namics

∇µ6µ = (suµ);µ + sµ

· ;µ
≥ 0

and the field equations are

Rµν −
1

2
gµν R = κTµν

� · ·µ
αβ + 3δ

µ
[α
�
β] = κS· ·µ

αβ

Other constaints, as there are the normalization of the 4-velocity and the form of the covariant
derivative have also to be taken into account.

We now choose the state space for an ideal fluid with spin. Thisstate space has to contain
the wanted fields, the metric and the connection:

�
= {n, uα, ε, Sαβ, gαβ , 0

γ
αβ

}
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Liu procedure

In order to apply Liu’s procedure [5, 6, 7] one has to insert the explicit form of the covariant
derivative into the balances and then use the chain rule for differentiating the constitutive quan-
tities.

Next the balances and constraints have to be rewritten in matrix formulation:

A · y + B = 0,

α · y + β ≥ 0

PROPOSITION1 (COLEMAN-M IZEL -FORMULATION OF THE2ND LAW [8]).
If Z is no trap, the following inclusion is valid for all y:

A · y = −B H⇒ α · y ≥ −β

that means, all ywhich are solutions of the balances satisfy the dissipationinequality.

Then one can apply Liu’s proposition, which runs as follows:

PROPOSITION2 (LIU [5]). Starting with proposition 1 one can show:

In large state spaces exist state space functions3 so that the constitutive equations satisfy the
Liu relations

(4) 3 · A = α,

and the residual inequality

(5) −3 · B ≥ −β.

From (4) and (5) we obtain the restrictions to the constitutive equations we are looking for.
Taking these restrictions into account we obtain constitutive equations which are in accordance
with the second law of thermodynamics.

4. Comparison of Einstein and Einstein-Cartan theory

We now discuss differences and similarities of Einstein andEinstein-Cartan theories with respect
to coupling of constitutive properties to geometry.

In Einstein-Cartan theory with non-vanishing torsion and curvature the spin couples to
torsion, and the energy-momentum tensor which is spin-dependent, non-symmetric, and not
divergence-free couples to curvature. If the torsion vanishes, also the spin tensor and the skew-
symme-tric part of the energy-momentum tensor vanish.

In Einstein theory with vanishing torsion and non-vanishing curvature the spin appears as in
Einstein-Cartan theory in the non-symmetric and not divergence-free energy-momentum tensor
which is split into its symmetric and skew-symme-tric part.The divergence-free symmetric part
couples by the Einstein equations to curvature, whereas theskew-symmetric part does not couple
to any geometric quantity. It represents the source in spin balance.

In Minkowski theory being flat and torsion-free there are no geometric objects to which
spin and energy-momentum tensor can couple. If we regard Minkowski and Einstein theory as
special cases of the Einstein-Cartan theory all having the same type of coupling, then Einstein
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theory has to be spin-free and Minkowski theory is only validin vacuum. Of course, this is not
the case by experience and therefore we have to regard these three theories as having different
types of coupling to constitutive properties.

5. Conclusion

As dicussed above the energy-momentum tensor of the Weyssenhoff fluid was obtained by use
of a variational problem without taking into account the second law of thermodynamics. This
variational problem generates the balance equations of energy-momentum and spin which now
are supplemented by the dissipation inequality. The Liu procedure of exploiting this dissipation
inequality generates restrictions to the constitutive quantities energy-momentum and spin.
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