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SINGULARITIES OF STABILIZING FEEDBACKS

1. Introduction

This paper is concerned with the stabilization problem for acontrol system of the form

ẋ = f (x, u), u ∈ K ,(1)

assuming that the set of control valuesK ⊂
�m is compact and that the mapf :

�n ×
�m 7→

�n

is smooth. It is well known [6] that, even if every initial state x̄ ∈
�n can be steered to the origin

by an open-loop controlu = ux̄(t), there may not exist a continuous feedback controlu = U(x)

which locally stabilizes the system (1). One is thus forced to look for a stabilizing feedback
within a class of discontinuous functions. However, this leads to a theoretical difficulty, because,
when the functionU is discontinuous, the differential equation

ẋ = f (x, U(x))(2)

may not have any Carathéodory solution. To cope with this problem, two approaches are possi-
ble.

I) On one hand, one may choose to work with completely arbitraryfeedback controlsU . In this
case, to make sense of the evolution equation (2), one must introduce a suitable definition
of “generalized solution” for discontinuous O.D.E. For such solutions, a general existence
theorem should be available.

II) On the other hand, one may try to solve the stabilization problem within a particular class
of feedback controlsU whose discontinuities are sufficiently tame. In this case, it will
suffice to consider solutions of (2) in the usual Carathéodory sense.

The first approach is more in the spirit of [7], while the second was taken in [1]. In the
present note we will briefly survey various definitions of generalized solutions found in the liter-
ature [2, 11, 12, 13, 14], discussing their possible application to problems of feedback stabiliza-
tion. In the last sections, we will consider particular classes of discontinuous vector fields which
always admit Carathéodory solutions [3, 5, 16], and outline some research directions related to
the second approach.

In the following, � and∂� denote the closure and the boundary of a set�, while Bε is
the open ball centered at the origin with radiusε. To fix the ideas, two model problems will be
considered.

Asymptotic Stabilization (AS). Construct a feedbacku = U(x), defined on
�n \ {0}, such that

every trajectory of (2) either tends to the origin ast → ∞ or else reaches the origin in
finite time.

Suboptimal Controllability (SOC). Consider the minimum time function

T(x̄)
.
= min {t : there exists a trajectory of (1) withx(0) = x̄, x(t) = 0} .(3)
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Call R(τ)
.
= {x : T(x) ≤ τ } the set of points that can be steered to the origin within

time τ . For a givenε > 0, we want to construct a feedbacku = U(x), defined on a
neighborhoodV of R(τ), with the following property. For everȳx ∈ V , every trajectory
of (2) starting at̄x reaches a point insideBε within time T(x̄) + ε.

Notice that we are not concerned here with time optimal feedbacks, but only with subopti-
mal ones. Indeed, already for systems on

�2, an accurate description of all generic singularities
of a time optimal feedback involves the classification of a large number of singular points [4, 15].
In higher dimensions, an ever growing number of different singularities can arise, and time op-
timal feedbacks may exhibit pathological behaviors. A complete classification thus appears to
be an enormous task, if at all possible. By working with suboptimal feedbacks, we expect that
such bad behaviors can be avoided. One can thus hope to construct suboptimal feedback controls
having a much smaller set of singularities.

2. Nonexistence of continous stabilizing feedbacks

The papers [6, 19, 20] provided the first examples of control systems which can be asymptotically
stabilized at the origin, but where no continuous feedback control u = U(x) has the property
that all trajectories of (2) asymptotically tend to the origin as t → ∞. One such case is the
following.

EXAMPLE 1. Consider the control system on
�3

(ẋ1, ẋ2, ẋ3) = (u1, u2, x1u2 − x2u1) .(4)

As control setK one can take here the closed unit ball in
�2. Using Lie-algebraic techniques,

it is easy to show that this system is globally controllable to the origin. However, no smooth
feedbacku = U(x) can achieve this stabilization.

Indeed, the existence of such a feedback would imply the existence of a compact neigh-
borhoodV of the origin which is positively invariant for the flow of thesmooth vector field
g(x)

.
= f (x, U(x)). Calling TV (x) the contingent cone [2, 8] to the setV at the pointx, we

thus haveg(x) ∈ TV (x) at each boundary pointx ∈ ∂V . Sinceg cannot vanish outside the
origin, by a topological degree argument, there must be a point x∗ where the fieldg is parallel
to thex3-axis: g(x∗) = (0, 0, y) for somey > 0. But this is clearly impossible by the definition
(4) of the vector field.
Using a mollification procedure, from a continuous stabilizing feedback one could easily con-
struct a smooth one. Therefore, the above argument also rules out the existence of continuous
stabilizing feedbacks.

We describe below a simple case where the problem of suboptimal controllability to zero
cannot be solved by any continuous feedback.

EXAMPLE 2. Consider the system

(ẋ1, ẋ2) = (u, −x2
1), u ∈ [−1, 1] .(5)

The set of points that can be steered to the origin within timeτ = 1 is found to be

R(1) =

{

(x1, x2) : x1 ∈ [−1, 1],
1

3
|x3

1| ≤ x2 ≤
1

4

(

1

3
+ |x1| + x2

1 − |x3
1|

)}

.(6)
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Moreover, all time-optimal controls are bang-bang with at most one switching, as shown in fig. 1.

Assume that for everyε > 0 there exists a continuous feedbackUε such that all trajectories
of

ẋ = (ẋ1, ẋ2) =
(

Uε(x), −x2
1

)

starting at some point̄x ∈ R(1) reach the ballBε within timeT(x̄)+ε. To derive a contradiction,
fix the point P = (0, 1/24). By continuity, for eachε sufficiently small, there will be at least
one trajectoryxε(·) starting from a point on the upper boundary

∂+ R(1)
.
=

{

(x1, x2) : x1 ∈ [−1, 1], x2 =
1

4

(

1

3
+ |x1| + x2

1 − |x3
1|

)}

(7)

and passing throughP before reaching a point inBε. By compactness, asε → 0 we can take a
subsequence of trajectoriesxε(·) converging to functionx∗(·) on [0, 1]. By construction,x∗(·) is
then a time optimal trajectory starting from a point on the upper boundary∂+ R(1) and reaching
the origin in minimum time, passing through the pointP at some intermediate times ∈]0, 1[.
But this is a contradiction because no such trajectory exists.

3. Generalized solutions of a discontinuous O.D.E.

Let g be a bounded, possibly discontinuous vector field on
�n. In connection with the O.D.E.

ẋ = g(x) ,(8)

various concepts of “generalized” solutions can be found inthe literature. We discuss here the
two main approaches.

(A) Starting fromg, by some regularization procedure, one constructs an uppersemicontinu-
ous multifunctionG with compact convex values. Every absolutely continuous function
which satisfies a.e. the differential inclusion

ẋ ∈ G(x)(9)

can then be regarded as generalized solutions of (8).
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In the case ofKrasovskii solutions, one takes the multifunction

G(x)
.
=

⋂

ε>0

co{g(y) : |y − x| < ε} .(10)

Hereco Adenotes the closed convex hull of the setA. TheFilippov solutionsare defined simi-
larly, except that one now excludes sets of measure zero fromthe domain ofg. More precisely,
calling� the family of setsA ⊂

�n of measure zero, one defines

G(x)
.
=

⋂

ε>0

⋂

A∈
� co{g(y) : |y − x| < ε, y /∈ A} .(11)

Concerning solutions of the multivalued Cauchy problem

x(0) = x̄, ẋ(t) ∈ G (x(t)) t ∈ [0, T ] ,(12)

one has the following existence result [2].

THEOREM 1. Let g be a bounded vector field on
�n . Then the multifunction G defined by

either (10) or (11) is upper semicontinuous with compact convex values. For every initial data
x̄, the family� x̄ of Carathéodory solutions of (12) is a nonempty, compact, connected, acyclic
subset of� (

[0, T ] ;
�n)

. The mapx̄ 7→ � x̄ is upper semicontinuous. If g is continuous, then
G(x) = {g(x)} for all x, hence the solutions of (8) and (9) coincide.

It may appear that the nice properties of Krasovskii or Filippov solutions stated in Theorem
1 make them a very attractive candidate toward a theory of discontinuous feedback control.
However, quite the contrary is true. Indeed, by Theorem 1 thesolution sets for the multivalued
Cauchy problem (12) have the same topological properties asthe solution sets for the standard
Cauchy problem

x(0) = x̄, ẋ(t) = g (x(t)) t ∈ [0, T ](13)

with continuous right hand side. As a result, the same topological obstructions found in Ex-
amples 1 and 2 will again be encountered in connection with Krasovskii or Filippov solu-
tions. Namely [10, 17], for the system (4) one can show that for every discontinuous feedback
u = U(x) there will be some Filippov solution of the corresponding discontinuous O.D.E. (2)
which does not approach the origin ast → ∞. Similarly, for the system (5), whenε > 0 is
small enough there exists no feedbacku = U(x) such that every Filippov solution of (2) starting
from some point̄x ∈ R(1) reaches the ballBε within time T(x̄) + ε.

The above considerations show the necessity of a new definition of “generalized solution”
for a discontinuous O.D.E. which will allow the solution setto be possibly disconnected. The
next paragraph describes a step in this direction.

(B) Following a second approach, one defines an algorithm which constructs a family ofε-
approximate solutionsxε. Letting the approximation parameterε → 0, every uniform
limit x(·) = limε→0 xε(·) is defined to be a generalized solution of (8).

Of course, there is a wide variety of techniques [8, 13, 14] for constructing approximate
solutions to the Cauchy problem (13). We describe here two particularly significant procedures.

Polygonal Approximations. By a generalpolygonalε-approximatesolution of (13) we mean
any functionx : [0, T ] 7→

�n constructed by the following procedure. Consider a parti-
tion of the interval [0, T ], say 0= t0 < t1 < · · · < tm = T , whose mesh size satisfies

max
i

(ti − ti−1) < ε .
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For i = 0, . . . , m − 1, choose arbitrary outer and inner perturbationsei , e′
i ∈

�n , with
the only requirement that|ei | < ε, |e′

i | < ε. By induction oni , determine the valuesxi
such that

|x0 − x̄| < ε, xi+1 = xi + (ti+1 − ti )
(

ei + g(xi + e′
i )

)

(14)

Finally, definex(·) as the continuous, piecewise affine function such thatx(ti ) = xi for
all i = 0, . . . , m.

Forward Euler Approximations. By a forward Eulerε-approximatesolution of (13) we mean
any polygonal approximation constructed without taking any inner perturbation, i.e. with
e′
i ≡ 0 for all i .

In the following, the trajectories of the differential inclusion (12), withG given by (10) or
(11) will be called respectivelyKrasovskiior Filippov solutionsof (13). By a forward Euler
solutionwe mean a limit of forward Eulerε-approximate solutions, asε → 0. Some relations
between these different concepts of solutions are illustrated below.

THEOREM 2. The set of Krasovskii solutions of (13) coincides with the set of all limits of
polygonalε-approximate solutions, asε → 0.

For a proof, see [2, 9].

EXAMPLE 3. On the real line, consider the vector field (fig. 2)

g(x) =

{

1 if x ≥ 0 ,

−1 if x < 0 .

The corresponding multifunctionG, according to both (10) and (11) is

G(x) =







{1} if x > 0 ,

[−1, 1] if x = 0 ,

{−1} if x < 0 .

The set of Krasovskii (or Filippov) solutions to (13) with initial data x̄ = 0 thus consists of all
functions of the form

x(t) =

{

0 if t ≤ τ ,

t − τ if t > τ ,

together with all functions of the form

x(t) =

{

0 if t ≤ τ ,

τ − t if t > τ ,

for anyτ ≥ 0. On the other hand, there are only two forward Euler solutions:

x1(t) = t, x2(t) = −t .

In particular, this set of limit solutions is not connected.

EXAMPLE 4. On
�2 consider the vector field (fig. 3)

g(x1, x2)
.
=







(0,−1) if x2 > 0 ,

(0, 1) if x2 < 0 ,

(1, 0) if x2 = 0 .
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The corresponding Krasovskii multivalued regularization(10) is

GK (x1, x2) =







{(0, −1)} if x2 > 0 ,

{(0, 1)} if x2 < 0 ,

co{(0, −1), (0, 1), (1, 0)} if x2 = 0 .

Given the initial conditionx̄ = (0, 0), the corresponding Krasovskii solutions are all the func-
tions of the formt 7→ (x1(t),0), with ẋ1(t) ∈ [0, 1] almost everywhere. These coincide with
the limits of forward Euler approximations. On the other hand, since the line{x2 = 0} is a null
set, the Filippov multivalued regularization (11) is

GF (x1, x2) =







{(0,−1)} if x2 > 0 ,

{(0, 1)} if x2 < 0 ,

co{(0,−1), (0, 1)} if x2 = 0 .

Therefore, the only Filippov solution starting from the origin is the functionx(t) ≡ (0, 0) for all
t ≥ 0.

4. Patchy vector fields

For a general discontinuous vector fieldg, the Cauchy problem for the O.D.E.

ẋ = g(x)(15)

may not have any Carathéodory solution. Or else, the solution set may exhibit very wild behavior.
It is our purpose to introduce a particular class of discontinuous mapsg whose corresponding
trajectories are quite well behaved. This is particularly interesting, because it appears that various
stabilization problems can be solved by discontinuous feedback controls within this class.

DEFINITION 1. By apatchwe mean a pair(�, g) where� ⊂
�n is an open domain with

smooth boundary and g is a smooth vector field defined on a neighborhood of� which points
strictly inward at each boundary point x∈ ∂�.

Callingn(x) the outer normal at the boundary pointx, we thus require

〈g(x), n(x)〉 < 0 for all x ∈ ∂� .(16)
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DEFINITION 2. We say that g: � 7→
�n is a patchy vector fieldon the open domain� if

there exists a family of patches{(�α, gα) : α ∈ � } such that
- � is a totally ordered set of indices,
- the open sets�α form a locally finite covering of�,
- the vector field g can be written in the form

g(x) = gα(x) if x ∈ �α \
⋃

β>α

�β .(17)

By defining

α∗(x)
.
= max{α ∈ � : x ∈ �α} ,(18)

we can write (17) in the equivalent form

g(x) = gα∗(x)(x) for all x ∈ � .(19)

We shall occasionally adopt the longer notation
(

�, g, (�α, gα)
α∈�

)

to indicate a patchy
vector field, specifying both the domain and the single patches. Of course, the patches(�α, gα)

are not uniquely determined by the vector fieldg. Indeed, wheneverα < β, by (17) the values
of gα on the set�β \ �α are irrelevant. This is further illustrated by the following lemma.

LEMMA 1. Assume that the open sets�α form a locally finite covering of� and that, for
eachα ∈ � , the vector field gα satisfies the condition (16) at every point x∈ ∂�α \ ∪β>α�β .
Then g is again a patchy vector field.

Proof. To prove the lemma, it suffices to construct vector fieldsg̃α which satisfy the inward
pointing property (16) at every pointx ∈ ∂�α and such that̃gα = gα on �α \ ∪β>α�β . To
accomplish this, for eachα we first consider a smooth vector fieldvα such thatvα(x) = −n(x)

on ∂�α . The mapg̃α is then defined as the interpolation

g̃α(x)
.
= ϕ(x)gα(x) + (1 − ϕ(x)) vα(x) ,

whereϕ is a smooth scalar function such that

ϕ(x) =

{

1 if x ∈ �α \ ∪β>α�β ,

0 if x ∈ ∂�α and〈g(x), n(x)〉 ≥ 0 .

The main properties of trajectories of a patchy vector field (fig. 4) are collected below.

THEOREM 3. Let
(

�, g, (�α, gα)
α∈�

)

be a patchy vector field.

(i ) If t → x(t) is a Carathéodory solution of (15) on an open interval J , then t → ẋ(t) is
piecewise smooth and has a finite set of jumps on any compact subinterval J′ ⊂ J . The
function t 7→ α∗(x(t)) defined by (18) is piecewise constant, left continuous and non-
decreasing. Moreover there holds

ẋ((t−)) = g (x(t)) for all t ∈ J .(20)

(i i ) For each x̄ ∈ �, the Cauchy problem for (15) with initial condition x(0) = x̄ has at
least one local forward Carathéodory solution and at most one backward Carathéodory
solution.
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(i i i ) The set of Carathéodory solutions of (15) is closed. More precisely, assume that xν :
[aν , bν ] 7→ � is a sequence of solutions and, asν → ∞, there holds

aν → a, bν → b, xν(t) → x̂(t) for all t ∈]a, b[ .

Thenx̂(·) is itself a Carathéodory solution of (15).

(i v) The set of a Carathéodory solutions of the Cauchy problem (13) coincides with the set of
forward Euler solutions.

Proof. We sketch the main arguments in the proof. For details see [1].

To prove(i ), observe that on any compact interval [a, b] a solutionx(·) can intersect only
finitely many domains�α , say those with indicesα1 < α2 < · · · < αm. It is now convenient
to argue by backward induction. Since�αm is positively invariant for the flow ofgαm, the
set of times

{

t ∈ [a, b] : x(t) ∈ �αm

}

must be a (possibly empty) interval of the form ]tm, b].
Similarly, the set

{

t ∈ [a, b] : x(t) ∈ �αm−1

}

is an interval of the form ]tm−1, tm]. After m
inductive steps we conclude that

ẋ(t) = gα j (x(t)) t ∈]t j , t j +1[

for some timest j with a = t1 ≤ t2 ≤ · · · ≤ tm+1 = b. All statements in(i ) now follow from
this fact. In particular, (20) holds because each set�α is open and positively invariant for the
flow of the corresponding vector fieldgα.

Concerning(i i ), to prove the local existence of a forward Carathéodory solution, consider
the index

ᾱ
.
= max

{

α ∈ � : x̄ ∈ �α

}

.

Because of the transversality condition (16), the solutionof the Cauchy problem

ẋ = gᾱ(x), x(0) = x̄
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remains inside�ᾱ for all t ≥ 0. Hence it provides also a solution of (15) on some positive
interval [0, δ].

To show the backward uniqueness property, letx1(·), x2(·) be any two Carathéodory solu-
tions to (15) withx1(0) = x2(0) = x̄. For i = 1, 2, call

α∗
i (t)

.
= max{α ∈ � : xi (t) ∈ �α} .

By (i ), the mapst 7→ α∗
i (t) are piecewise constant and left continuous. Hence there existsδ > 0

such that
α∗

1(t) = α∗
2(t) = ᾱ

.
= max{α ∈ � : x̄ ∈ �α} for all t ∈] − δ, 0] .

The uniqueness of backward solutions is now clear, because on ] − δ, 0] both x1 and x2 are
solutions of the same Cauchy problem with smooth coefficients

ẋ = gᾱ(x), x(0) = x̄ .

Concerning(i i i ), to prove that̂x(·) is itself a Carathéodory solution, we observe that on any
compact subintervalJ ⊂]a, b[ the functionsuν are uniformly continuous and intersect a finite
number of domains�α , say with indicesα1 < α2 < · · · < αm. For eachν, the function

α∗
ν (t)

.
= max{α ∈ � : xν(t) ∈ �α}

is non-decreasing and left continuous, hence it can be written in the form

α∗
ν (t) = α j if t ∈]tνj , tνj +1] .

By taking a subsequence we can assume that, asν → ∞, tνj → t̂ j for all j . By a standard

convergence result for smooth O.D.E’s, the functionx̂ provides a solution tȯx = gα j (x) on
each open subintervalI j

.
=] t̂ j , t̂ j +1[. Since the domains�β are open, there holds

x̂(t) /∈ �β for all β > α j , t ∈ I j .

On the other hand, sincegα j is inward pointing, a limit of trajectorieṡxν = gα j (xν) taking
values within�α j must remain in the interior of�α j . Henceα∗

(

x̂(t)
)

= α j for all t ∈ I j ,
achieving the proof of(i i i ).

Regarding(i v), letxε : [0, T ] 7→ � be a sequence of forward Eulerε-approximate solutions
of (13), converging tôx(·) asε → 0. To show that̂x is a Carathéodory solution, we first observe
that, forε > 0 sufficiently small, the mapst 7→ α∗ (xε(t)) are non-decreasing. More precisely,
there exist finitely many indicesα1 < · · · < αm and times 0= tε0 ≤ tε1 ≤ · · · ≤ tεm = T such
that

α∗ (xε(t)) = α j t ∈]tεj −1, tεj ] .

By taking a subsequence, we can assumetεj → t̂ j for all j , asε → 0. On each open interval

] t̂ j −1, t̂ j [ the trajectoryx̂ is thus a uniform limit of polygonal approximate solutions of the
smooth O.D.E.

ẋ = gα j (x) .(21)

By standard O.D.E. theory,x̂ is itself a solution of (21). As in the proof of part(i i i ), we conclude
observing thatα∗

(

x̂(t)
)

= α j for all t ∈] t̂ j −1, t̂ j ].

To prove the converse, letx : [0, T ] 7→ � be a Carathéodory solution of (13). By(i ), there
exist indicesα1 < · · · < αm and times 0= t0 < t1 < · · · < tm = T such thaṫx(t) = gα j (x(t))
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for t ∈]t j −1, t j [. For eachn ≥ 1, consider the polygonal mapxn(·) which is piecewise affine
on the subintervals [t j ,k, t j ,k+1], j = 1, . . . , m, k = 1, . . . , n and takes valuesxn(t j ,k) = x j ,k.
The timest j ,k and the valuesx j ,k are here defined as

t j ,k
.
= t j −1 +

k

n
(t j − t j −1), x j ,k

.
= x(t j ,k + 2−n) .

As n → ∞, it is now clear thatxn → x uniformly on [0, T ]. On the other hand, for a fixed
ε > 0 one can show that the polygonalsxn(·) are forward Eulerε-approximate solutions, for all
n ≥ Nε sufficiently large. This concludes the proof of part(i v).

0

x

x(2)

x(1)

(3)

figure 5

EXAMPLE 5. Consider the patchy vector field on the plane (fig. 5) definedby (17), by
taking

�1
.
=
�2, �2

.
= {x2 > x2

1}, �3
.
= {x2 < −x2

1},

g1(x1, x2) ≡ (1, 0), g2(x1, x2) ≡ (0, 1), g3(x1, x2) ≡ (0,−1).

Then the Cauchy problem starting from the origin at timet = 0 has exactly three forward
Carathéodory solutions, namely

x(1)(t) = (t, 0), x(2)(t) = (0, t), x(3)(t) = (0, −t) t ≥ 0 .

The only backward Carathéodory solution is

x(1)(t) = (t, 0) t ≤ 0 .

On the other hand there exist infinitely many Filippov solutions. In particular, for everyτ < 0 <

τ ′, the function

x(t) =







(t − τ, 0) if t < τ ,

(0, 0) if t ∈ [τ, τ ′] ,

(t − τ ′, 0) if t > τ ′

provides a Filippov solution, and hence a Krasovskii solution as well.



Singularities of Stabilizing Feedbacks 97

5. Directionally continuous vector fields

Following [3], we say that a vector fieldg on
�n is directionally continuousif, at every pointx

whereg(x) 6= 0 there holds

lim
n→∞

g(xn) = g(x)(22)

for every sequencexn → x such that
∣

∣

∣

∣

xn − x

|xn − x|
−

g(x)

|g(x)|

∣

∣

∣

∣

< δ for all n ≥ 1 .(23)

Hereδ = δ(x) > 0 is a function uniformly positive on compact sets. In other words (fig. 6),
one requiresg(xn) → g(x) only for the sequences converging tox contained inside a cone with
vertex atx and openingδ around an axis having the direction ofg(x).

x

g(x)
xn

figure 6

For these vector fields, the local existence of Carathéodory trajectories is known [16]. It
seems natural to ask whether the stabilization problems (AS) or (SOC) can be solved in terms
of feedback controls generating a directionally continuous vector field. The following lemma
reduces the problem to the construction of a patchy vector field.

LEMMA 2. Let
(

�, g, (�α, gα)
α∈�

)

be a patchy vector field. Then the mapg̃ defined by

g̃(x) = gα(x) if x ∈ �α \
⋃

β>α

�β(24)

is directionally continuous. Every Carathéodory solution of

ẋ = g̃(x)(25)

is also a solution oḟx = g(x). The set of solutions of (25) may not be closed.

Since directionally continuous vector fields form a much broader class of maps than patchy
vector fields, solving a stabilization problem in terms of patchy fields thus provides a much better
result. To see that the solution set of (25) may not be closed,consider
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EXAMPLE 6. Consider the patchy vector field on
�2 defined as follows.

�1
.
=
�2, �2

.
= {x2 < 0}, g1(x1, x2) = (1, 0), g2(x1, x2) = (0,−1) .

g(x1, x2) =

{

(1, 0) if x2 ≥ 0 ,

(0, −1) if x2 < 0 .
(26)

The corresponding directionally continuous field is (fig. 7)

g̃(x1, x2) =

{

(1, 0) if x2 > 0 ,

(0, −1) if x2 ≤ 0 .
(27)

The functionst 7→ xε(t) = (t, ε) are trajectories of both (26) and (27). However, asε → 0, the
limit function t 7→ x(t) = (t, 0) is a trajectory of (26) but not of (27).

g g~

figure 7

6. Stabilizing feedback controls

In this section we discuss the applicability of the previoustheory of discontinuous O.D.E’s to-
ward the construction of a stabilizing feedback. We first recall a basic definition [7, 18].

DEFINITION 3. The system (1) is said to be globallyasymptotically controllableto the
origin if the following holds.

1 - Attractivity. For eachx̄ ∈
�n there exists some admissible control u= ux̄(t) such that the

corresponding solution of

ẋ(t) = f
(

x(t), ux̄(t)
)

, x(0) = x̄(28)

either tends to the origin as t→ ∞ or reaches the origin in finite time.

2 - Lyapunov stability. For eachε > 0 there existsδ > 0 such that the following holds. For
everyx̄ ∈

�n with |x̄| < δ there is an admissible control ux̄ as in1. steering the system
from x̄ to the origin, such that the corresponding trajectory of (28) satisfies|x(t)| < ε for
all t ≥ 0.

The next definition singles out a particular class of piecewise constant feedback controls,
generating a “patchy” dynamics.

DEFINITION 4. Let
(

�, g, (�α, gα)
α∈�

)

be a patchy vector field. Assume that there exist
control values kα ∈ K such that, for eachα ∈ �

gα(x)
.
= f (x, kα) for all x ∈ �α \

⋃

β>α

�β .(29)
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Then the piecewise constant map

U(x)
.
= kα if x ∈ �α \

⋃

β>α

�β(30)

is called apatchy feedbackcontrol on�.

The main results concerning stabilization by discontinuous feedback controls can be stated
as follows. For the proofs, see [7] and [1] respectively.

THEOREM 4. If the system (1) is asymptotically controllable, then there exists a feedback
control U :

�n \ {0} 7→ K such that every uniform limit of sampling solutions eithertends
asymptotically to the origin, or reaches the origin in finitetime.

THEOREM 5. If the system (1) is asymptotically controllable, then there exists a patchy
feedback control U such that every Carathéodory solution of (2) either tends asymptotically to
the origin, or reaches the origin in finite time.

Proof. In view of part(i v) of Theorem 3, the result stated in Theorem 4 can be obtained asa
consequence of Theorem 5. The main part of the proof of Theorem 5 consists in showing that,
given two closed ballsB′ ⊂ B centered at the origin, there exists a patchy feedback that steers
every pointx̄ ∈ B insideB′ within finite time. The basic steps of this construction are sketched
below. Further details can be found in [1].

1. By assumption, for each pointx̄ ∈ B, there exists an open loop controlt 7→ ux̄(t) that steers
the system from̄x into a pointx′ in the interior ofB′ at some timeτ > 0. By a density
and continuity argument, we can replaceux̄ with a piecewise constant open loop control
ū (fig. 8), say

ū(t) = kα ∈ K if t ∈]tα, tα+1] ,

for some finite partition 0= t0 < t1 < · · · < tm = τ . Moreover, it is not restrictive to
assume that the corresponding trajectoryt 7→ γ (t)

.
= x(t; x̄, ū) has no self-intersections.

B’

B

γx--x

figure 8

2. We can now define a piecewise constant feedback controlu = U(x), taking the constant
valueskα1, . . . , kαm on a narrow tube0 aroundγ , so that all trajectories starting inside
0 eventually reach the interior ofB′ (fig. 9).
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Γ
B’

γ

x-

figure 9

3. By slightly bending the outer surface of each section of the tube0, we can arrange so that
the vector fieldsgα(x)

.
= f (x, kα) point strictly inward along the portion∂�α \ �α+1.

Recalling Lemma 1, we thus obtain a patchy vector field (fig. 10) defined on a small
neighborhood of the tube0, which steers all points of a neighborhood ofx̄ into the interior
of B′.

Ω Ω1
2

B’
x
_

figure 10

4. The above construction can be repeated for every pointx̄ in the compact setB. We now se-

lect finitely many pointsx1, . . . , xN and patchy vector fields,
(

�i , gi , (�i,α , gi,α)
α∈� i

)

with the properties that the domains�i cover B, and that all trajectories of each fieldgi
eventually reach the interior ofB′. We now define the patchy feedback obtained by the
superposition of thegi , in lexicographic order:

g(x) = gi,α(x) if x ∈ �i,α \
⋃

( j ,β)�(i,α)

� j ,β .

This achieves a patchy feedback control (fig. 11) defined on a neighborhood ofB \ B′

which steers each point ofB into the interior ofB′.

5. For every integerν, call Bν be the closed ball centered at the origin with radius 2−ν . By the
previous steps, for everyν there exists a patchy feedback controlUν steering each point
in Bν insideBν+1, say

Uν(x) = kν,α if x ∈ �ν,α \
⋃

β>α

�ν,β .(31)

The property of Lyapunov stability guarantees that the family of all open sets{�ν,α :
ν ∈ �, α = 1, . . . , Nν } forms a locally finite covering of

�n \ {0}. We now define the
patchy feedback control

Uν(x) = kν,α if x ∈ �ν,α \
⋃

(µ,β)�(ν,α)

�µ,β ,(32)
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Ω

Ω

Ω

Ω

Ω

Ω

1,1 2,1

2,2

3,1

4,1

4,2

figure 11

where the set of indices(ν, α) is again ordered lexicographically. By construction, the
patchy feedback (32) steers each pointx ∈ Bν into the interior of the smaller ballBν+1

within finite time. Hence, every trajectory either tends to the origin ast → ∞ or reaches
the origin in finite time.

7. Some open problems

By Theorem 5, the asymptotic stabilization problem can be solved within the class of patchy
feedback controls. We conjecture that the same is true for the problem of suboptimal controlla-
bility to zero.

Conjecture 1. Consider the smooth control system (1). For a fixedτ > 0, call R(τ) the set of
points that can be steered to the origin within timeτ . Then, for everyε > 0, there exists
a patchy feedbacku = U(x), defined on a neighborhoodV of R(τ), with the following
property. For everȳx ∈ V , every trajectory of (2) starting at̄x reaches a point insideBε

within time T(x̄) + ε.

Although the family of patchy vector fields forms a very particular subclass of all discon-
tinuous maps, the dynamics generated by such fields may stillbe very complicated and
structurally unstable. In this connection, one should observe that the boundaries of the
sets�α may be taken in generic position. More precisely, one can slightly modify these
boundaries so that the following property holds. Ifx ∈ ∂�α1 ∩ · · · ∩ ∂�αm , then the unit
normalsnα1, . . . , nαm are linearly independent. However, since no assumption is placed
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on the behavior of a vector fieldgα at boundary points of a different domain�β with
β 6= α, even the local behavior of the set of trajectories may be quite difficult to classify.
More detailed results may be achieved for the special case ofplanar systems with control
entering linearly:

ẋ =
m

∑

i=1

fi (x) ui , u = (u1, . . . , um) ∈ K ,(33)

whereK ⊂
�m is a compact convex set. In this case, it is natural to conjecture the exis-

tence of stabilizing feedbacks whose dynamics has a very limited set of singular points.
More precisely, consider the following four types of singularities illustrated in fig. 12. By
a cut we mean a smooth curveγ along which the fieldg has a jump, pointing outward
from both sides. At points at the of a cut, the fieldg is always tangent toγ . We call the
endpoint anincoming edgeor anoutgoing edgedepending on the orientation ofg. A point
where three distinct cuts join is called atriple point. Notice that the Cauchy problem with
initial data along a cut, or an incoming edge of a cut, has two forward local solutions.
Starting from a triple point there are three forward solutions.

cut point
triple point

outgoing cut edgeincoming cut edge

figure 12

Conjecture 2. Let the planar control system (33) be asymptotically controllable, with smooth
coefficients. Then both the asymptotic stabilization problem (AS) and the suboptimal
zero controllability problem (SOC) admit a solution in terms of a feedbacku = U(x) =

(U1(x), . . . ,Un(x)) ∈ K , such that the corresponding vector field

g(x)
.
=

m
∑

i=1

fi (x)Ui (x)

has singularities only of the four types described in fig. 12.
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