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THE SPREAD OF THE POTENTIAL ON A WEIGHTED

GRAPH

Abstract.
We compute explicitly the solution of the heat equation on a weighted graph0

whose edges are identified with copies of the segment [0, 1] with the condition that
the sum of the weighted normal exterior derivatives is 0 at every node (Kirchhoff
type condition).

1. Introduction

In our previous papers [1], [2] we studied the diffusion equation

(1)
∂V

∂t
=

∂2V

∂x2
− V

on a continuous structure defined on a weighted graph0 = (V, E) whose vertices satisfy Kirch-
hoff type conditions. This model arises in neurobiology. Itmodels the spread of the potential
along the ramifications of a neuron.

In [2] we determined the heat kernel on the above mentioned continuous structure when0
is a homogeneous tree. The purpose of this note is to extend the results of [2] to the case of a
generic countable graph whose vertices have uniformly bounded degrees (for finite graph see J.P.
Roth, ref. [8]). This wider generality is achieved essentially by the same techniques developed
in the case of the homogeneous tree. Its main interest lies inthe fact that we are able to describe
the heat kernel for all the general structures we studied in [1]. In that paper we determined the
spectrum of the continuous Laplacian1 with only mild assumptions on0 and its weights. The
present note, because of its greater generality, is thus a better companion to [1] than the previous
paper [2] was. Moreover, at the best of our knowledge, it seems to represent the state of the art
of the subject at this level of generality.

We remark that our entire approach to the subject (in [1], [2]and in the present note) is in the
line of previous work by J.P. Roth (see [8]). A different but related kind of analysis can be found
in papers by B. Gaveau, M. Okada and T. Okada (see [3], [6]). They study the heat kernel on
several examples of 1−dimensional structures. Some of these structures, namely homogeneous
trees (and skew homogeneous trees in [6] example 4) and networks ([3] modelsX10 and X12),
after maybe some renormalization, are particular cases of our weighted graphs. So, for example,
in [6], T. Okada considers homogeneous trees of degree 3 withweights distributed in a periodic
(but not symmetric) fashion. For that example, nice asymptotic estimares are proved and the
generalization to homogeneous trees of any degrees with “periodic weights” is easily within
reach by the same techniques.
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Our estimates are much cruder, but they apply to all graphs with randomly distributed
weights. Even for homogeneous trees, Okada’s techniques donot seem to work once we deal
with general (non periodic, non symmetric) weight distributions. To improve our estimates on
the general setting further work and new ideas seem necessary.

In order to keep this note (we stress again that it should be thought as an improved and
completed version of [2]) relatively selfcontained, in section 2 we introduce notation and basic
facts. Namely, we describe the graph0 as a CW-complex, so that we can introduce a natural
topology on0. We assign conductances to the edges of0 and require them to satisfy a suitable
uniformity condition. We set Kirchhoff type conditions at the vertices of0, we define the spaces
L2(0, c) and Hm(0, c) and describe the domain of the continuous Laplacian1 and its basic
properties. Finally we prove Lemma 1. It was by realizing that the estimate in Lemma 1 of [2]
actually holds in the general setting of the present note (uniformly bounded degrees) that the
whole generalization became possible. We remark, however that Lemma 1 is far from being
optimal. We believe that substantial improvement of that Lemma would allow a deeper analysis
of the subject especially with regard to the behavior ast → ∞.

Section 3, where we determine the heat kernel on0 and the solution of the Cauchy problem
associated to the diffusion equation (1), is mainly a list ofresults and it strictly parallels [2]. We
omit the proofs since they are similar to the corresponding ones in [2] with the new version of
Lemma 1 replacing its analogous in [2].

2. Notation and Preliminaries

Let 0 = (V, E) be a countable, connected graph with no self-loops and uniformly bounded
degrees (i.e. there exists a constantd such that 1≤ dv ≤ d < ∞ for every vertexv in V , where
dv is the degree ofv).

We say that two edgese ande′ are neighbours and we writee ∼ e′ if they have a common
endpoint (i.e. a common vertex).

We identify every edgee of 0 with the real interval [0, 1]. In this way we associate with0
an one-dimensional CW-complex (see e.g. J.R. Munkres, ref.[5]). Note that0 is a metric space
in a natural way.

We can orient every edgee of 0 in two opposite ways. For every edgee, we denote by+e
and−e the two opposite orientations and by| e | the edgee (unoriented). If no confusion can
arise, we denote bye both the oriented and the unoriented edgee. For every oriented edge (arc)
e we denote byI (e) the initial vertex ofe, by T(e) the terminal vertex.

We define a pathC to be a finite sequence of arcs(e1, . . . , em) (m > 1) such thatT(ej ) =
I (ej +1) for 1 ≤ j ≤ m − 1. We call length of the pathC, denoted byl (C), the number of the
arcs ofC. We denote byC the set of all the paths on0.

Let eande′ be two edges of0. We denote byCm(e, e′) the set of all the paths having length
m whose first arc is one of two arcs obtained bye and whose last arc is one of two arcs obtained
by e′ i.e.

(2) Cm(e, e′) = {C ∈ C : l (C) = m and C = (±e, e1, . . . , em−2,±e′)}

LEMMA 1. For all m
card(Cm(e, e′)) ≤ 2dm−1

where d= supv∈V dv
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Proof. Let Cm(e) be the set of all the paths having lengthm and whose first arc is one of two
arcs obtained by the edgee i.e.

Cm(e) = {C ∈ C : l (C) = m and C = (±e, e1, . . . , em−1)}

The paths ofCm(e, e′) are particular paths ofCm(e), so it is enough to evaluate the cardinal-
ity of Cm(e). We observe thatC1(e) has exactly 2 elements. Every path ofCm+1(e) comes
from a path ofCm(e). Moreover if we fix a path(±e, e1, . . . , em−1) of Cm(e), then there ex-
ist at mostd paths ofCm+1(e) coming from it (each of these paths is obtained by adding to
(±e, e1, . . . , em−1) any one of the arcs branching out fromT(em−1)). So

card(Cm(e, e′)) ≤ card(Cm(e)) ≤ 2dm−1

If x and y are points of the same edge, let us denote by| x − y | the (euclidean) distance
betweenx andy.

For every pointx of 0, we denote byEx the set of all the edges containingx.

Let x and y be points of0. We call geodesic path joiningx to y any path of minimum
length whose first and last arcs are obteined from edges ofEx and Ey respectively. Geodesic
paths fromx to y may not be unique, but we denote byl ? their common length.

Set

(3) ρ(x, y) =
{

0 if x andy belong to the same edge
l ∗ − 2 otherwise

or
ρ(x, y) = max{0, (l ? − 2)}

We assign to every edgee of 0 a positive conductancec(e) in such a way that

(4)
c(e)

c(e′)
≤ κ if the edgese, e′ are neighbours

whereκ ≥ 1.

For every vertexv of 0 we denote byc(v) the sum of the conductances of all the edges
branching out fromv i.e.

c(v) =
∑

e∈Ev

c(e)

We call the following quantity transfer coefficient from thearce to the arce′

(5) εe,e′ =







2c(| e |)/c(T(e)) if T(e) = I (e′), e′ 6= −e
2c(| e |)/c(T(e)) − 1 ifT(e) = I (e′), e′ = −e
0 ifT(e) 6= I (e′)

We observe that
|εe,e′ | ≤ κ

and
c(| e |)−1εe,e′ = c(| e′ |=)−1ε−e′,−e
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As consequence of this equality the heat kernel turns out to be symmetric with respect to the
space variables.

For every pathC = (e1, . . . , em) (m > 1) on0, we denote byεC the product of the transfer
coefficients of all the pairs of consecutive arcs ofC i.e.

(6) εC =
m−1
∏

j =1

εej ,ej +1

We denote by
�

+ the set of the real numbers which are strictly positive.

Let k(t, x) be the source solution of the heat equation on
�

(7) k(t, x) =
{

1
2
√

π t
exp(−x2/4t) if(t, x) ∈ �

+ × �

0 otherwise

and set

(8) h(t, x) =
x

t
k(t, x)

We will identify any functionu on 0 with a collection{ue}e∈E of functionsue defined on
the edgese of 0. Note thatue can be considered a function on [0, 1]. In fact, we will use the
same notationue to denote both the function on the edgee and the function on the real interval
[0, 1] identified withe.

The integral on0 of a positive functionu is defined as follows
∫

0
u(x)dx =

∑

e∈=E

c(e)
∫

e
ue(x)dx =

∑

e∈=E

c(e)
∫ 1

0
ue(x)dx

We define the spaceL2(0, c) as the space of all the collectionsu = {ue}e∈E on 0 such that
ue ∈ L2((0, 1)) for everye in E, and

∑

e∈E c(e) ‖ ue ‖2
L2((0,1))

< ∞.

Analogously, for every integerm > 0, we define the Sobolev spaceHm(0, c) as the space
of all the collectionsu = {ue}e∈E on 0 such thatu is continuous on0, ue ∈ Hm((0, 1)) for
everye in E, and

∑

e∈E c(e) ‖ ue ‖2
Hm((0,1))

< ∞.

It is easy to see that the above spaces are Hilbert spaces.

Consider the sesquilinear continuous formϕ on H1(0, c) defined by

ϕ(u, w) = (u′, w′)L2(0,c)

and let1 be its associated Laplacian.

It is not difficult to prove that the operator1 is defined on the setD(1) of all the collections
u = {ue}e∈E of H2(0, c) satisfying the Kirchhoff type conditions at every vertexv of V namely

D(1) = {u ∈ H2(0, c) :
∑

e∈Ev

c(e)
∂ue

∂ne
(v) = 0 for all v in V}

where∂ue
∂ne

(v) denotes the normal exterior derivative ofue evaluated atv i.e.

∂ue

∂ne
(v) =

{

− limh→0+(ue(h) − ue(0))/h if v=0
limh→0−(ue(h + 1) − ue(1))/h if v=1
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Moreover for every functionu = {ue}e∈E in D(1) and for every edgee in E we have that

(1u)e = u′′
e

3. The heat kernel and the solution of the Cauchy problem

Our aim is to determine the heat kernel and the solution of theCauchy problem

(9)

{

∂u
∂t = 1u − u t > 0
u(0) = f

where f belongs toL2(0, c).

By the theory of semigroups (see e.g. A. Pazy, ref. [7]) we know that if Pt f is the solution
of the Cauchy problem

(10)
{

∂u
∂t = 1u t > 0
u(0) = f

then(exp(−t))Pt f is the solution of (9). SincePt f is the integral over0 of f against the
heat kernel, we first compute the heat kernel.

Let x and y be in0. Choose anye, e′ in E such thatx ∈ e andy ∈ e′. With the notation
of (2), (3), (6), (7) set

(11) K (t, x, y) = c(e)−1k(t, | x − y |)δe,e′ + L(t, x, y)

where

δe,e′ =
{

1 ife′ = e
0 otherwise

and

L(t, x, y) = c(e)−1
∑

m≥ρ(x,y)

∑

C∈Cm+2(e,e′)

εCk(t, | x − T(±e) | +m+ | y − I (±e′) |)

Next theorem shows thatK is the heat kernel on0.

THEOREM 1. The function K defined in (11) does not depend on e and e′ and has the
following properties

(i) ∂K
∂y (t, x, y) and ∂2K

∂y2 (t, x, y) exist on
�

+ × 0 × (0 \ V)

(ii) ∂K
∂t (·, x, y) exists continuous on

�
+ for every(x, y)in0 × (0 \ V)

(iii) ∂K
∂t (t, x, y) = ∂2K

∂y2 (t, x, y) on
�

+ × 0 × (0 \ V)

(iv) K (t, x, ·) ∈ D(1) for every(t, x)in
�

+ × 0
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REMARK 1. One can prove, essentially repeating the procedure adopted by J.P. Roth (see
ref.[8]), that if there exists a functionH(t, x, y) with the properties of Theorem 1, then, for every
(t, x, y) in R+ × 0 × 0 we have

H(t, x, y) = K (t, x, y)

Therefore we can consider the properties listed in Theorem 1as the properties characterizing the
fundamental solution of the heat equation on0.

The proof of Theorem 1 depends on the estimates in the following Lemmas.

LEMMA 2. There existη > 0 and ν > 0 (independent of e and e′) such that, for every
(t, x, y) in R+ × 0×0

| L(t, x, y) | ≤
κd

c(e)
√

π t

∑

m≥ρ(x,y)

exp(m(ln κd) − m/4t))(12)

≤
η

c(e)
√

t
(1 + t) exp(νt)

(κ is as in (4))

Moreover there exist t0 > 0 andα> 0 (independent of e and e′) such that, for all(t, x, y)

in (0, t0]×0×0

| L(t, x, y) |≤
α

c(e)
√

t
exp(−ρ2(x, y)β/t)

where1
8 < β < 1

4 .

In order to compute∂K
∂y (t, x, y) and∂2K

∂y2 (t, x, y) we determine∂L
∂y (t, x, y) and∂2L

∂y2 (t, x, y)

and study their regularity. Withx, y, e ande′ as above set

L1(t, x, y) = c(e)−1 ∑

m≥ρ(x,y)

∑

C∈Cm+2(e,e′)

= εC
∂k
∂y (t, | x − T(±e) | +m+ | y − I (±e′) |)

and
L2(t, x, y) = c(e)−1 ∑

m≥ρ(x,y)

∑

C∈Cm+2(e,e′)

εC
∂2k
∂y2 (t, | x − T(±e) | +m+ | y − I (±e′) |)

We have

LEMMA 3. There existη > 0 and ν > 0 (independent of e and e′) such that, for every
(t, x, y) in

�
+ × 0×0

(i )
| L1(t, x, y) | ≤ e2(κd)

2c(e)t
√

π t

∑

m≥ρ(x,y) exp(m(ln(κd) + 1 − m/4t))

≤ η

c(e)t
√

t
(1 + t) exp(νt)

For every(t, x) fixed in R+ × 0 and for every y in e′

(i i )
∂L

∂y
(t, x, y) = L1(t, x, y)
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Moreover there exist t0 > 0 andα> 0 (independent of e and e′) such that, for all(t, x, y)

in (0, t0]×0×0

(i i i ) |
∂L

∂y
(t, x, y) |≤

α

c(e)t
√

t
exp(−ρ2(x, y)β/t)

where1
8 < β < 1

4 .

and

LEMMA 4. Setτ = min{t, t2}. There existη > 0 andν > 0 (independent of e and e′) such
that, for every(t, x, y) in R+ × 0×0

| L2(t, x, y) | ≤ e4(κd)

c(e)τ
√

π t

∑

m≥ρ(x,y) exp(m(ln(κd) + 2 − m/4t))

≤ η

c(e)τ
√

t
(1 + t) exp(νt)

For every(t, x) fixed in R+ × 0 and for every y in e′

(i i )
∂2L

∂y2
(t, x, y) = L2(t, x, y)

Moreover there exist t0 > 0 andα> 0 (independent of e and e′) such that, for all(t, x, y)

in (0, t0]×0×0

(i i i ) |
∂2L

∂y2
(t, x, y) |≤

α

c(e)t2
√

t
exp(−ρ2(x, y)β/t)

where1
8 < β < 1

4 .

We denote byM(t, x) any one of the following functionsK (t, x, ·), ∂K
∂y (t, x, ·) and∂2K

∂y2 (t, x, ·)
then

LEMMA 5. For the function M(t, x, y) we have

(i) M (t, x, ·) ∈ L1(0, c)
⋂

L2(0, c) for every(t, x)in
�

+ × 0

(ii) there existsα1(t) > 0 such that, for every x in0

‖ M(t, x, ·) ‖L1(0,c)≤ α1(t)

(iii) there existsα2(t) > 0 such that, for every x in0

‖ M(t, x, ·) ‖L2(0,c)≤
α2(t)

mine∈Ex c(e)

REMARK 2. Lemma 5 still holds with the functionM(t, ·, y) replacing the functionM(t, x, ·)
(where it is defined) andc(e′) instead ofc(e).

The proofs of the above results are essentially the same as the corresponding ones in [2].
We need only to modify the evaluation of the cardinality of the setCm(e, e′) and the absolute
value of the transfer coefficientεe,e′ . Therefore we omit them and refer to [2].
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We conclude by solving the Cauchy problem (10) (again we refer to [2] for the proofs)

For every f in L2(0, c) and for ally in 0, set

(13) Pt f (y) =
{ ∫

0 K (t, x, y) f (x)dx i f t > 0
f (y) i f t = 0

This definition makes sense since we have

PROPOSITION1. For every function f in L2(0, c) and for every t> 0 we have that the
integral

∫

0 M(t, x, y) f (x)dx exists for every y in(0 \ V) and

∫

0
M(t, x, ·) f (x)dx ∈ L2(0, c)

(Recall that M(t, x, y) denotes any one of three functions K(t, x, y), ∂K
∂y (t, x, y), ∂2K

∂y2 (t, x, y)).

Finally we can state

THEOREM 2. Pt f is the solution of the abstract Cauchy problem(8), i.e. Pt f has the
following properties

(i ) Pt f (·) ∈ D(1) for t > 0

(i i ) Pt f satisfies system(8)

(i i i ) Pt f is a continuous L2(0, c) valued function on (R+
⋃

{0})

(i v) Pt f is a continuously differentiable L2(0, c) valued function on R+
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