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On a general type of p-adic parabolic
equations

Un tipo general de ecuaciones parabélicas p-adicas
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ABsTrRACT. In this paper we study the existence and uniqueness of the Cauchy
problem for a general type of p-adic parabolic pseudo-differential operators
constructed using the Taibleson operator. The results presented here consti-
tute an extension of some results obtained by Zuniga-Galindo and the author
[13].
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REsUMEN. En este articulo se estudia la existencia y unicidad de soluciones del
problema de Cauchy asociado a un tipo general de ecuacion parabélica p-adica,
construida usando el operador de Taibleson. Los resultados presentados aqui
constituyen una extension de algunos de los resultados obtenidos por Zuniga-
Galindo y el autor en [13].

Palabras y frases clave. Ecuaciones parabélicas, procesos de Markov, niimeros
p-adicos, difusion ultramétrica.

1. Introduction

In recent years p-adic analysis has received a lot of attention due to its appli-
cations in mathematical physics, see e.g. [1], [2], [3], [4], [6], [7], [10], [12], [15]
and the references therein. In particular, stochastic models involving Markov
processes have appeared in several physical models describing complex systems
such as proteins and macromolecules.
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102 JOHN JAIME RODRIGUEZ-VEGA

In [13] Zuniga-Galindo and the author studied the following Cauchy prob-
lem:

ou(z,t)

+ a (Dfu) (x,t) = f(x,t), reQy, te(0,T],

ot (1)
u(x, 0) = QD(CL'),
where a > 0, o > 0 and D% is the Taibleson operator of order o defined as
(Df) (x) = FoL, (€Il Faeu) 2)
where ||§Hp = maX{‘gllp’ R |€n|10}

The existence and uniqueness of a solution for (1) was established when the
initial datum ¢ belongs to a class of increasing functions (see [13, Thm 1]).
Also, there it is shown that the fundamental solution is the transition density
of a Markov process with space state Q) (see [13, Thm. 2|). These results
continue Kochubei’s work on p-adic parabolic equations [9], [10, Sec. 4].

In this paper we considers the following initial value problem:

% + ao(,t) (Dgu) (z,1) + Z ar(x, t)(DFFu) (z, )+
k=1
bl uet) = fat), weQ te©T), O
u(r,0) = p(z).

here a > 1, 0 < a1 < ... < a, < «, the coefficients ag(z,t), ai(x,t),...,
an(x,t), b(x,t), are real functions and D? is the Taibleson operator of order 3.
Denote by 9ty (A > 0) the class of complex-valued locally constant functions
¢(x) on Qp, satisfying
()] < C (1 +l2llp) -
We solve (3) in the class 90ty for a suitable A (see Thm. 2 ahead) following
the ideas introduced by Kochubei in [9](see also [10, Sec. 4], [8]).

In the case n = 1, our main result, (see Thm. 2), agrees with Kochubei’s
results (see [9, Thm. 1], [10]).

A different generalization of the p-adic parabolic equations and its Markov
processes was given recently by Ztniga-Galindo in [16].

2. Preliminary results

Let Q, be the field of the p-adic numbers. For z € Q,, let v(x) denote the
valuation of z normalized by the condition v(p) = 1, and |z|, = p~*(*) the
normalized absolute value. We extend the p-adic norm to Q} as follows:

[[||p == max{|z1|p, ..., |znlp}, for z=(z1,...,2,) € Q}.
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P-ADIC PARABOLIC EQUATIONS 103

Let S (Qg) denote the C-vector space of Schwartz-Bruhat functions over
Q- Its dual space S’ (QZ) is the space of distribution over Q.

If p(x) € S (QZ), we define its exponent of local constancy as the smallest
integer [ > 0 with the property that for any = € Q)

p(z+a')=p(), ifll2’ll, <p~".

For z, y in Q) we put z -y = Yo il
Let ¥ denote an additive character of Q,, trivial on Z, but no on p~'Z,.
For pe S (Qg), we define its Fourier transform by

(Fo)(€) = / W(—x - E)p(€) ",
Qp

where d"z denotes the Haar measure of Q) normalized in such a way that Zy
has measure 1.

2.1. The taibleson operator

We set P
— p -
This function is called the p-adic Gamma function. The function
_ =l n
ko(z) = OIR aeRNA{0,n}, z€Qy,
Iy (a)

is called the multi-dimensional Riesz kernel. It determines a distribution on

S (QZ) as follows. If « 20, n, and p € S (Qg),

1—p™™ 1—p™@ _
ko(z), p(x)) = »(0) + / z||5 () d"x
(ha(@), (@) = T— T (O + T— o= ||sz>1|\ " ()

1—p / _
+— z||57 " (e(x) — ¢(0)) d™z.
o \|x||p§1|| ;™" (o) = »(0))

Thus k, € S’ (QZ), for R\ {0,n}. In the case @ = 0, by passing to the limit,
we obtain

{ko(2), p(x)) := lim (ka (), o(2)) = ¢(0),

ie., ko(z) = & (), the Dirac delta function, and therefore k, € S’(Q}), for
It follows that, for o > 0,

(heae). (o) = T [l ot) —cO) e (@
Qn
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Lemma 1. [14, Chap. III, Theorem 4.5] As elements of S'(Qp), (Fka) ()
equals ||z||; <, o # n.

Definition 1. The Taibleson pseudo-differential operator D, a > 0, is defined
as

(DF) (2) = FL, (I€llpFamep) . for ¢ € S(Qp).
As a consequence of the previous Lemma and (4), we get
(D7) (z) = (ko * ) (z

)
== AR R CIE
QTI,

Let us remark that the right-hand side of (5) makes sense for a wider class of
functions, for example, for locally constant functions ¢(x) satisfying

[l " p(x) "z < oo.
llellp>1

Definition 2. Denote by 9ty (A > 0) the class of complex-valued locally
constant functions (z) on Qp, such that

(@) < C (1 +]lally) -

If a function ¢ depends also on a parameter ¢, we shall say that ¢ € 9Ny
uniformly with respect to t, if C' and the corresponding exponent of local cons-
tancy do not depend on t.

2.2. The parametrized equation

As in the Euclidean case, the first step is the study of the parametrized funda-
mental solution Z(x,t,y,0) of the Cauchy problem
ou(z,t)
ot

+ao(y,0) (D7) (2,t) =0, reQy, te(0,T],
u(z,0) = ¢(x),

where y € Q) and 6 > 0 are parameters. This equation was studied in the
recent paper [13] by Zaniga-Galindo and the author.

(6)

In this article we consider the following fundamental solution:

Z(x,t,y,0) = / Uz - e 0w MHIElly gre,
Q
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Lemma 2. The fundamental solution of (6) Z(z,t,y,0), has the following
properties

Z(l’,t7y,9) < Ct (tl/u-‘rHIHp)_04—n7 (7)

0z atlall,) "
’é)t(m,t,y,m‘ S( ) (8)
(D}2)(w,ty,0)] < € (/eliall) T (©)

where the constants do not depend on vy, 6.

Proof. These results where established in Lemmas 3 and 8 of [13]. vf

As an [13], we get the identities

Lemma 3.
/Z(:E,t,y, 0)d"x =1, (10)
Q
0z o —an(w.OIENS gn
o (@:8.9.0) = —a0(y.0) [ Wl Qellge 0N e, (1)
Q
(D}2) (w,t,3,6) = [ 0l el eI e, (12)
@
[Wi2)e 0 d o (13)
Q@
3. Uniqueness of the solution
In this section we assume that the coefficients ay(x,t), & = 0,1,...,n are
non-negative bounded continuous functions, and that b(x,t) is a continuous
bounded function. Let 0 < v < oy (if a1(z,t) = -+ = an(z,t) = 0, we shall

assume that 0 < v < «a). The proof of the following Theorem is a simple
variation of the one given by Kochubei in [10, Thm 4.5] for the case n = 1.

Theorem 1. [10, Thm. 4.5] If u(x,t) is a solution of (3) with f(x,t) =0, and

such that u € M., uniformly with respect to t, and u(x,0) = 0, then u(x,t) =0
for any x € Q) and t € (0,T].
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106 JOHN JAIME RODRIGUEZ-VEGA
4. Heat potentials

We now consider the heat potential

u(z, t,7) = // (x—y,t—06,y,0)f(y,0)d"ydb,

TQ"

where 7 < t, f(x,t) is uniformly locally constant in x € Qj, continuous in
(z,t) € Qp x (0,77, and

[f(z, )] < Ct2 (1+[[lly) ,

forsome 0 < p<l,and 0 <\ < a.

Next we calculate the derivative with respect to ¢ and the action of the
Taibleson operator on this potentials. This can be achieved using the techniques
presented in [10, Sec. 4.5]. We formally summarize these facts for future
reference as follows

Lemma 4. With the above notations,

d
! 31:(36 hT) = flan) // 5 (& =yt —0,4.0)(f(y,0) - f(z,0))d"y b
T Qn

t
+ [ 10 [ Syt =00y dyas
T Qg
ii) If A\ < v < «, then

(Dju)(x, t, 7 // —y,t—0,y,0)f(y,0)d"ydf, I<~vy<a.
TQ”

iii) (DSw)(x, t,7) = //Za(x —y,t—0,y,0)(f(y,0) — f(z,0))d"ydb

3
TQ;

t
Qn
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5. The Cauchy problem

In this section we construct a fundamental solution for the following Cauchy
problem

Ou(z,t .
QUL | ot ) (D) 1) + 3 el ) (D) o 1)+
k=1
(14)
+b(z, thu(z,t) = f(z,t), ze€Qp, te(0,T],
u(z,0) = p(z).

We shall assume that o > 1 and that 0 < a; < ... < a, < «, and
that the coeflicients ao(z,t), ai(x,t), ..., an(z,t), b(z,t) belong (with respect

to z € Q}) to the class My uniformly with respect to ¢ € [0,77], and satisfy the
Holder condition in ¢, with an exponent v € (0, 1], uniformly with respect to
r € Q). We also assume the uniform parabolicity condition ag(z,t) > p > 0,
and that ap11 = a(l —v) > a,.

As in [10, Sec. 4.5] we look for a fundamental solution of (14) of the form

t

F(Jf,t,f,T) = Z(Jﬁ _g?t _Ta§77-) +//Z(x—nat—977779)‘1’(77797§a7) dnnde
T Q;}

Thus we formally require that

or

a(:’mt?gVT) + ag(x,t(D%l") (.’E,t,f,’r)‘i‘

+ Zak(x,t) (DF*T) (z,t,&,7) + b(z, ) (z,¢,€,7) = 0.
k=1

By using formally the formulas given in the Lemma (4), we can see that
D(x,t,&,7) is a solution of the integral equation

B(x,t,6,7) = R(x,t,6,7) // (2,t,m,0)8(n,0,€,7) d"ndd,  (15)
TQ”

where

R(£7t7£’7—):(a0(€7 )—ao(l‘ t)) a(x—f,t—T,f,T)
—Zakxt (=&t —1,8,7) = blx,t)Z(x — &, t — 1,8, 7).

In order to solve the integral equation (15) we use the method of successive
approximations (see e.g. [5], [11]). We set

R1($7ta§77-) = R(m7t7£a7—)7
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108 JOHN JAIME RODRIGUEZ-VEGA

and

t

Rt (2, 4,6,7) : = / / R(2,t,1,0)Ron(n, 0,6, 7)d™nd6, m € N~ {0}.
T Qg

We claim that
®(a,t,6,7) = Y Rm(,8,€,7)
m=1

is a solution of (15). In order to prove the convergence of the series we need
the followings two Lemmas, whose proof is a simple variation of those given by
Kochubei in [10, Sec. 4.5] for the case n = 1.

Lemma 5. [10, Eq 4.64] With the above notation,

n+1

|R(x,t,&,7) |<CZ 1/a+||x—§\|) R

where C' is a positive constant.

Lemma 6. [10, Lemma 4.6] Let

t

J(xz, &, t,7) = /(t — u)*p/a(u 7,/_)7(;/0(

[ (@=wre e —al,) "

Q&

—n—bo
(G =)+l = €lly) d"n) dp,

where 0 < 7 <t, 2,6 € Qp, b1,ba >0, p+b1 <, 0 +by <a. Then

Hnstn =€ (“’”HB <1* Lo Hb?) (t=m=+ ||xf§|\p)_“_bl)

(e}
0 p+b g g 1/c T — —n—b2
sofw=nem (1= 25 0-2) (-0 e —el) ).

where k = M o= —lerethi=a) ooy positive constant depends

only on by, by and B(Zl,ZQ) the Arghimedean Beta function.
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Lemma 7. With the above notation,

m nt1

|Rm(x,t,g,f)|gCMM(t—r)<m‘““/“7(£((;/vo‘/2) D (=) e —gllp) "
k=1

where C is a positive constant.

Proof. We use induction on m. The case m = 1 is clear. We assume the case
m as induction hypothesis, then by Lemmas (5), (6) and (7) we have

t
Rysr (2,1,6,7)] < / / R(z,t,1.0)]| - | Ron(1.0,€.7)| d"

T QZ
n n—i—l
_ oy B0/ / ym=vv/a
mv/a
k=1
[ =0y flo =l
&

(0 =7 +|In—¢€llp) " " d"ndo.

Thus it is sufficient to bound the integral

t
Ia(x,6,t,7) :/(9 _ T)(m—l)u/ax
/((t — Ve g |l —nll,) "

Q
(0 =) +ln—¢&llp) ™ " d™ndf.

By using Lemma (6),

e €.4,7) < CB (a— ozk, mv—i—a—v) (t — r)~(w-mvtar—a)/a
[0 o

(¢ =7 + [l —€llp) ™"

+ CB (17 muvta—v-— OZl) (t o T)f(vfmv%»ozlfa)/oz
(0%

(¢ =7+ [l —€llp) "
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We now recall that if €,0 > 0, then B(x + ¢,y + J) < B(z,y), thus

B(a—ak’mk—ka—)\) <B(/\ m>\>’

! !
B(L m/\+a—)\—al> SB(/\,mA>,
! o o
and
(t _ T)f(vfmwara)a < C'(t _ T)(m+1—1)va.
Therefore,

m—+1 muv /o (F(U/a))m+l
B (8,67 < CM™ e = )™l R

n+1 3 3
Dot =m) el —glly)

k=1

By using Stirling’s formula we verify the absolute convergence of
o0
(2,£,6,7) = Y Ru(x,t,£,7)
m=1
and also that

B2, 8,6, 7)< CY (E=7)V*+]lz—¢ll,) """ (16)

il

We now come to the main result. This result is an n-dimensional version
of Theorem 4.6, p. 156 in [10]. Here we assume that 0 < A < ay; if all
the coefficients aq(z,t),...,a,(x,t) vanish identically, then we may assume
0<A<a.

Theorem 2. The Cauchy problem

6u((9$t, t) + ap(z,t) (D) (z,t) + ; a(z,t) (D%ku) (z,1)

+b(x, u(z,t) = f(z,t), z€Qy, te(0,T],
U(I,O) - 30(9:)’
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has a solution

t
w(a ) = / / Tla,t,6,7)f(6,7) d"€ dr + / D(a.t,6,0)0(€)d",  (18)
0 Qp Qp

which is continuous on Qp x [0,T], continuously differentiable in t, and belong-
ing to My uniformly with respect to t. The fundamental solution T'(x,t,&,T),
z,§ € Qp, 0 <7 <t <T, is then of the form

F(l‘,t,g,T):Z(.T—f7t—7',£,7')+W($,t,£,7'), (19)
and finally

—a—n

Wit < c{ (-0 e 0Vl - el

cieny [t =) + 11z — €l } (20)

k=1

Proof. Denote by wuj(x,t) and us(x,t) the first and the second summands in
the right hand side of (18). We find that

ul(a:,t)://Z(x—g,t—T,g,T)f(g,T)d"ng

0 Qn

t
+//Z(1?—77,t—9,7779)F(7779)d"nd9,

0 Qn
and
ua(o.t) = [ 20— €16 00O d
Q3
t
+ Z(x—n,t—0,1n,0)G(n,0)d"ndf,
i
where
0
Fo.0) = [ [eno.nsen aean
0 Qn
G(n,0) = /@(7779,6,0)@(5) d"e.
an

Revista Colombiana de Matematicas
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Now by (16) and Proposition 2 in [13],

|F(7770)| < C, and ‘G(n79)| < CQ*an+1/a’

for all n € Q) and 6 € (0,7]. In addition the functions F' and G are uniformly
locally constant. Indeed, by the recursive definition of the function ® we see
that if NV is a local constancy exponent for all the functions a;, b, Z,, and Z,
and if |§| < ¢~, then

¢z +0,t,6+6,7) = ¢(x,1,§,7),

whence

Thus the potentials in the expressions for u(z,t) and wus(x,t) satisfy the
conditions under which the differentiation formulas of the Lemmas (4) were ob-
tained. By using these formulas one verifies after some simple transformations
that u(x,t) is a solution of the equation (17).

Let us show that u(xz,t) — ¢(x) as t — 0. Due to (19) and (20), it is
sufficient to verify that us(z,t) — ¢(x) as t — 0. By virtue of (10) we have

w2, 1) = / Z(x — 6,.6,0) — Z(x — £.t,2,0)|pl€) "
Qp

+ / Z(x— &,1,2,0)[p(€) — p(e)] "€ + ().
d

Since as functions of their third argument Z and ¢ are locally constant, both
integrals in the previous expression are performed over the set

{&llle—¢ll, 2p™}
By applying (7) we see that both integrals tend to zero as t — 0. o

6. Markov processes
By using Theorems (1) and (2), we obtain a probabilistic interpretation for the
function I'(x, t,&, 7).

Theorem 3. The fundamental solution I'(x,t,&, T) is the transition density of
a bounded right-continuous strict Markov process without second kind disconti-
nuities. If b(x,t) = 0, then the process does not explode.

The proof uses the same argument given in [10, pg. 162].
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