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A FRACTIONAL CALCULUS APPROACH TO THE

MECHANICS OF FRACTAL MEDIA

Abstract. Based on the experimental observation of the size effects onthe struc-
tural behavior of heterogeneous material specimens, the fractal features of the mi-
crostructure of such materials is rationally described. Once the fractal geometry
of the microstructure is set, we can define the quantities characterizing the failure
process of a disordered material (i.e. a fractal medium). These quantities show
anomalous (non integer) physical dimensions. Our analysisallows a global ex-
planation of the size effects affecting the cohesive law, i.e. the constitutive law
describing the tensile failure of heterogeneous materials. Moreover, a fractal co-
hesive law which is a material property is put forward and itsvalidity is checked
by some experimental data. Then we propose new mathematicaloperators from
fractional calculus to handle the fractal quantities previously introduced. In this
way, the static and kinematic (fractional) differential equations of the model are
pointed out. These equations form the basis of the mechanicsof fractal media. In
this framework, the principle of virtual work is also obtained.

1. Introduction

In solid mechanics, with the termsize effectwe mean the dependence of one or more material
parameters on the size of the structure made by that material. In other words, we speak of
size effect when geometrically similar structures show a different structural behavior. The first
observations about size effect in solid mechanics date backto Galileo. For instance, in his
“Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla meccanica e i
movimenti locali” (1638), he observed that the bones of small animals are more slender than the
bones of big animals. In fact, increasing the size, the growth of the load prevails on the growth of
the strength, since the first increases with the bulk, the latter with the area of the fracture surface.
In the last century, fracture mechanics allowed a deeper insight in the size effect phenomenon.
Nowadays, the most used model to describe damage localization in materials with disordered
microstructure (also called quasi-brittle materials) is the cohesive crack model, introduced by
Hillerborg et al. [1].

According to Hillerborg’s model, the material is characterized by a stress-strain relationship
(σ -ε), valid for the undamaged zones, and by a stress-crack opening displacement relationship
(σ -w, the cohesive law), describing how the stress decreases from its maximum valueσu to zero
as the distance between the crack lips increases from zero tothe critical displacementwc. The
area below the cohesive law represents the energyGF spent to create the unit crack surface. The
cohesive crack model is able to simulate tests where high stress gradients are present, e.g. tests

∗Support by the EC-TMR contract N◦ ERBFMRXCT 960062 is gratefully acknowledged by the authors.
Thanks are also due to the Italian Ministry of University andResearch (MURST).

57



58 A. Carpinteri - B. Chiaia - P. Cornetti

on pre-notched specimens; in particular, it captures the ductile-brittle transition occurring by
increasing the structural size. On the other hand, relevantscale effects are encountered also
in uniaxial tensile tests on dog-bone shaped specimens [2, 3], where smaller stress gradients
are present. In this case size effects, which should be ascribed to the material rather than to the
stress-intensification, can not be predicted by the cohesive crack model. In the following section,
a scale-independent damage model is proposed which overcomes the drawbacks of the original
cohesive model, assuming that damage occurs within a band where it is spread in a fractal way.
The fractal nature of the damage process allows us to explainthe size effects on tensile strength,
fracture energy and critical displacement and, particularly, the rising of the cohesive law tail
observed in [3].

2. Damage mechanics of materials with heterogeneous microstructure

Let us start our investigation about materials with disordered microstructures analyzing the size
effect on their tensile strength. Recent experimental results about porous concrete microstructure
[4] led us to believe that a consistent modelling of damage inconcrete can be achieved by assum-
ing that the rarefied resisting sections in correspondence of the critical load can be represented
by stochastic lacunar fractal sets with dimension 2− dσ (dσ ≥ 0). From fractal geometry, we
know that the area of lacunar sets is scale-dependent and tends to zero as the resolution increases.
Finite measures can be obtained only with non-integer (fractal) dimensions. For the sake of sim-
plicity, let us represent the specimen cross-section as a Sierpinski carpet built on the square of
sideb (fig. 1a). The fractal dimension of this planar domain is 1.893 (dσ = 0.107). The assump-
tion of Euclidean domain characterizing the classical continuum theory states that the maximum
load F is given by the product of the strengthσu times the nominal areaA0 = b2, whereas, in
our model,F equals the product of the Hausdorff measureA∗ = b2−dσ of the Sierpinski carpet
times thefractal tensile strengthσ ∗

u [5]:

(1) F = σu A0 = σ ∗
u A∗

whereσ ∗
u presents the anomalous physical dimensions [F ][ L ]−(2−dσ ).

The fractal tensile strength is the true material constant,i.e., it is scale-invariant. From eqn (1)
we obtain the scaling law for tensile strength:

(2) σu = σ ∗
u b−dσ

i.e. a power law with negative exponent−dσ . Eqn (2) represents the negative size effect on
tensile strength, experimentally revealed by several authors. Experimental and theoretical results
allow us to affirm thatdσ can vary between the lower limit 0 - canonical dimensions forσ ∗

u and
absence of size effect on tensile strength - and the upper limit 1/2 - σ ∗

u with the dimensions of a
stress-intensity factor and maximum size effect on tensilestrength (as in the case of LEFM).

Turning now our attention from a single cross-section to thewhole damage zone, it can be
noticed that damage is not localized onto a single section but is spread over a finite band where
the damage distribution often presents fractal patterns. This is quite common in material sci-
ence. For instance, in some metals, the so-called slip-lines develop with typical fractal patterns.
Also fractal crack networks develop in dry clay or in old paintings under tensile stresses due to
shrinkage. Thus, as representative of the damaged band, consider now the simplest structure, a
bar subjected to tension, where, at the maximum load, dilation strain tends to concentrate into
different softening regions, while the rest of the body undergoes elastic unloading. If, for the
sake of simplicity, we assume that strain is localized onto cross-sections whose projections on



A fractional calculus approach 59

(c)
εc* b

1–dε
b

b

b

(a) (b)

0 b

w

z

Figure 1: Fractal localization: of the stress (a), of the strain (b), of the energy dissipa-
tion (c).

the longitudinal axis are provided by a Cantor set, the displacement function at rupture can be
represented (fig. 1b) by a Cantor staircase graph (sometimescalled devil’s staircase). The strain
defined in the classical manner is meaningless in the singular points, as it tends to diverge. This
drawback can be overcome introducing a fractal strain. Let 1−dε = 0.6391 be, for instance, the
fractal dimension of the lacunar projection of the damaged sections (dε ≥ 0). According to the
fractal measure of the damage line projection, the total elongation of the band at rupture must be
given by the product of the Hausdorff measureb(1−dε) of the Cantor set times thefractal critical
strain ε∗

c , while in the classical continuum theory it equals the product of the lengthb times the
critical strainεc:

(3) wc = εcb = ε∗
cb(1−dε)

whereε∗
c has the anomalous physical dimension [L ]dε . The fractal critical strain is the true

material constant, i.e., it is the only scale-invariant parameter governing the kinematics of the
fractal band. On the other hand, equation (3) states that thescaling of the critical displacement is
described by a power law with positive exponent 1−dε . The fractional exponentdε is intimately
related to the degree of disorder in the mesoscopic damage process. Whendε varies from 0
to 1, the kinematical control parameterε∗

c moves from the canonical critical strainεc – [L ]0

– to the critical crack opening displacementwc – [L ]1. Therefore, whendε = 0 (diffused
damage, ductile behavior), one obtains the classical response, i.e. collapse governed by the strain
εc, independently of the bar length. In this case, continuum damage mechanics holds, and the
critical displacementwc is subjected to the maximum size effect (wc ∼ b). On the other hand,
whendε = 1 (localization of damage onto a single section, brittle behavior) fracture mechanics
holds and the collapse is governed by the critical displacementwc, which is size-independent as
in the cohesive model.

For what concerns the size effect upon the third parameter characterizing the cohesive law,
i.e. the fracture energyGF , several experimental investigations have shown thatGF increases
with the size of the specimen. This behavior can be explainedby assuming that, after the peak
load, the energy is dissipated inside the damage band, i.e. over the infinite lacunar sections
where softening takes place (fig. 1a,b). Generalizing equations (2) and (3) to the whole softening
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regime, we getσ = σ ∗b−dσ andw = ε∗b(1−dε). These relationships can be considered as
changes of variables and applied to the integral definition of the fracture energy:

(4) GF =

∫ wc

0
σdw = b1−dε−dσ

∫ ε∗
c

0
σ ∗dε∗ = G∗

F b1−dε−dσ

Equation (4) highlights the effect of the structural size onthe fracture energy. On the other hand,
since (fig. 1c) the damage process takes place over an invasive fractal domainA∗ (different from
the lacunar one of equation (1)) with a dimension(2 + dG) larger than 2 (dG ≥ 0), we can also
affirm that the total energy expenditureW is equal to [4]:

W = GF A0 = G∗
F A∗

whereG∗
F is called thefractal fracture energyand presents the anomalous physical dimensions

[FL ][ L ]−(2+dG) and, as well asσ ∗
u andε∗

c , it is scale-independent. SinceA0 = b2 and A∗ =

b2+dG , the value ofdG is linked to the values ofdσ anddε :

(5) dσ + dε + dG = 1

where all the exponents are positive. Whiledε can get all the values inside the interval [0, 1], dσ

anddG tend to be comprised between 0 and 1/2 (brownian disorder). Equation (5) states a strict
restriction to the maximum degree of disorder, confirming that the sum ofdσ anddG is always
lower than 1, as previously asserted by Carpinteri through dimensional analysis arguments [5].

σu σu*

σ*σ

εu

ε εc

εc*0 0
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Figure 2: Fractal cohesive model.

It is interesting to note how, from equation (4), the fractalfracture energyG∗
F can be ob-

tained as the area below the softening fractal stress-strain diagram (fig. 2b). During the softening
regime, i.e. when dissipation occurs,σ ∗ decreases from the maximum valueσ ∗

u to 0, whileε∗

grows from 0 toε∗
c . In the meantime, the non-damaged parts of the bar undergo elastic unloading

(fig. 2a). We call theσ ∗-ε∗ diagram the scale-independent orfractal cohesive law. Contrarily
to the classical cohesive law, which is experimentally sensitive to the structural size, this curve
should be an exclusive property of the material since it is able to capture the fractal nature of the
damage process.

Recently, van Mier et al. [3] accurately performed tensile tests on dog-bone shaped con-
crete specimens over a wide scale range (1:32). They plottedthe cohesive law for specimens
of different sizes and found that, increasing the specimen size, the peak of the curve decreases
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whereas the tail rises. More in detail,wc increases more rapidly thanσu decreases, since, in the
meantime, an increase of the area below the cohesive law, i.e. of the fracture energy, is observed.
Thus, the fractal model consistently confirms the experimental trends ofσu, GF , wc.

The model has been applied to the data obtained by Carpinteri& Ferro [2, 6] for tensile tests
on dog-bone shaped concrete specimens (fig. 3a) of various sizes under fixed boundary condi-
tions. They interpreted the size effects on the tensile strength and the fracture energy by fractal
geometry. Fitting the experimental results, they found thevaluesdσ = 0.14 anddG = 0.38.
Some of theσ -ε and theσ -w diagrams are reported in fig. 3b,c, wherew is the displacement
localized in the damage band, obtained by subtracting, fromthe total one, the displacement due
to elastic and anelastic pre-peak deformation. Equation (5) yieldsdε = 0.48, so that the fractal
cohesive laws can be represented in fig. 3d. As expected, all the curves related to the single sizes
tend to merge in a unique, scale-independent cohesive law. The overlapping of the cohesive laws
for the different sizes proves the soundness of the fractal approach in the interpretation of the
size effects in concrete.
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Figure 3: Tensile tests over dog-bone shaped concrete specimens (a): stress versus
strain plots (b), cohesive laws (c), fractal cohesive law (d).

3. Fractional calculus, local fractional calculus and fractal functions

The main characteristic of fractals is their irregularity over all the length scales. This irregularity
is the reason of the non-integer dimensions of fractal sets and, unfortunately, it makes them very
difficult to handle analytically since the usual calculus isinadequate to describe such structures
and processes. Fractals are too irregular to have any smoothdifferentiable function defined on
them. Fractal functions do not possess first order derivative at any point. Therefore it is argued
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that a new calculus should be developed which includes intrinsically a fractal structure [7]. Re-
cently, Kolwankar [8], based on fractional calculus, defined new mathematical operators - the
local fractional derivative and the fractal integral - thatappear to be useful in the description of
fractal processes. It is important to emphasize that, what seems to be really interesting in study-
ing fractals via fractional calculus, are the non-integer physical dimensions that arise dealing
with both fractional operators and fractal sets. Physically, this means to find the same scaling
laws both from an analytic and a geometric point of view.

Let’s start our analysis from the classical fractional calculus. While classical calculus treats
integrals and derivatives of integer order, fractional calculus is the branch of mathematics that
deals with the generalization of integrals and derivativesto all real (and even complex) orders.
There are various definitions of fractional differintegraloperators not necessarily equivalent to
each other. A complete list of these definitions can be found in the fractional calculus treatises
[9, 10, 11, 12]. These definitions have different origin. Themost frequently used definition of a
fractional integral of orderq (q > 0) is the Riemann-Liouville definition, which is a straightfor-
ward generalization to non-integer values of Cauchy formula for repeated integration:

(6)
d−q f (x)

[d(x − a)]−q =
1

0(q)

∫ x

a

f (y)

(x − y)1−q
dy

From this formula, it appears logical to define the fractional derivative of ordern − 1 < q < n
(n integer) as then-th integer derivative of the(n − q)-th fractional integral:

(7)
dq f (x)

[d(x − a)]q
=

1

0(n − q)

dn

dxn

∫ x

a

f (y)

(x − y)q+1−n
dy

Once these definitions are given, it is natural to write differential equations in terms of such
quantities. In the last decade, many fractional differential equations have been proposed. They
include relaxation equations, wave equations, diffusion equations, etc [13]. In these general-
izations, one replaces the usual integer order time derivatives by fractional ones. In such way,
by varying the order of derivation, it is possible to obtain acontinuous transition between com-
pletely different models of the mathematical physics. Of course, whenq is not a positive integer,
the fractional derivative (7) is a non-local operator sinceit depends on the lower integration limit
a. The chain rule, Leibniz rule, composition law and other properties have been studied for
the fractional derivatives [9]. Looking for a link between fractional calculus and fractals, it is
worthwhile to cite the following scaling property (fora = 0):

dq f (bx)

[dx]q
= bq dq f (bx)

[d(bx)]q

It means that the fractional differintegral operators are subjected to the same scaling power laws
the quantities defined on fractal domains are subjected to (q being the fractal dimension). For
the scaling property in the casea 6= 0, see [9].

More recently, another important result has been achieved concerning the maximum order
of fractional differentiability for non-classical differentiable functions. Let us explain this prop-
erty for two kinds of functions: the Weierstrass function and the Cantor staircase. The first one is
continuous but nowhere differentiable. The singularitiesare locally characterized by the Hölder
exponent, which is everywhere constant and equal to a certain value 0< s < 1. It is possible
to prove that the graph of this function is fractal with a box-counting dimension equal to 2− s
and hence greater than 1. Although fractal, the Weierstrassfunction admits continuous fractional
derivatives of order lower thans. Hence, there is a direct relationship between the fractal dimen-
sion of the graph and the maximum order of differentiability: the greater the fractal dimension,
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the lower the differentiability. We have already encountered a Cantor staircase in Section 2.
This kind of functions (fig. 1b) can be obtained [14] as the integral of a constant mass density
upon a lacunar fractal set belonging to the interval [0, 1]. The result is a monotonic function that
grows on a fractal support; elsewhere it is constant. The devil’s staircases are not fractal since
they present a finite length; on the other hand, they have an infinite number of singular points
characterized by a Hölder exponent equal to the fractal dimension of the support. Schellnhuber
& Seyler [15] proved that the Cantor staircases admit continuous fractional derivatives of order
lower than the fractal dimension of the set where they grow.

From a physical point of view, some efforts have been spent toapply space fractional dif-
ferential equations to the study of phenomena involving fractal distributions in space. Here we
can quote Giona & Roman [16], who proposed a fractional equation to describe diffusion on
fractals, and Nonnenmacher [17], who showed that a class of Lévy type processes satisfies an
integral equation of fractional order. This order is also the fractal dimension of the set visited by
a random walker whose jump size distribution follows the given Lévy distribution.

Recently, a new notion calledlocal fractional derivative(LFD) has been introduced with
the motivation of studying the local properties of fractal structures and processes [18]. The LFD
definition is obtained from (7) introducing two “corrections” in order to avoid some physically
undesirable features of the classical definition. In fact, if one wishes to analyze the local behavior
of a function, both the dependence on the lower limita and the fact that adding a constant to
a function yields to a different fractional derivative should be avoided. This can be obtained
subtracting from the function the value of the function at the point where we want to study the
local scaling property and choosing as the lower limit that point itself. Therefore, restricting our
discussion to an orderq comprised between 0 and 1, the LFD is defined as the following limit
(if it exists and is finite):

Dq f (y) = lim
x→y

dq[ f (x) − f (y)]

[d(x − y)]q
, 0 < q ≤ 1

In [18] it has been shown that the Weierstrass function is locally fractionally differentiable
up to a critical orderα between 0 and 1. More precisely, the LFD is zero if the order islower
thanα, does not exist if greater, while exists and is finite only if equal toα. Thus the LFD shows
a behavior analogous to the Hausdorff measure of a fractal set. Furthermore, the critical order is
strictly linked to the fractal properties of the function itself. In fact, Kolwankar & Gangal [18]
showed that the critical order is equivalent to the local Hölder exponent (which depends, as we
have seen, on the fractal dimension), by proving the following local fractional Taylor expansion
of the function f (x) of orderq < 1 (for q > 1, see [19, 20]) forx → y:

(8) f (x) = f (y) +
Dq f (y)

0(q + 1)
(x − y)q + Rq(x − y)

whereRq(x − y) is a remainder, negligible if compared with the other terms.Let us observe
that the terms in the right hand side of equations (8) are nontrivial and finite only ifq is equal
to the critical orderα. Moreover, forq = α, the fractional Taylor expansion (8) gives us the
geometrical interpretation of the LFD. Whenq is set equal to unity, one obtains from (8) the
equation of a tangent. All the curves passing through the same point y with the same first
derivative have the same tangent. Analogously, all the curves with the same critical orderα and
the sameDα form an equivalence class modeled byxα . This is how it is possible to generalize
the geometric interpretation of derivatives in terms of “tangents”.

The solution of the simple differential equation df/dx = 1[0,x] gives the length of the
interval [0, x]. The solution is nothing but the integral of the unit function. Wishing to extend
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this idea to the computation of the measure of fractal sets, it can be seen immediately that the
fractional integral (6) does not work as it fails to be additive because of its non-trivial kernel. On
the other hand, Kolwankar [21] proved that a fractional measure of a fractal set can be obtained
through the inverse of the LFD defined as:

(9) aD−α
b f (x) = lim

N→∞

N−1
∑

i=0

f (x∗
i )

d−α1dxi (x)
[

d(xi+1 − xi )
]−α

where [xi , xi+1], i = 0, . . . , N −1, x0 = a andxN = b, provide a partition of the interval [a, b]
andx∗

i is some suitable point chosen in the subinterval [xi , xi+1], while 1dxi is the unit function

defined on the same subinterval. Kolwankar calledaD−α
b f (x) the fractal integralof orderα of

f (x) over the interval [a, b]. The simple local fractional differential equationDα f (x) = g(x)

has not a finite solution wheng(x) is constant and 0< α < 1. Interestingly, the solution exists
if g(x) has a fractal support whose Hausdorff dimensiond is equal to the fractional order of
derivationα. Consider, for instance, the triadic Cantor setC, built on the interval [0, 1], whose
dimension isd = ln 2/ ln 3. Let 1C(x) be the function whose value is one in the points belonging
to the Cantor set upon [0, 1], zero elsewhere. Therefore, the solution ofDα f (x) = 1C(x) when
α = d is f (x) = aD−α

b 1C(x). Applying (9) with x0 = 0 andxN = x and choosingx∗
i to be

such that 1C(x∗
i ) is maximum in the interval [xi , xi+1], one gets [17]:

(10) f (x) = 0D−α
x 1C(x) = lim

N→∞

N−1
∑

i=0

F i
C

(xi+1 − xi )
α

0(1 + α)
=

S(x)

0(1 + α)

whereF i
C is a flag function that takes value 1 if the interval [xi , xi+1] contains a point of the

setC and 0 otherwise; henceS(x) is the Cantor (devil’s) staircase (fig. 1b). Moreover, equation
(10) introduces the fractional measure of a fractal set we were looking for: for the Cantor set
C it is defined asFα(C) = 0D−α

1 1C(x). In factFα(C) is infinite if α < d, and 0 ifα > d.

For α = d, we findFα(C) = 1
0(1+α)

. This measure definition yields the same value of the
dimension predicted by the Hausdorff one, the difference being represented only by a different
value of the normalization constant.

Eventually, consider two continuous functionsf (x) and g(x) defined upon [a, b] with a
zero first derivative except at the points belonging to the same lacunar fractal setC where they
present an Hölder exponentα equal to the dimension of the fractal support (i.e.f (x) andg(x)

are Cantor staircase type functions). Based on equation (8), it can be proved that, in the singular
pointsx ∈ C, (i ) the product functionh(x) = f (x)g(x) has the same Hölder exponentα unless
both the factor functions have zero value; (i i ) the LFD of orderα of h(x) can be computed using
the classical rule for the differentiation of the product:

(11) Dαh(x) = f (x)Dαg(x) + g(x)Dα f (x)

Performing now, for both the sides of equation (11), a fractal integration of orderα upon [a, b]
yields to the followingfractal integration by parts:

(12) aD−α
b [ f (x)Dαg(x)] = [h(b) − h(a)] − aD−α

b [g(x)Dα f (x)]

which will be useful in the next section.
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4. Kinematic and static equations for fractal media

As shown in the Sections 1 and 2, fractality plays a very important role in the mechanics of mate-
rials with an heterogeneous microstructure. The aim of thisSection is to develop a model that, by
the local fractional operators introduced in Section 3, is able to capture intrinsically the fractality
of the material and, consequently, the size effects upon therelated physical quantities. Thus, let
us start with a uniaxial model [22], hereafter calledfractal Cantor baraccording to Feder’s ter-
minology [14]. Hence, consider a specimen of disordered material of lengthb. Suppose now to
apply a tensile load in thez (axial) direction. As pointed out in Section 2, because of the fractal
localization of strain, the plot of the axial displacementw versusz is a Cantor staircase (fig. 1b).
This plot corresponds to a strain field which is zero almost everywhere (corresponding to the
integer portions) except in an infinite number of points where it is singular (corresponding to the
localized cracks). The displacement singularities can be characterized by the LFD of order equal
to the fractal dimensionα = 1−dε of the domain of the singularities, the unique value for which
the LFD is finite and different from zero (the critical value). This computation is equivalent to
equation (3), passing from the global level to the local one.Therefore, we can define analytically
the fractal strainε∗ as the LFD of the displacement:

(13) ε∗(z) = Dαw(z)

Let us observe that, in equation (13), the non-integer physical dimensions [L ]dε of ε∗ are in-
troduced by the LFD, whilst in equation (3) they are a geometrical consequence of the fractal
dimension of the localization domain.

Now let’s turn our attention to the differential equilibrium equation, when the fractal bar is
subjected to an axial load. Consider again a fiber of the specimen and suppose that the body is in
equilibrium,z = 0 andz = b being its extreme cross sections. We indicate withp∗(z) the axial
load per unit of fractal length acting upon the fractal bar and with N(z) the axial force acting on
the generic cross section orthogonal to thez-axis. Take therefore into consideration a kinematical
field (w, ε∗) satisfying equation (13) and a static field (N, p∗). The fractal integration by parts
(12) can be interpreted as the principle of virtual work for the fractal bar. In fact, according to
the fractal nature of the material microstructure, the internal virtual work can be computed as the
fractalα-integral of the product of the axial forceN times the fractal strainε∗ performed over
the interval [0, b], which, according to equations (13) and (12), is in its turnequal to:

(14) 0D−α
b [N(z)ε∗(z)] = 0D−α

b [N(z)Dαw(z)] = [N(z)w(z)]z=b
z=0 − 0D−α

b [w(z)Dα N(z)]

Since the body is in equilibrium, the virtual work principleholds. Hence the right hand side of
equation (14) must be equal to the external virtual work. This is true if and only if:

(15) Dα N(z) + p∗(z) = 0

which is the (fractional) static axial equation of the fractal bar. Observe the anomalous dimension
of the loadp∗, [F ][ L ]−(1−dε), since it considers forces acting on a fractal medium.

What has been done in the one-dimensional case can be formally extended in the three-
dimensional case for a generic fractal medium [23]. As in theclassical continuum mechanics,
one needs the introduction of the fractal stress{σ ∗} and fractal strain{ε∗} vectors to replace the
corresponding scalar quantities in equations (13) and (15). Denoting with{η} the displacement
vector, the kinematic equations for a fractal medium can be expressed as:

(16) {ε∗} = [∂α ]{η}
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where [∂α ] is the kinematic fractional differential operator containing local fractional deriva-
tives of orderα = 1 − dε . Equation (16) is the three-dimensional extension of equation (13).
Analogously, equation (15) becomes:

(17) [∂α]T {σ ∗} = −{F∗}

where [∂α]T is the static fractional differential operator, transposed of the kinematic one and
{F∗} is the vector of the forces per unit of fractal volume. From the physical dimension of the
matrices at the first hand side of equation (17) and from the fundamental relationship (5) among
the fractal exponents, it can be easily shown that{F∗} owns the following physical dimension:
[F ][ L ]−(2+dG), where(2 + dG), comprised between 2 and 3, should now be seen as the fractal
dimension of the fractal medium.

In order to get the expression of the principle of the virtualwork for a fractal medium,
we need the extension to fractal domain of the Green theorem.This extension can be obtained
performing a fractal integration of orderβ − α of both sides of equation(12):

(18) D−β
�∗ [ f Dαg] = D−(β−α)

0∗ [ f gnx ] − D−β
�∗ [gDα f ]

where nowDα is the LFD in thex-direction, nx is the x-component of the outward normal
vector to the fractal boundary0∗ of the fractal body�∗. Other two scalar expressions can be
obtained analogously to equation (18), just considering the LFDs in they andz-directions. Thus
we are now able to derive the expression of the principle of virtual work for fractal media. It is
sufficient to apply the extension of the Green theorem – equation (18) – substituting appropriately
to the functionsf , g the components of the fractal stress{σ ∗} and displacement{η} vectors.
Furthermore,α andβ are equal respectively to(1−dε) and(2+dG ). Thus for vector fields{σ ∗},
{F∗} satisfying equation (17) (i.e. statically admissible) andvectors fields{ε∗}, {η} satisfying
equation (16) (i.e. kinematically admissible), it is possible to prove the validity of the following
equation:

(19)
∫

�∗
{F∗}T {η}d�∗ +

∫

0∗
{p∗}T {η}d0∗ =

∫

�∗
{σ ∗}T {ε∗}d�∗

which represents the principle of virtual work for a genericfractal medium and is the natural
extension of the classical continuum mechanics formulation of the principle. For the sake of
clarity, in equation (19) we used the classical symbol for the integrals; anyway they are fractal
integrals over fractal domains.{p∗} is the vector of the contact forces acting upon the (fractal)
boundary of the fractal medium; it has the same physical dimension of the fractal stress, to which
it is related by the relation:

[N ]T {σ ∗} = {p∗}

as naturally comes out in the proof of equation (19). [N ]T is defined at any dense point of the
boundary as the cosine matrix of the outward normal vector tothe boundary of the initiator (see
[14]) of the fractal set occupied by the body.

5. Conclusions

In this paper, the topologic framework for the mechanics of deformable fractal media has been
outlined. Based on the experimental observations of the size effects on the parameters char-
acterizing the cohesive law of materials with a disordered microstructure, the fractal quantities
characterizing the process of deformation have been pointed out. In the second part of the pa-
per, new mathematical operators from fractional calculus have been applied to write the field
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equations for solids with a fractal microstructure. It has been shown that the classical fractional
calculus cannot be used to describe properly the deformations of fractal media. Instead, the local
fractional operators, recently introduced by Kolwankar [8], can be successfully applied for our
purposes. The static and kinematic equations for fractal media have been obtained. Moreover, the
extension of the Green Theorem to fractal quantities and domains has been proposed, naturally
yielding the Principle of Virtual Work for fractal media. The next step should be the definition of
proper constitutive laws (e.g. elasticity) for fractal media. At this stage, only the formal structure
of the static and kinematic equations has been outlined. Moreover, further analytical research
about local fractional operators has to be carried out. Thus, engineering calculations may only
be at an early stage. However, once these goals were achieved, boundary value problems on
fractal sets could be solved, not only in principle, by meansof the Local Fractional Calculus.
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type probability densities, Journal of Physics23A (1990), L697–L700.

[18] KOLWANKAR K. M. AND GANGAL A. D., Fractional differentiability of nowhere differ-
entiable functions and dimensions, Chaos6 (1996), 505–523.

[19] KOLWANKAR K. M. AND GANGAL A. D., Hölder exponents of irregular signals and
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