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ON THE SOLUTIONS

OF THE DISSIPATION INEQUALITY

Abstract.
We present some recent results on the existence of solutionsto the Dissipation

Inequality.

1. Introduction

In this review paper we outline recent results on the properties of theDissipation Inequality,
shortly(DI) . The(DI) is the following inequality in the unknown operatorP:

(DI) 2<e〈Ax, P(x + Du)〉 + F(x + Du, u) ≥ 0 .

HereA is the generator of aC0-semigroupeAt on a Hilbert spaceX andD ∈
�

(U, X) whereU
is a second Hilbert space;F(x, u) is a continuous quadratic form onX × U ,

F(x, u) = 〈x, Qx〉 + 2<e〈Sx, u〉 + 〈u, Ru〉 .

Positivity of F(x, u) is not assumed.

We require thatP = P∗ ∈
�

(X).

We note that the unknownP appears linearly in the(DI) , which is also calledLinear Op-
erator Inequality for this reason.

The (DI) has a central role in control theory. We shortly outline the reason by noting the
following special cases:

• The caseD = 0, S = 0, R = 0. In this case,(DI) takes the form of a Lyapunov type
inequality,

2<e〈Ax, Px〉 ≥ −〈x, Qx〉 .

• If Q = 0 andR = 0 (but S 6= 0) and if B = −AD ∈
�

(U, X) we get the problem

2<e〈Ax, Px〉 ≥ 0 B∗P = −S.(1)

This problem is known asLur’e Problemand it is important for example in stability
theory, network theory and operator theory.

• The caseS = 0, R = I and Q = −I is encountered in scattering theory while the case
S = 0, Q ≥ 0 and coerciveR corresponds to thestandard regulator problem of control
theory.
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We associate to(DI) the following quadratic regulator problem “with stability”: we consider
the control system

ẋ = A(x − Du) .(2)

We call a pair(x(·), u(·)) an evolution of system (2) with initial datum x0 whenx(·) is a
(mild) solution to (2) with inputu(·) andx(0) = x0.

We associate to control system (2) the quadratic cost

J(x0; u) =

∫ +∞

0
F(x(t), u(t)) dt .(3)

The relevant problem is the following one: we want to characterize the conditionV(x0) > −∞

for eachx0 where V(x0) is the infimum of (3) over the class of those square integrable
evolutions which have initial datum x0. (The term “with stability” refers to the fact that we
only consider the square integrable evolutions of the system).

Of course, Eq. (2) has no meaning in general. One case in whichit makes sense is the case
that B = −AD is a bounded operator (distributedcontrol action). In this case the problem has
been essentially studied in [7] but for one crucial aspect that we describe below.

More in general, large classes of boundary control systems can be put in the form (2), as
shown in [6], where two main classes have been singled out, the first one which corresponds to
“hyperbolic” systems and the second one which corresponds to “parabolic” systems.

We illustrate the two classes introduced in [6]:

• The class that models in particular most control problems for the heat equation: the semi-
groupeAt is holomorphic (we assume exponentially stable for simplicity) and imD =

im[−A−1B] ⊆ dom(−A)γ̃ , γ̃ < 1.

• The class that models in particular most control problems for string and membrane equa-
tions: eAt is aC0-semigroup,A−1B ∈

�
(X) and

∫ T

0
‖B∗eA∗t x‖2 dt ≤ kT‖x‖2 .(4)

It is sufficient to assume that the previous inequality holdsfor one value ofT since then
it holds for everyT .

As we said, for simplicity of exposition, we assume exponential stability. The simplification
which is obtained when the semigroup is exponentially stable is that the class of the controls is
L2(0,+∞; U), independent ofx0. However, this condition can be removed.

The crucial result in the case ofdistributed control actionis as follows (see [14] for the
finite dimensional theory and [7] for distributed systems with distributed control action):

THEOREM 1. If AD ∈
�

(U, X), then V(x0) is finite for every x0 if and only if there exists a
solution to(DI) and in this case V(x0) is a continuous quadratic form on X: V(x0) = 〈x0, Px0〉.
The operator P of the quadratic form is themaximalsolution to(DI) .

The result just quoted can be extended to both the classes of boundary control systems
introduced in [6], see [9, 11]. Rather than repeating the very long proof, it is possible to use a
device, introduced in [10, 8], which associates to the boundary control system an “augmented”
system, with distributed control action. From this distributed system it is possible to derive many
properties of the(DI) of the original boundary control system. This device is illustrated in sect. 2.

With the same method it is possible to extend the next result:
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THEOREM 2. If V (x0) > −∞, i.e. if (DI) is solvable, then

5(iω) = F(−iω(iωI − A)−1Du + Du, u) ≥ 0 ∀ω ∈ � .(5)

The function5(iω) was introduced in [12] and it is called thePopov function.

As the numberiω are considered “frequencies”, condition (5) is a special “frequency do-
main condition”.

At the level of the frequency domain condition we encounter acrucial difference between
the class of “parabolic” and “hyperbolic” systems:

THEOREM 3. In the parabolic case if V(x0) > −∞, then R≥ 0. Instead, in the “hyper-
bolic” case, we can have V(x0) > −∞ even if R= −α I , α > 0.

Proof. It is clear that
5(iω) = F((iωI − A)−1Bu, u)

(B = −AD) and lim|ω|→+∞(iωI − A)−1Bu = 0 because imD = im[−A−1B] ⊆ dom(−A)γ

(here we use exponential stability, but the proof can be adapted to the unstable case.) Hence,
0 ≤ lim|ω|→+∞ 5(iω) = 〈u, Ru〉 for eachu ∈ U . This proves thatR ≥ 0.

Clearly an analogous proof cannot be repeated in the “hyperbolic” case; and the analogous
result does not hold, as the following example shows:

the system is described by

xt = −xθ 0 < θ < 1, t > 0 x(t, 0) = u(t)

(this system is exponentially stable since the free evolution is zero fort > 1).

The functionalF(x, u) is

F(x, u) = ‖x(·)‖2
L2(0,1)

− α|u|2

so that

J(x0; u) =

∫ +∞

0
{‖x(t, ·)‖2

L2(0,1)
− α|u(t)|2} dt .

If x(0, θ) ≡ 0 then
x̂(z, θ) = e−zθ û(z)

so that
〈u, 5(iω)u〉 = [1 − α]|u|2 .

This is nonnegative for eachα ≤ 1 in spite of the fact thatR = −α I can be negative. Hence, in
the hyperbolic boundary control case,the condition R ≥ 0 does not follows from the positivity
of the Popov function.

It is clear that the frequency domain condition may hold evenif the (DI) is not solvable, as
the following example shows:

EXAMPLE 1. The example is an example of a scalar system,

ẋ = −x + 0u y = x .

It is clear that5(iω) ≥ 0, is nonnegative; butP B = C, i.e. P0 = 1, is not solvable.
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A problem that has been studied in a great deal of papers is theproblem of finding additional
conditions which imply solvability of the(DI) in the case that the frequency domain condition (5)
holds. A special instance of this problem is the important Lur’e problem of stability theory.

This problem is a difficult problem which is not completely solved even for finite dimen-
sional systems. Perhaps, the most complete result is in [2]:if a system is finite dimensional and
5(iω) ≥ 0, then a sufficient condition for solvability of(DI) is the existence of a numberω0
such that det5(iω0) 6= 0.

It is easy to construct examples which show that this condition is far from sufficient.

In the context of hyperbolic systems, the following result is proved in [11].

THEOREM 4. Let condition (4) hold and let the system beexactly controllable.Under these
conditions, if the Popov function is nonnegative then thereexists a solution to(DI) and, moreover,
themaximalsolution P of(DI) is the strong limit of the decreasing sequence{Pn}, where Pn is
the maximal solution of the(DI)

2<e〈Ax, P(x + Du)〉 + F(x + Du, u) +
1

n
{‖u‖2 + ‖x‖2} ≥ 0 .(6)

The last statement is important because it turns out thatPn solves a Riccati equation, while
there is no equation solved byP in general.

The proof of Theorem 4 essentially reproduces the finite dimensional proof in [14]. Hence,
the “hyperbolic” case is “easy” since the finite dimensionalproof can be adapted. In contrast
with this, the “parabolic” case requires new ideas and it is “difficult”. Consistent with this, only
very partial results are available in this “parabolic” case, and under quite restrictive conditions.
These results are outlined in sect. 3.

Before doing this we present, in the next section, the key idea that can be used in order to
pass from a boundary control system to an“augmented”butdistributedcontrol system.

2. The augmented system

A general model for the analysis of boundary control systemswas proposed by Fattorini ([4]).
Let X be a Hilbert space andσ a linear closed densely defined operator,σ : X → X. A second
operatorτ is linear fromX to a Hilbert spaceU .

We assume:

AssumptionWe have: domσ ⊆ domτ andτ is continuous on the Hilbert space domσ with the
graph norm.

The “boundary control system” is described by:

{

ẋ = σ x
τx = u

x(0) = x0(7)

whereu(·) ∈ L2
loc(0,+∞; U).

We must define the “strong solutions”x(·; x0, u) to system (7). Following [3] the function
x(·) = x(·; x0, u) is a strong solution if there exists a sequence{xn(·)} of C1-functions such that
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xn(t) ∈ domσ for eacht ≥ 0 and:










ẋn(·) − σ xn(·) → 0 in L2
loc(0, +∞; X)

xn(0) → x0 in X
τxn(·) → u(·) in L2

loc(0, +∞;U)

(8)

and

• xn(·) converges uniformly tox(·) on compact intervals in[0, +∞).

In the special case that the sequencexn(·) is stationary,xn(·) = x(·), we shall say thatx(·) is a
classicalsolution to problem (7).

Assumption 1. Let us consider the “elliptic” problemσ x = u. We assume that it is “well
posed”, i.e. that there exists an operatorD ∈

�
(U, X) such that

x = Du iff {σ x = 0 andτx = u} .

Moreover we assume that the operatorA defined by

domA = domσ ∩ kerτ Ax = σ x

generates a strongly continuous semigroup onX.

As we said already, for simplicity of exposition, we assume that the semigroupeAt is expo-
nentially stable.

Now we recall the following arguments from [1]. Classical solutions to Eq. (7) solve

ẋ = A(x − Du) x(0) = x0 .(9)

Let u(·) be an absolutely continuous control andξ(t) = x(t) − Du(t). Then,ξ(·) is a classical
solution to

ξ̇ = Aξ − Du̇ ξ0 = ξ(0) = x(0) − Du(0)(10)

and conversely.

As the operatorA generates aC0-semigroup, it is possible to write a “variation of constants”
formula for the solutionξ . “Integration by parts” produces a variation of constants formula,
which contains unbounded operators, for the functionx(·). This is the usual starting point for
the study of large classes of boundary control systems. Instead, we “augment” system (9) and
we consider the system:

{

ξ̇ = Aξ − Dv

u̇ = v
(11)

Here we consider formallyv(·) as a new “input”, see [10, 8].

Moreover, we note that it is possible to stabilize the previous system with the simple feed-
backv = −u, sinceeAt is exponentially stable.

The cost that we associate to (11) is the cost

J(x0; u) =

∫ +∞

0
F(ξ(t) + Du(t), u(t))dt .(12)
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This cost does not depend explicitly on the new inputv(·): it is a quadratic form of the state,
which is now4 = [ξ, u].

It is proved in [9] that the value function� (ξ0, u0) of the augmented system has the follow-
ing property:

� (ξ0 + Du0, u0) = V(x0) .

We apply the stabilizing feedbackv = −u and we write down the(DI) and the Popov
function for the stabilized augmented system. The(DI) is

2<e〈�4, W4〉 + 〈4, �4〉 ≥ 0 ∀4 ∈ dom� , W� = 0 .(13)

where

� =

[

A −D
0 I

]

, 4 =

[

ξ

u

]

,

� =

[

Q S∗ + QD
D∗Q + S R+ D∗S∗ + SD+ D∗QD

]

, � =

[

−D
I

]

.

The Popov function is:

P(iω) =
5(iω)

1 + ω2
(14)

It is clear that the transformations outlined above from theoriginal to the augmented system do
not affect the positivity of the Popov function and that ifωs5(iω) is bounded from below, then
ωs+2P(iω) is bounded from below.

In the next section we apply the previous arguments to the case that the operatorA generates
a holomorphic semigroup and imD ⊆ (dom(−A)γ ), γ < 1.

3. “Parabolic” case: from the Frequency domain condition tothe (DI)

We already said that in the parabolic case only partial results are available. In particular, available
results require that the control be scalar so thatS is an element ofX. This we shall assume in
this section. We assume moreover that the operatorA has only point spectrum with simple
eigenvalueszk and the eigenvectorsvk form a complete set inX. Just for simplicity we assume
that the eigenvalues are real (hence negative). Moreover, we assume that we already wrote the
system in the form of a distributed (augmented and stabilized) control system. Hence we look
for conditions under which there exists a solutionW to (13).

We note that� ∈ X × U and thatP(iω) is a scalar function: it is the restriction to the
imaginary axis of the analytic function

P(z) = −� (z I + �∗)−1�(z I − � )−1� .

The functionP(z) is analytic in a strip which contains the imaginary axis in its interior.

We assume thatP(iω) ≥ 0 and we want to give additional conditions under which (13)
is solvable. In fact, we give conditions for the existence ofa solution to the following more
restricted problem: to find an operatorW and a vectorq ∈ (domA)′ such that

2<e〈�4, W4〉 + 〈4, �4〉 = |〈〈4, q〉〉‖2 ∀4 ∈ dom� .(15)

The symbol〈〈·, ·〉〉 denotes the pairing of(domA)′ and domA.
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The previous equation suggests a form for the solutionW:

〈4, W4〉 =

∫ +∞

0
〈e
�

t 4, �e
�

t4〉 dt −

∫ +∞

0
|〈〈4, e

�
t q〉〉‖2 dt .(16)

However, it is clear that in general the operatorW so defined will not be continuous, unlessq
enjoys further regularity. We use known properties of the fractional powers of the generators of
holomorphic semigroups and we see thatW is bounded ifq ∈ [dom(−�α)]′ with α < 1/2.

It is possible to prove that if a solutionW to (15) exists then there exists a factorization

P(iω) = m∗(iω)m(iω)

and m(iω) does not have zeros in the right half plane. This observationsuggests a method
for the solution of Eq. (15), which relies on the computationof a factorization ofP(iω). The
factorization of functions which takes nonnegative valuesis a classical problem in analysis. The
key result is the following one:

LEMMA 1. If P(iω) ≥ 0 and if | ln P(iω)|/(1 + ω2) is integrable, then there exists a
function m(z) with the following properties:

• m(z) is holomorphic and bounded in<e z> 0;

• P(iω) = m(−iω)m(iω);

• let z = x + i y, x > 0. The following equality holds:

ln |m(z)| =
1

2π

∫ +∞

−∞
ln P(iω)

x

x2 + (ω − y)2
dω ∀z = x + i y, x > 0 .(17)

See [13, p. 121], [5, p. 67].

A function which is holomorphic and bounded in the right halfplane and which satisfies (17)
is called anouter function.

The previous arguments show that an outer factor ofP(z) exists whenP(iω) ≥ 0 and when
P(iω) decays for|ω| → +∞ of the order 1/|ω|β , β < 1. Let us assume this condition (which
will be strengthened below). Under this conditionP(z) can be factorized and, moreover,

ln |m(z)| =
1

2π

∫ +∞

−∞
ln P(iω)

x

x2 + (ω − y)2
dω

≤
1

2π

∫ +∞

−∞
ln

M

1 + ω2

x

x2 + (ω − y)2
dω

= ln |
1

1 + z2
| .

This estimates implies in particular that the integrals
∫ +∞
−∞ |m(x+i y)|2 dy are uniformly bounded

in x > 0. Paley Wiener theorem (see [5]) implies that

m(iω) =

∫ +∞

0
e−iωt m̌(t)dt, m̌(·) ∈ L2(0,+∞) .

The functionm̌(t) being square integrable, we can write the integral
∫ +∞

0
eA∗sqm̌(t) dt
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and we can try to solve the following equation forq:

∫ +∞

0
eA∗sqm̌(t) dt = −s =

∫ +∞

0
e
�

∗t �e
�

t� dt .(18)

This equation is suggested by certain necessary conditionsfor the solvability of (1) which are
not discussed here.

We note that

s ∈ dom(−� )1−ε for eachε > 0 .(19)

It turns out that equation (18) can always beformally solved, a solution being

qk = 〈vk, q〉 = −
〈vk, s〉

m(−z̄k)

sincem(z) does not have zeros in the right half plane.

Moreover, we can prove that the operatorW defined by (16)formally satisfies the condition
W� = 0. Hence, this operatorW will be the required solution of (15) if it is a bounded operator,
i.e. if q ∈ [dom(−�α)]′.

An analysis of formula (17) shows the following result:

THEOREM 5. The vector q belongs to(dom(−�∗)1/2−ε)′ for someε > 0 if there exist
numbersγ < 1 and M > 0 such that

|ω|γ 5(iω) > M

for |ω| large.

Examples in which the condition of the theorem holds exist, see [9].

Let ζk = −zk ∈ � . The key observation in the proof of the theorem is the following
equality, derived from (17):

log |ζ |
3
2−εm(ζk) =

1

2π

∫ +∞

−∞
[log |ζk|3−2ε P(i ζks)]

1

1 + s2
ds

=
1

2π

∫ +∞

−∞
[log ζ

3−γ−2ε
k

1

|s|γ
]

1

1 + s2
ds

+
1

2π

∫ +∞

−∞
[log ζk|s|γ P(i ζks)]

1

1 + s2
ds .

The first integral is bounded below ifγ ≤ 3 − 2ε and the second one is bounded below in
any case.

We recapitulate: the conditionq ∈ (dom(−�∗)1/2−ε)′ holds if P(iω) decays at∞ of order
less than 3. We recall (14) and we get the result.
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