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ON THE COMPUTATION OF WEIERSTRASS GAP
SEQUENCES

Abstract. In this paper, we develop a technique to compute the WedsstBap
Sequence at a given point, no matter if simple or singulaga ptane curve, with
respect to any linear systemh € HO(C, Oc(n)). This technique can be useful
to construct examples of curves with Weierstrass pointsiedngweight, or to
look for conditions for a sequence to be a Weierstrass Gapedeg. We use this
technique to compute the Weierstrass Gap Sequence at aoppanticular curves
and of families of curves.

1. Introduction

Weierstrass points on curves have been widely studied,rinesdion with many problems. For
example, the moduli spac&ty has been stratified with subvarieties whose points are isomo
phism classes of curves with particular Weierstrass pégas [1], [3], [13]).

At first, the theory of the Weierstrass points was developed for smooth curves, and for
their canonical divisors. In the last years, starting frame papers by R. Lax and C. Widland
(see [16], [8], [9], [10], [11], [12]), the theory has beerfamnulated for Gorenstein curves,
where the invertible dualizing sheaf substitutes the cmabsheaf. In this contest, the singular
points of a Gorenstein curve are always Weierstrass polntghis paper, we shall describe a
technique to compute the Weierstrass weight at a poingegtmooth or singular, with respect to
any linear systenv. Such a procedure is based on the computation of the sequémtegers
which in [4] has been calledV’-gaps sequence”, even at singular poisswWGS for brief).

As better explained in the next section, to define\¥hgaps it is necessary to distinguish if
the pointP is smooth on the curv€ or if it is singular. In the first case, to compute tfiegaps,
we need to determine the dimension of the linear systémsn P, for everyn. In the second
case, the/-gaps are given by a suitable combination of Yhejaps at the point®y, ..., Qs,

s > 1, overP in a partial normalizatio@p : € — Cof C at P, whereV is the pull back oiV.

In [6], some techniques to compute the WGS with respect tdtiaéizing sheaf of a Goren-
stein curve have been shown, but with some heavy constraiits those techniques it was
possible to compute at most the WGS at ordinary nodes onigaart/es or at cusps on quintic
curves. The aim of this paper is to overcome those difficsiltiie fact, the technique we describe,
consists in performing a fixed sequence of computations, fandhis reason, it can be applied
to any curve, at any point, no matter if smooth or singulaP i§ smooth, thé/-gaps are com-
puted by means of the definition, and so some intersectiotipticities must be computed. If
P is singular, the/-gaps at the pointg1, . .., Qs over P can be computed as the intersection
multiplicities of Cy, v € V, and the branche@l, ..., C§ of C through P, corresponding to

*Partially supported by MURST.
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Q1. ..., Qs, respectively, one at a time. In the second case, the stuthediranches through
P allows to largely simplify the computation of the sequentéhe V-gaps. This simplification
is essentially due to the knowledge of the normalization imaprms of blow-up’s, as shown in
[4] and [7].

In both cases, the intersection multiplicities are comgigmeans of the osculating curves
of suitable degrees. Moreover, we describe a quick way topatenthe osculating curve of
assigned degree at a point of a curve, because in the moatisgymputer algebra systems there
is no built in function to perform that computation.

Let us explicitly observe that our technique is “constneli in some sense, but that its
application is based on the factorization of multivariatdypomials, and on the solution in
closed form of algebraic equations of arbitrary degree lier computation of the osculating
curves. However, all the computation described in the Wdlg were made using REDUCE as
a computing support.

The plan of the paper is the following. In section 2, we redalflinitions and properties
of the Weierstrass Gap Sequence and of the Extraweight Beguén section 3, we describe
the technigue and show its correctness, while, in sectigre4et the technique work on various
examples. In the last section, we study the families of thitmucurves with a 4-tuple point with
respect to th&/-WGS at the singular point, wheké is the linear system of the plane conics.

The author would like to thank L. Gatto for suggesting thejesciband for the discussions
on the matter, and S. Greco for the precious discussionsugggstions.

2. Preliminaries

In this section we shall recall briefly what one should mea’/bBWGS at a point, singular or
not, with respect to any linear systér in a very general situation.

To this purpose, le€ be any projective integral curve over the complex field, aid/Ibe
anr-dimensional linear system (i.e., ardimensional sub-vector space leho(C, L), wherel
is a line bundle ove€). Letv = (vq,...,vr) be a basis oV. Then, ifx : C — Cisthe
normalization ofC, we consider the linear syste¥h= spar(z*vy, ..., 7*vr) overC.

Let us recall a geometrical definition ¥f-gap at a poinP of C ([14], §2).

DEFINITION 3.1. Let P be a smooth point on the curve C. The integer n is a V -gapdf
only if, d(V — (n — 1) P) > d(V — nP). The sequence of the V -gaps is the V-WGS at P.
Let P be a singular point of C. The V-WGS at P(a%’(P), e arV(P)>, where
@ /(M= Y B(Q-k@# P -1
Qen~1(P)

and (bY (Q), ..., bY (Q)) is theV-WGS at Qe 7~ 1(P).

Following [2], we define a functionEQ/ :C — N, forany 1< k < r: the evaluation OEQ/
at a given point® € C, computed as

) EP = Y oQ
Qen~1(P)

gives the so calleli-th extraweight aP, wherew\k7(Q) is the Weierstrass weight at the smooth
point Q with respect to the linear systeﬁl Using notation as in [7]w\k/(Q) is nothing but
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ordor*VA Dr*VA ... A DK-1z*v. By definition (see [2]), a poinP € C is aV-Weierstrass
point if, and only if, either it is singular or itsth extraweight is non zero.

By means of the extraweight sequence, ¥WVGS atP can be computed as

v 3 EV(P)+1 ifk=1
(3) ak(P)_{ EE’<P>—EQ’_1<P>+'< if2<k<r

and hence we have also that

k
@) EV P =) (8P —i).

i=1

Formulas (3) and (4) show that it is equivalent to know Yh&VGS or the extraweight
sequence aP, but the first one is easier to compute than the second, becétise geometrical
meaning of the/-WGS.

REMARK 3.1 (CASEL = O¢(n), C C lP’Z). In this case, the so called restriction map
¢n - HO(P?, Op2(n)) — HO(C, Oc () is surjective for every. If V is spanned by, .. ., vr,
there existCq, ..., Cr (we use the same symbol for the plane curves and the cormdisggon
elements inHO(]P’Z, Op2(n))) such thatpn(Cj) = vj, for eachi. The element<; are not
uniquely determined, but ifn(C’) = ¢n(C”) thenC’ — C” € Ic(n) = degreen part of the
saturated ideal o€, which is the kernel of the restriction map, and@bandC” cannot be
distinguished when we consider their behaviour with resfeethe curveC. Hence, leW be the
subspace spanned By, ..., C;. Then, the sub-vector spa¥e— nP corresponds to the sub-
vector spac&V’ of W spanned by all the curvés, € W such that the intersection multiplicity at
P of C andC,, u(P, CNC,), is not less than, and, in particular, they have the same dimension.

3. The technique

As declared in the Introduction, the main purpose of whdbtfad, is to describe a technique
which effectively allows to compute thé-WGS at a pointP, no matter if singular or smooth,
on a plane curve€, with respect to a linear syste¥h € HO(C, O (n)).

¢From now on, by plane cun@ we mean a projective, integral cur@of the projective
plane over the complex field.

Now, we state a proposition which allows to compute%WGS ata poinQ € 7~ 1(P),
without explicitly computing the partial normalization Gfat P.

Leto : C — C be the partial normalization o at P. It is well known thaté can be
obtained as the restriction @ of a sequence of blow-up’ s of an affine neighbourhtbd: A2
of P. Then, lety : X — U be the map whose restrictionds we have tha€ = v~ nu).
Moreover, sety = w1 o --- o n, Where ther;’ s are blow-up’ s. Let us choo9® € 0~ 1(P),
and letC’ be the branch of throughP corresponding t®.

Let us set the following notation.

. o = idy;

Cl = (roont---omi) HC/), (Co)i = (oo 71+~ 7i) " H(Cu);
P = (10 0m)(Q);

. up (...) is the multiplicity of the curve in parenthesis Bt
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For everyv € V, leta, = Z{';Olupl (CHup (Cv)i).

ProPoOSITION3.1. his a\7-gap at Q if, and only if, there existse V such thaw. (P, C’'N
Cy)=h-1+a,.

Proof. Let us suppose thatis aV-gap atQ. Then, by definitiond(V —(h—1)Q) > d(V—hQ),
and hence there existse (V —(h—1)Q)\ (V—hQ), thatis to sayu(Q, Cny~1(Cy)) = h—1,
and squ(P, CNC,) = h—1+ay, by ([15], Ch. IV, § 3, Th. 2); the proof of the inverse implizn
is analogous. |

According to the previous considerations, the techniquesiets in the following sequence
of computations, starting from the equatiohsg, of C andC,, v € V, in the chosen affine
open subset dP2, respectively, and from the coordinatesRfn the same open subset.

For each brancie] of C throughP do

1. setVy =V,r :=dimV andni =14+ u(P, cin C,) wherev is the general element of
\%H

2. compute a condition forcing the general curve of the lisyatemV; to have intersection
multiplicity with the branchC! at P not less thanniJ ;

3. impose the computed condition on the linear syst¢robtaining the linear sub-system
Vi1

4. the computation starts again from 2. until the linear sytem becomes empty.

TheV-gaps(ay, ..., ar) are computed according to the formula
#branches
ac:= Y ni—k@#branches-1).
i=1

The correctness of the result of this sequence of compuataiensured by Definition 3.1,
and Proposition 3.1.

We explicitly observe that this technique can be applied dl$ is a base point o¥/ as
Example 3.4 below shows.

We observe that, by Proposition 3.1, the knowledge of thersection multiplicities be-
tween the branche€! andC,, v € V;, at P, allows to compute th&/-WGS at any point
Q € 6~1(P), too.

We remark that the hardest computation to be performed isrkeof 2., and so we give
some suggestions to perform it. At first, we must analyze thietP as point ofC. Ifitis a
cusp, itis possible to compute the required condition usiiregresultanR(t) of f, andg,. In
fact, the condition is given equating the coef‘ficient'@)lfl in R(t) to zero. If P is not a cusp,
the condition can be computed using the osculating curvesfitiently large degree & and
C, at P, as shown later.

Let us recall the definition and some useful properties obwilating curves.

DEFINITION 3.2. Let P € C, and suppose that P is not a cusp for C. A curyg €nooth
at P, is said to be osculating of degree n at R.{fP, CNCy)) > n+up(C) — 1, and the degree
of Cjisn.
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Let us observe that, for a fixed integerthere can be several curves that are osculating. If
P is a pluribranch singular point, it is natural to restriat tittention to one branch at a time.

Before we prove some properties of the osculating curveshat describe how to compute
an osculating curve of a certain degree, in a very quick way.

To this purpose, let us choose a coordinate affine open subEétcontaining the poinP,
and letf (x, y) = 0 be the equation of the cure in the chosen open subset, apd, yg) the
coordinates of the poinP. Moreover, let us suppose that the tangent lin® ab C is not the
line x = Xxg.

1. setPp(X) := Yo,

2. foreachinteger ki <n,setG(x) := B_1(X) +a (X — xo)i and computey; in such a
way that the smallest power &fin f (x, G(x)) = 0 has coefficient zero;

3. seth(xX) :=R_1(X) +a X — xO)i and start again from 2.

REMARK 3.2. If the point is smooth, the equations to be solved to admthe parameters
ai, ..., an are linear, while, if the point is a pluribranch singularitigere can be equations of
higher degree.

Now, let us prove that we can compute the intersection miglitip of two curves at a given
point using the osculating curves.

PROPOSITION3.2. Let P € C1 N Cy be smooth for both curves. Then(P, C1 N Cy) =
n(P, Cy N Cg), where G is the osculating curve of suitable degree of & P, computed as
previously explained.

Proof. The pointP is a smooth point o€ and then we can consider the formal power series
representing4 in an affine open neighbourhodd ~ AZ of P: the curveCs is a cutting off of
this series at a suitable point.

Setg(x, y) = 0 the equation of the curv€, in U. We have thaj.(P, C1 N Cy) is the
order of the formal power series obtained fr@itx, y) by substituting the series representing
C1. Then, the claim follows if we cut off the series at a degrestioh a way that the first term
of the series obtained frogx(x, y) does not change. |

4. Examples

In this section we shall discuss five examples. The first twarmgles have been developed in
[7], and have been included to show the different technigoesbtain the WGS. The third and

the fourth ones show that the technique works with no coimsteen the degree of the curve or
on the linear system. In the last example, we show that thenigae allows to compute the

Vy-WGS for every curve zero locus &f' + y" — xy = 0, whereVj is the linear system of the

curves of degred.

EXAMPLE 3.1. LetC be a quartic curve whose equationfs+ x3 — y3 4+ x2 — y2 = 0,
in a chosen open affine subset. We want to compute the WGS atitile O that is a node for
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C. The osculating curves to the two branches throGghave equations

1 3
branchc! : y=X+ =x3 - ZX4

> +...

branchC2 : y=—x—x2—gx3+....

The general curv€, of the linear system, in the same open subset, has equajion
b1y + bp = 0. Let us observe that the linear system is base point frebsarwe have that
w(0,ctnc,) = u(0,c?ncy) =0.

By using the technique, we have the following partial result

BranchCl.
Condition Sub-system Int. mult.
ni:l bp=0  bgx+byy=0 1
n%=2 b0=—b1 —b1X+b1y=0 3
n=4 b =0 0=0 00
BranchC?2.
Condition Sub-system Int. mult.
ni:l bp=0 bgx+byy=0 1
n%=2 bg = by bix+byy=0 2
ng=3 Db =0 0=0 00

Then, theV-WGS atO is (1, 2, 4), computed according to formula (1), while the ex-
traweight sequence i§, 0, 1), according to formula (4).

ExAMPLE 3.2. LetC be the quintic curve whose equatiorks+ x3 + y2 = 0inachosen
affine open subset. Let us notice that the ori@iiis a cusp, and then there is only one branch of
C throughO. We want to compute th&-WGS atO, where the general curve ¥f, in the same
open subset, has equatibgx? + by xy + boy? 4 bax + bay + bs = 0. The linear systerv is
base point free, and 30(0, C N Cy) = 0.

Condition Sub-system Int. mult.
nf=1 b5=0 bpx?+byxy+bpy? + bgx + bay =0 2
ni=3 b3 =0 b0x2+b1xy+ b2y2+b4y=0 3
n% =4 by=0 box2 4 byxy + boy? =0 4
nl—5 bo =0 bixy + bpy? =0 5
nl—6 by =0 boy? =0 6
ng =7 by=0 0=0 00

By applying formulas (1) and (4), we obtain that MeWGS and the extraweight sequence
are(1,3,4,5,6, 7), and(0, 1, 2, 3, 4, 5), respectively.

EXAMPLE 3.3. LetC be the curve whose equation, in a fixed affine open subsef, is
X2 — y2 = 0. We want to compute thé-WGS at the originO with respect to the linear system
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of the plane conics. Let us observe that the ori@iris a node forC, whose branches have
osculating curves
11

1 1
branchc! : y=x+2x8-2 —x164
ranc y=X+ 2x 8x + 16X +

1 1 1
ranchC? : = x—=x8p o1l 16,
branchC y X 2x +8x 16x +

With the same notation of the previous example, the osoigaturve to a plane conic
through the origin has equation

bs . —bgbZ + bybgbs — byb3 2
bs b3
. bob1b3 — 2bgbobgb2 — b2bgbZ + 3b1 bbby — 20203 4
X,
b5
A

By the symmetry of the osculating curves at every brandd tifroughO, we can apply the
technique to the only first one.

Condition Sub-system Int. mult.
ni =1 bs =0 box? -+ byxy + bay? + bax +bgy = 0 1
n% =2 b3 = —by box? + byxy + bpy? — bax + bay = 0 2
n%=3 by =—bp—by (X—y)[box + (bp+bp)y—bs] =0 6
nil=7 by =0 (X — yY)[box + (bg + by)y] =0 7
ng=8 by =-2bp (X = y)(bpx — bgy) =0 12
ng =13 bg =0 0=0 00

The two partialV-WGS are equal tdl, 2, 3, 7, 8, 13), and hence th&-WGS at the ori-
gin, according to the formula (1), i&l, 2, 3, 10, 11, 20), while the extraweight sequence is
(0,0,0,6,12 26).

ExamMPLE 3.4. LetC be the quintic curve whose equation, in a fixed affine openetubs
is x° + y° — xy = 0. We want to compute the-WGS at the origin, wher® is a sub-linear
system of the plane conics, whose general element, in theeohopen subset, has equation
box2 + bly2 + boy = 0. Let us notice that the origin is the only base point of thedir system,
and that no element of the system can be tangent at the ovigfile y-axis. Moreover, the origin
is a node forIC and the osculating curves to the two branche€ dfiroughO have equations

branchcl : y=x4+x19+...,
branchC2 : x=y4+y19+...,

respectively, while the osculating curve to the generahelat ofV, at the origin, is

b2b
@xz - 0Ly4

yz_m b3

At last, we observe that(O, C1 N C,) = 2, while (O, C2N Cy) = 1.
BranchCl.



30 R. Notari

Condition Sub-system Int. mult.
ni=3 bo=0 byy?+byy=0 4
n%=5 by =0 by2=0 8
n=9 b =0 0=0 00

BranchC?2.

Condition Sub-system Int. mult.
ni:Z by =0 bgx2+biy?=0 2
n3=3 by =0 box2 =0 8
ng=9 1Dbp=0 0=0 00

We can calculate th&/-WGS at the origin, applying formula (1), and then we have
(4, 6, 15), while the extraweight sequence(& 7, 19).

EXAMPLE 3.5. LetCy be the curve whose equation, in an open affine subset, isy" —
Xy = 0,n > 4, and letVy be the linear system of the curves of degieavith1 <d < n— 3.

The general curve ofy has equatio@ﬁ’jd bi jx'yl =0.

We want to compute th€y-WGS at the originO which is a node for the curv@n.

The osculating curves at the two branche<gfthroughO can be obtained the one from
the other by exchanging the variables, and they are theAfwitn

2
Branchc! : y=x""14xn—n-1, |
2
BranchC? : x=y"1l4y"—n-1,
and hence we shall use only the first branch.

PROPOSITION3.3. The \§-WGS at the origin O of gis

(bg+1.bd, ... b1)

whereby = 2d+1-K\(n—D)+1—-—Wd+Dd+2)/2+kk+1)/2,..., 2d+1-k)(n—
D+k—Wd+1Dd+2)/2+kkk+1)/2).

Proof. We shall prove the claim by induction @h
Setd = 1. The general curve df; has equatiofyy ox + bg 1y + bg o = 0. We have

Condition Sub-system Int. mult.
nl=1 bpo=0 byox+bg1y=0 1
n; =2 b1’0=0 bO,]_y:O n—1
n3 =n bO,l =0 0=0 0.¢]

and then, the two partial1-WGS are(1, 2, n), theV1-WGS atO is (1, 2, 2n — 3), and so the
claim holds ford = 1.
Let us suppose that the claim holds &b+ 1, and let us prove that it holds fdr too.
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To compute the osculating curves at the ori@irof the curves oy, we consider a curve
of Vg whose equation is

i+j=d o
Z bi,j x'yl -l-bd,oXd +...+bh,0Xh =0
i>0,j>0

whereh > 0, and so we obtain the curve whose equation is —xhbh,o/bo,l.

Let us observe that the equation of the considered curVig ofn be written ag Py_1 (X, Y)
+ xh Qg_n(xX) = 0, wherePy_1 is the equation of the general curve \df_4, with suitable
subscripts, whil&Qy_p, is the general polynomial in one variable of degdee h.

We have the following partial results.

Condition Sub-system Int. mult.
ni:l Poo=0 YPy_1+XQg_1=0 1
ny =2 bio=0 yPy_1+x°Qg_2=0 2
nj=d bi_10=0 yPy_1+bgoxd=0 d
Nj1=d+1 bgo=0 yPy_1=0 n—1
nl _=n
d+2

From now on, the intersection multiplicities are the onetheflinear systeriy_4 increased
ofn—1 = u(0,ClNV(y)), and hence, the partialy-WGS is (Cd+1,Cd> - - -, C1) Where
&k ={(d+1-km-1+1...,d+1-Kk(n-1 + k). By formula (1), we have the
claim. O

Now, we can compute the extraweight sequence, using forif@)la This sequence is
(€d+1-€d> - - - » €1), Where

| (a+ k... e+ kd) ifk<d41
%=1 .....0 ifk=d+1

nd(d? + 3d + 2) d+3 k+3
T e[ (07) ()]

+(k2 +K)[3(d2 + 5d + 6) — 2n(3d — 2k + 2)]
6
d¢ = 2d+1-kKM—-1)—d+Dd+2) +kk+1).

and

Let us observe that the last element of the extraweight seguisd(d + 1)(d + 2)(4n —
3d — 9)/12, and that, il = n — 3, itisn(n — 1)(n — 2)(n — 3)/12.

5. Study of a family of quintic curves

In this section, we want to study the family of the irredueibhtional plane quintic curves with
a 4-tuple point, with respect to thé-WGS at the singular point, wheié is the linear system
of the plane conics. We shall consider five different casespraling to the tangent lines at the
4-tuple point.
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At first, we choose an affine open subset of the plane, and dicabe system whose origin
coincides with the singular point of the quintic curves. Ever, they-axis of the coordinate
system is always one of the tangent lines.

In this coordinate system, the family we want to study is espnted by the parametric
equationagx®+a1 x4y+aox3y2+-agx2y3-+asxy*+agy>+agx? +arx3y+agx2y?+agxy® = 0,
wherea = (ag : ... : ag) ranges in an open subset®?, while the linear systerv has, as a
general member, the cur@, : box? + byxy -+ byy2 + bax + by + bs = 0.

We shall report only the results obtained in each case.

Caselay=ag=a=0,a5=1,a5 #0

The singular point is a cusp for every curve of the family, dughce it is an unibranch
singular point.

We have that th&/-WGS at the origin is constant for each curve of the familyd éns
(1,5, 6,9, 10, 11), and then the extraweight sequencélis3, 6, 11, 16, 21).

Case2ag=ag=ag=0,a7=1,apag5 #0

There are two branches through the ori@inthe one having thg-axis as tangent line has
a cuspidal nature, while the one having thexis as tangent line corresponds to a simple point
on the partial normalization of every curve of the family.

The partial WGS corresponding to the first branclilis4, 5, 7, 8, 9), for every curve of the
family, while the partial WGS corresponding to the secorehbh is(1, 2, 3, 4, 5, m), wherem
can assume the following values:

6 ifag#0
m=1 7 ifag=0,a4#0
8 ifag=a4=0

Then, there are three admissibleWGS's at the origin, and, of course, three possible ex-
traweight sequences, as the following shows

V-WGS Extraweights Condition
(1,4,5,7,8,9 (0,2 4,7,10,13 az#£0
(1,4,5,7,8,10) (0,2,4,7,10,14 a3=0,a4#0
(1,4,5,7,8,11) (0,2,4,7,10,15 az=a4=0.

Case 3ag = a7y =ag=0,ag = 1,agag # 0

In this case, every curve of the family has two branches titahe origin, each one of
which has a cuspidal nature. Then, the two partial WGS aresdhee, and they are equal to
(1,3,4,5, 6, 7), and so the/-WGS at the origin i91, 4, 5, 6, 7, 8), while the extraweight se-
quence ig0, 2, 4, 6, 8, 10), for every curve of the family.

Casedag=ag=0,a7=1

Let P(2) = agz® + a1 2% + apz3 + a3z2 + a,z+ as. In this case, the irreducibility condition
can be written asgag P(—ag) # 0.
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¢ From the above assumptions, it follows that the originas,efrery curve of the family,
a 3-branch singular point: one of themm = 0) has a cuspidal nature, while the oth¢ys=
0,x + agy = 0) correspond to simple points on the partial normalizatiorthef curve, not
tangent to the exceptional divisor.

The partial WGS corresponding to the branch tangent toytheis is(1, 3, 4, 5, 6, 7), no
matter which curve of the family we are considering.

The partial WGS corresponding to the branch tangent txthris depends from the con-
sidered curve of the family. In fact, the partial WGS is

(1,2,3,4,56) if () agag — agaZ + apag — ag # 0,
(1,2,3,457 if (i) agal—aal+aag—ag=0a4#0,
(1,2,3,4,5,8) if (i) agas—a1a3+apag—ag=ay=0.
For the branch tangent to the limet agy = 0 we have the following partial WGS
(1.2.3.4,5.6) if () agag —a4 # 0,

(1,2,3,4,5,7) if (jj) agag—as=0a4ag—as#0,
(1,2,3.4,5,8) if (jjj) agag—ay=asag—as=0.

Combining the three computed partial WGS, we obtairMhé/GS at the origin, that is one
of the following, according to the considered curve of thaifg:

V-WGS Extraweights Conditions
(1,3,4,5,6,7) (0,1,2,3,4,5) @), ()
(1,3,4,5,6,8 (0,1,2,3,4,6) @), (jyordi), (jj)
(1,3,4,5,6,9) (0,1,2,3,4,7) (iii), (j)or(i), (jj)or@), (jji)
(1,3,4,5,6,100 (0,1,2,3,4,8) @ii), (jj)yor (i), (jjj)
(1,3,4,5,6,11) (0,1,2,3,4,9) @ii), (jjj)

Case bag =1

Let P(2) asin Case 4, and |&)(2) = 1+ a7z + agz2 + agz3. The tangent lines, except
x = 0, have equationg — ¢jx = 0,i = 1,2, 3, where the;;’ s are the roots of the equation
Q(z) = 0. Let us suppose th&(z) has only simple roots, i.e. the origin is an ordinary 4-tuple
point for every curve of the family. The irreducibility coitidn is agP(c1) P(co) P(c3) # O.

The partial WGS corresponding to the branch through thérot@ggent to the ling—cj x =
0is(1, 2, 3, 4,5, b), whereb can assume the following values:

6 if4P///Q/3 _ 6P//Q//Q/2 + 6P/Q//2Q/ _ 4P/Q///Q/2 _3p Q//3
+4PQ///Q//Q/ #0
7 if 4P///Q/3 _ 6P//Q//Q/2 + 6P/Q//2Q/ _ 4P/Q///Q/2 _3p Q//3
+4PQ///Q//Q/ — 0’
3piv Q/3 _ 6P//Q///Q/2 1+ 6P'Q"Q"Q —3PQ"” Q//2
+2PQ///2Q/ #0
8 if 4P///Q/3 _ 6P//Q//Q/2 + 6P/Q//2Q/ _ 4P/Q///Q/2 _3p Q//3
+4PQ///Q//Q/ — 0’
3piv Q/3 _ 6P//Q///Q/2 +6P'Q"Q"Q —3PQ"” Q//2
+2PQ///2Q/ -0

where all the involved polynomials are evaluated;at
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The partial WGS corresponding to the branch tangent to tigexli= 0 is one of the follow-
ing
(1.2.3,4,5,6) if @aal— aga3 — asaral + 2asazagag — azagas
+aya2ag — aga3 # 0
(1,2,3,4,57) if aya3—asal — asara3 + 2asayagag — azagas
+ayagag — agag = 0,
a1a3 — a4ag + asagag — agayas + ayaragag
+asadag — asaza3 # 0
(1,2,3,4,5,8) if aya3 —asal — asara3 + 2asayagag — azagas
+a4a3ag — agag = 0,
a1a3 — a4aZ + asagag — agayas + ayaragag
+asaZag — asaza3 = 0,
apa3 — aga3 + ayagag + asazag — asaa # 0.
Then, theV-WGS at the origin ig1, 2, 3, 4, 5, b), whereb is an integer with 6< b < 14,
according to the considered curve of the family.
Using the formula (4), the extraweight sequenc@®i9, 0, 0, 0, m), wherem is positive and
smaller than 9, according to the&WGS.
¢ From these computations, we notice that no quintic curtieav-tuple point can have the
last extraweight equal to 11, 12, or grater than 16, except 21
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