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Abstract. Let Γ be a Fuchsian group acting on the unit disk D. A function f
meromorphic in D is polymorphic if there exists a homomorphism f∗ of Γ onto
a group Σ of Möbius transformations such that f ◦ γ = f∗(γ) ◦ f for γ ∈ Γ. A
function is normal if sup

(
1 − |z|2

)
|f ′(z)|/

(
1 + |f(z)|2

)
< ∞. First we study

the behaviour of a normal polymorphic function at the fixed points of Γ and
then the existence of such functions for a given type of group Σ.
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Resumen. Sea Γ un grupo fuchsiano que actúa en el disco unitario D. Una
función f meromorfa en D es polimorfa si existe un homomorfismo f∗ de Γ
sobre un grupo Σ de transformaciones de Möbius tal que f ◦ γ = f∗(γ) ◦ f
para γ ∈ Γ. Una función es normal si sup

(
1 − |z|2

)
|f ′(z)|/

(
1 + |f(z)|2

)
< ∞.

Primero estudiamos el comportamiento de una función polimorfa normal en los
puntos fijos de Γ y después la existencia de tales funciones para un tipo de
grupo Σ dado.
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1. Introduction

Let Ĉ = C∪{∞}, let D denote the unit disk in C and T = ∂D and let H denote
the upper halfplane. We consider the group Möb = PSL(2, C) of all Möbius
transformations

τ (z) =
az + b

cz + d
, a, b, c, d ∈ C , ad − bc = 1 . (1.1)

If X is any subset of Ĉ then we write

Möb (X) := {τ ∈ Möb: τ (X) = X} ,

so that Möb (X) is the stabilizer of X in Möb.
Let Γ be a Fuchsian group acting on D, that is, any discrete subgroup of

Möb (D). A Γ-polymorphic function is a non-constant function f meromorphic
in D such that, for every γ ∈ Γ,

f ◦ γ = σ ◦ f for some σ ∈ Möb . (1.2)

Defining f∗ (γ) = σ we obtain a homomorphism

f∗ : Γ → Möb , f∗ (Γ) = Σ .

The image group Σ need not be discrete. Note that the function f need not be
locally univalent and that the groups may be infinitely generated.

The name “polymorphic” is not standard; we follow the usage of Heyhal [8],
[9], [22]. Other names for similar concepts are “deformation” [15] and “pro-
jective structure”, in particular in connection with Riemann surfaces, see [7],
[4] and for instance [14]. Polymorphic functions that are not locally univalent
correspond to “branched projective structures”, see e.g. [19].

A meromorphic function f in D is called normal if

sup
z∈D

(
1 − |z|2

)
f#(z) < ∞ , (1.3)

where f# = |f ′| /
(
1 + |f |2

)
is the spherical derivative. Every meromorphic

function omitting three values in Ĉ is normal. See [18] and for instance [16]. A
function f analytic in D is called a Bloch function if

‖f‖B := |f (0)| + sup
z∈D

(
1 − |z|2

)
|f ′ (z)| < ∞ . (1.4)

The Banach space with this norm is denoted by B; see for instance [2] and [23,
Section 4.2]. If f ∈ B then f and exp f are normal.

A Stolz angle S at ζ ∈ T is a sector in D with vertex ζ. We say that f has

the angular limit f (ζ) := ω at ζ if f (z) → ω ∈ Ĉ as z → ζ, z ∈ S for every
Stolz angle S. The Lehto-Virtanen theorem [18] states:

Let f be normal and ζ ∈ T. If there exists an arc C ⊂ D ending at ζ such
that

f (z) → ω ∈ Ĉ as z → ζ , z ∈ C ,
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then f (z) → ω as z → ζ holds in every Stolz angle S at ζ and in every domain
between C and S. In particular f has an angular limit.

Now let f be Γ-polymorphic. Then, by (1.2),

γ′ (z) f ′(γ (z)) = σ′(f (z))f ′ (z) , (1.5)

for γ ∈ Γ and σ = f∗ (γ). It follows that
(
1 − |γ (z)|2

)
f# (γ (z)) =

(
1 − |z|2

)
|f ′ (z)|σ# (f (z)) . (1.6)

If f is replaced by τ ◦ f with τ ∈ Möb, then σ is replaced by τ ◦ σ ◦ τ−1 and
the supremum in (1.3) is changed by a bounded factor. Hence normality is not
affected so that we may assume that one given element of Σ has standard form.

In Section 2, we consider Γ-polymorphic functions f that are assumed to be
normal and we study their behaviour at the fixed points of Γ. An important
property is that the limit set L (f∗ (Γ)) lies on the boundary of f (D). The
limit set L(Σ) of a subgroup Σ of Möb is defined as the closure of the set of all
loxodromic fixed points of Σ, see [3, p. 97]. It is Σ-invariant.

In Section 3, we start from a given subgroup Σ of Möb and investigate
whether there is a Fuchsian group Γ and a normal Γ-polymorphic function f
with f∗ (Γ) = Σ. We also study what further properties the function f must
have in order to be normal.

Section 4 is devoted to examples to illustrate the results of the previous
sections and to show that certain phenomena can occur. The groups and
functions are constructed at the same time. The first seven constructions follow
the pattern described at the beginning of that section.

We apologize for the clash with the usual notation. Papers on Kleinian
groups tend to use roman letters for the groups and Greek letters for functions.
We use the conventions of function theory where the role of roman and Greek
letters tend to be reversed.

2. The behaviour at the fixed points

For a Möbius transformation τ 6= id, we denote the set of fixed points by
Fix(τ). The classical distinction was between parabolic, elliptic, hyperbolic
and loxodromic transformations. We follow the current usage and include the
hyperbolic among the loxodromic transformations. Thus τ is called loxodromic
if it has two fixed points with multipliers q and q−1 where |q| 6= 1. This holds if
and only if tr τ /∈ [−2, 2] where tr τ = a+d is the trace in the notation (1.1). If
tr τ /∈ R then τ is strictly loxodromic. The elliptic elements may be of infinite
order.

Now let Γ be a Fuchsian group in D. Then all elements of Γ are hyperbolic,
parabolic or elliptic of finite order. First we consider the hyperbolic case, which
is the most important case.

Theorem 1. Let f be a normal Γ-polymorphic function. Let γ ∈ Γ be hyper-
bolic with fixed points ζ± and suppose that σ = f∗ (γ) is loxodromic or parabolic.
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170 DIEGO MEJ́ıA & CHRISTIAN POMMERENKE

Then the angular limits f (ζ±) exist and

Fix(σ) =
{
f(ζ+), f(ζ−)

}
⊂ ∂f(D) . (2.1)

This leaves out the case that σ is elliptic. If σ is elliptic then the angular
limits f (ζ±) do not exist, as is easy to see. Moreover there are normal Γ-

polymorphic functions f such that Fix(σ) ∩ f (D) = ∅, see Example 8.

Proof. (a) Let σ be loxodromic. We may assume that σ (w) = aw with |a| > 1
so that Fix(σ) = {0,∞}. Let z ∈ D be such that f (z) 6= 0,∞. We can choose
n ∈ Z such that 1 ≤ |anf (z)| < |a|. Then it follows from (1.6) and (1.3) that

|a| 1 − |z|2

1 + |a|2
∣∣∣∣
f ′ (z)

f (z)

∣∣∣∣ ≤
|a|n

(
1 − |z|2

)
|f ′ (z)|

1 + |anf (z)|2

=
(
1 − |γn (z)|2

)
f# (γn (z)) , (2.2)

is bounded in D. We conclude that f cannot assume the fixed points 0 and ∞.
Hence Fix(σ) ∩ f (D) = ∅. See [22, Th. 8] for this statement.

Now let C be a circular arc in D from ζ− to ζ+. Then γ (C) = C. Since
f (z) 6= 0,∞ we see that

f (γn (z)) = σn (f (z)) = anf (z) → ∞ or 0 as n → ±∞ ,

and it follows that f (z) → ∞ or 0 as z → ζ±, z ∈ C. Since f is normal we
conclude from the Lehto-Virtanen theorem (Section 1) that the angular limits

exist and f (ζ+) = ∞, f (ζ−) = 0. In particular it follows that Fix(σ) ∈ f (D).
This proves (2.1).

(b) Let σ be parabolic. We may assume that σ (w) = w + b with b 6= 0 so
that Fix(σ) = {∞}. Then f (γn (z)) = f (z) + nb by (1.2) and it follows from
(1.6) and (1.3) that, for z ∈ D,

(
1 − |z|2

)
|f ′ (z)|

1 + |f (z) + nb|2
=

(
1 − |γn (z)|2

)
f# (γn (z)) ≤ M < ∞. (2.3)

Now suppose that f has a pole z∗ in D. Then there exist zn → z∗ such that

f (zn) + nb = 0 and it follows from (2.3) that
(
1 − |zn|2

)
|f ′ (zn)| ≤ M , which

contradicts f ′ (z∗) = ∞. Since f (γn (zn)) = f (z) + nb → ∞ as n → ±∞ we
obtain that

f (z) → ∞ as z → ζ±, z ∈ C ;

The Lehto-Virtanen theorem shows that the angular limits exist and f (ζ±) =

∞ ∈ f(D). This proves (2.1) since f (z) 6= ∞ for z ∈ D. �X

Much more can be said if γ ∈ Γ is parabolic. This is perhaps not surprising
because a parabolic fixed point corresponds to a puncture of the Riemann
surface D/Γ. A horodisk at ζ ∈ T = ∂D is a disk in D that touches T at ζ.
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Theorem 2. Let f be a normal Γ-polymorphic function. Let γ ∈ Γ be parabolic
with fixed point ζ and let σ = f∗ (γ) 6= id.

(i) It is not possible that σ is loxodromic.
(ii) If σ is parabolic then the angular limit f (ζ) exists and

Fix (σ) = {f (ζ)} ⊂ ∂f (D) ,

moreover f (z) → f (ζ) as z → ζ in each horodisk at ζ.
(iii) If σ is elliptic then the angular limit f (ζ) exists and

f (ζ) ∈ Fix (σ) ∩ f (D).

If σ = f∗ (γ) is elliptic then the situation is therefore rather different in the
two cases that γ is hyperbolic or parabolic. Both possibilities in (iii), namely
that f (ζ) ∈ ∂f (D) or f (ζ) ∈ f (D), can occur as Example 5 with ϑ = 2π/n or
ϑ/π /∈ Q shows. In Example 6 with ϑ = 2π/n we also have f (ζ) ∈ f (D).

Proof. a) Let σ be loxodromic or parabolic with fixed points ω±. As in part
(b) of the proof of Theorem 1, we see that f (z) 6= ω±. Let H be a horodisk at
ζ. Since f (γn (z)) = σn (f (z)) → ω± as n → ±∞ for every z ∈ D and, since
γ is parabolic, we see that

f (z) → ω± as z → ζ, z ∈ ∂H.

Hence it follows from the Lehto-Virtanen theorem that f (z) → ω± as z → ζ
in the two components of H \ [−ζ, ζ] and therefore in H . In particular we have
ω+ = ω− so that σ is not loxodromic, which proves (i). This proves (ii).

b) Now let σ be elliptic. Let rk → 1− as k → ∞ and

hk (z) = ζ
z + rk

1 + rkz
(z ∈ D) , gk = f ◦ hk . (2.4)

Since the supremum in (1.3) is not changed if we replace f by gk, the sequence
(gk) is normal. Hence (gk) has a subsequence that converges locally uniformly
to a function g meromorphic in D. It follows that

gk ◦
(
h−1

k ◦ γ ◦ hk

)
= σ ◦ gk → σ ◦ g as k → ∞. (2.5)

Let z ∈ D. Since γ is parabolic and hk converges to the fixed point ζ of γ,
the non-euclidean distance between hk (z) and γ ◦ hk (z) tends to 0 as k → ∞.
Hence it follows from (2.4) that h−1

k ◦γ ◦hk (z) → z. Thus we obtain from (2.5)
that g = σ ◦ g. Since σ 6= id it follows that g is constant and equal to one of
the fixed points ω± of σ. In view of (2.4) we conclude that the limit set E of
f (ζx) as x → 1− satisfies E ⊂ {ω+, ω−}. Since E is connected it follows that

f has an angular limit f (ζ) = ω+ or ω−. This proves (iii). �X

Corollary 3. If f is normal and Γ-polymorphic then

L (f∗ (Γ)) ⊂ ∂f (D) .

This is an immediate consequence of Theorem 1 and Theorem 2(i). Example
8 shows that strict inclusion can occur.
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3. Normality and types of groups

Through this section, we assume that Γ is a Fuchsian group and that f is a
Γ-polymorphic function. We study the problem of the normality of f given
the type of the group Σ = f∗ (Γ). We divide the subgroups of Möb into three
classes.

1. An elliptic group contains only elliptic elements and the identity. These
groups are sometimes included among the elementary groups ([3, p. 84]).

2. A group is called elementary if any two elements of infinite order have a

common fixed point in Ĉ.
3. The richest and most interesting class is formed by the groups that are

neither elliptic nor elementary. Such a group has infinitely many loxodromic
elements no two of which have a common fixed point ([3, Th. 5.1.3]). An
important subclass is formed by the groups that are discontinuous in some

open subset of Ĉ, the Kleinian groups in the classical terminology ([20, p. 16]).
For our investigation of normality, the limit set L (Σ) is more important

than the discreteness of the group Σ. We need the following known result, see
[6, Th. 2], [25, p. 246] and [24].

Proposition 4. Let Σ be a non-discrete subgroup of Möb that contains a lox-

odromic element and is not in Möb (Ĉ \ {a, b}) with different a and b. If G is

a Σ-invariant domain in Ĉ then there are only three possibilities:

(a) G = Ĉ,

(b) G is a disk in Ĉ and Σ contains no strictly loxodromic elements,

(c) G = Ĉ \ {a}.

3.1. First we consider the elliptic groups Σ. By Corollary 3 this is the only

type of group for which a polymorphic function with f (D) = Ĉ can be normal.
Making a conjugation in Möb we may assume ([3, p. 84]) that Σ is a sub-

group of the group Rot
(
Ĉ

)
of the rotations of the sphere whose elements have

the form

σ (w) =
aw + b

−bw + a
, a, b ∈ C , |a|2 + |b|2 = 1 . (3.1)

This conjugation does not affect normality, see Section 1.

Theorem 5. Let Σ = f∗ (Γ) ⊂ Rot
(
Ĉ

)
. If

sup
z∈F

(
1 − |z|2

)
f# (z) < ∞ , (3.2)

for some fundamental domain F of Γ then f is normal.

Example 1 shows that there are normal functions both with f (D) = Ĉ and

with f (D) 6= Ĉ.
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Proof. We obtain from (3.1) that σ# (w) = 1/
(
1 + |w|2

)
. Hence it follows

from (1.6) that
(
1 − |γ (z)|2

)
f# (γ (z)) =

(
1 − |z|2

)
f# (z) for γ ∈ Γ ,

so that (3.2) implies the normality of f because F is a fundamental domain of

Γ. �X

3.2. Next we turn to the non-elliptic elementary groups Σ. Then, up to conju-
gation, there are two cases ([3, p. 84]): Either Σ is a subgroup of Möb(C \ {0})
whose elements are

σ (w) = aw±1 , a ∈ C , a 6= 0 , (3.3)

or Σ is a subgroup of Möb(C) whose elements are

σ (w) = aw + b , a, b ∈ C , a 6= 0 . (3.4)

In the following discussions we always exclude the groups already dealt with.
A. Let the elements 6= id of Σ have the form (3.3) with |a| 6= 1; we thus

exclude rotations of the sphere. In Example 3 we will construct a normal
function with f (D) = C\{0} and another normal function that omits infinitely
many values.

Theorem 6. Let Σ = f∗ (Γ) ⊂ Möb(C\ {0}) but Σ * Rot
(
Ĉ

)
. If f is normal

then f (D) ⊂ C\ {0} and log f is an unbounded Bloch function. If

sup
z∈F

(
1 − |z|2

)
log

∣∣∣∣
f ′ (z)

f (z)

∣∣∣∣ < ∞ (3.5)

for some fundamental domain F of Γ then log f ∈ B and f is normal.

Proof. Let f be normal. Since Σ * Rot
(

Ĉ
)

there exists a loxodromic σ ∈ Σ

with fixed points 0 and ∞ and thus f (D) ⊂ C\ {0} by Theorems 1 and 2. As
in (1.6) we see that the function

(
1 − |z|2

) d

dz
log f (z) =

(
1 − |z|2

) f ′ (z)

f (z)
, (3.6)

is bounded in D. It follows that log f ∈ B, and log f is unbounded because
∞ ∈ ∂f (D) by Theorem 1.

Since σ′ (w) /σ (w) = ±1/w it follows from (1.5) that
(
1 − |γ (z)|2

) ∣∣∣∣
f ′ (γ (z))

f (γ (z))

∣∣∣∣ =
(
1 − |z|2

) f ′ (z)

f (z)
for γ ∈ Γ.

Hence (3.5) implies log f ∈ B in view of (3.6) and (1.4), and log f ∈ B in turn

implies that f is normal. �X

B. Now we consider the most complicated case, namely that the elements of
Σ have the form (3.4) but not (3.3).
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Theorem 7. Let Σ = f∗ (Γ) ⊂ Möb(C) but Σ * Möb(C \ {c}).
(i) Suppose that Σ has no loxodromic elements. If Σ has two parabolic

elements with R-independent translations and if f is normal then f ∈
B. If

sup
z∈F

(
1 − |z|2

)
|f ′ (z)| < ∞ (3.7)

for some fundamental domain F of Γ then f ∈ B and f is normal.
(ii) Suppose that Σ has a loxodromic element. If f (D) is a half plane then

f is normal and Σ is conjugate to Möb(H). If f (D) is not a half plane

then f (D) = Ĉ and f is not normal.

Note that (3.7) holds automatically if f has no poles and if F ⊂ D, in other
words if D/Γ is a closed Riemann surface.

In Example 2 we have a normal function that omits a rectangular lattice
while the normal function f of Example 7 satisfies f (D) = C. In Example 9 we
have a normal function f with f /∈ B, which shows that it is not possible to omit
the assumption of Theorem 6 that there are two R-independent translations.

We do not have an example where Σ ⊂ Möb(C) has a loxodromic element
and f (D) is a halfplane. Thus it is conceivable that f is never normal if Σ
contains a loxodromic element.

Proof. (i) First we assume that Σ has no loxodromic elements. Then |a| = 1

in (3.4). It follows that σ# (w) = 1/
(
1 + |σ (w)|2

)
so that, by (1.6),

(
1 − |γ (z)|2

)
|f ′ (γ (z))|

1 + |f (γ (z))|2
=

(
1 − |z|2

)
|f ′ (z)|

1 + |σ (f (z))|2
(3.8)

for σ = f∗ (γ).
Let there exist σj ∈ Σ for j = 1, 2 such that σj (w) = w + bj , bj 6= 0 and

b2/b1 /∈ R and let f be normal. For every z ∈ D there exist nj ∈ Z such that

|σn1

1 ◦ σn2

2 (f (z))| = |f (z) + n1b1 + n2b2|
≤ |b1| + |b2| .

Since f is normal it follows from (3.8) that
(
1 − |z|2

)
|f ′ (z)| is bounded in D

so that f ∈ B, see (1.3).
Furthermore it follows from (1.5) and |σ′ (w)| = 1 that

(
1 − |γ (z)|2

)
|f ′ (γ (z))| =

(
1 − |z|2

)
|f ′ (z)|

for γ ∈ Γ. Since F is a fundamental domain of Γ we conclude that (3.7) implies
f ∈ B.

(ii) The only discrete subgroups of Möb(C) with loxodromic elements be-
long also to Möb(C \ {c}) for some c ∈ C ([3, Section 5.1]). Since these were
excluded it follows that Σ is not discrete.
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Now G = f (D) is Σ-invariant. Hence we can apply Proposition 4. If G = Ĉ
then f is not normal by Corollary 3. If G 6= Ĉ then G is a halfplane in our case
so that f is normal. �X

3.3. Finally we consider the case that Σ is neither elementary nor elliptic.
Then L (Σ) is uncountable ([3, Th. 5.3.7]); this also holds if Σ is not discrete.

Theorem 8. Let f be Γ-polymorphic and let Σ = f∗ (Γ) be non-elementary

with L (Σ) 6= ∅. Then f is normal if and only if f (D) 6= Ĉ. If f is normal then

Ĉ \ L (Σ) has a Σ-invariant component U such that

f (D) ⊂ U , L (Σ) = ∂U . (3.9)

Proof. If f is normal then f (D) 6= Ĉ by Corollary 3 because L (Σ) 6= ∅. Con-

versely suppose that f (D) 6= Ĉ. If f (D) = Ĉ \ {a} or f (D) = Ĉ \ {a, b} then
Σ would be elementary because f (D) is Σ-invariant, see Section 3.2. Hence f
omits at least three values and is therefore normal.

Now let f be normal and write L = L (Σ). Since f (D) ∩ L = ∅ it follows

from Corollary 3 that f (D) lies in a component U of Ĉ \ L. If σ ∈ Σ then

σ (U) is a component of Ĉ \L containing σ (f (D)) = f (D) so that σ (U) = U .

Hence U is Σ-invariant. It also follows from Corollary 3 that L ⊂ f (D) ⊂ U
and thus that L ⊂ U ∩ L ⊂ ∂U . We conclude that L = ∂U because ∂U ⊂ L is
trivial. �X

Corollary 9. Let Σ be non-elementary with L (Σ) 6= ∅ and suppose that one
of the following two conditions holds:

(i) Σ is not discrete and has a strictly loxodromic element.

(ii) Σ is discrete and Ĉ \ L (Σ) has no Σ-invariant component.

Then there is no normal Γ-polymorphic function with f∗ (Γ) = Σ.

Proof. Let (i) hold and suppose that f is normal. Then f (D) 6= Ĉ by Theorem
8. Since Σ is non-elementary and f (D) is Σ-invariant it follows from Proposi-
tion 4 (b) that Σ has no strictly loxodromic element, which contradicts (i). If

(ii) holds then f cannot be normal by Theorem 8. �X

The assumption that f is normal puts a rather strong condition on Σ, see
for instance [1]. It follows that there are many classes of Kleinian groups for
which there are no normal polymorphic functions.

In Examples 4-6, we construct various Fuchsian groups Γ, non-elementary
groups Σ and Γ-polymorphic functions f . For a certain choice of the parameters
the groups Σ are discrete and the functions f are normal. But for other choices
of the parameters the groups are not discrete; the function f is normal in
Example 5 and not normal in the other two examples.
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4. Construction of examples

We use a classical method to construct functions and groups by conformal map-
ping and analytic continuation by repeated reflections. We use the following
conventions in Examples 1-7.

Let F ⊂ D and G ⊂ C be Jordan domains that are symmetric with respect to
R and iR. The boundary of F consists of m pairs Ak, A′

k of disjoint hyperbolic
lines (h-lines) and the boundary of G consists of m pairs of circular arcs or
line segments Bk, B′

k that are disjoint except for their endpoints. We shall
prescribe the Ak and Bk; the A′

k and B′
k are then obtained by reflection in R

unless otherwise stated, in which case they are obtained by reflection in iR.
Let λk denote the reflection in R or iR and αk the reflection in Ak. Then

γk := λk ◦ αk ∈ Möb (D) , (k = 1, . . . , m) , (4.1)

maps Ak onto A′
k. The Klein combination theorem ([20, p. 139]) shows that

Γ := 〈γ1, . . . , γm〉 is a Fuchsian group with fundamental domain F . If βk

denotes the reflection in Bk then

σk := λk ◦ βk ∈ Möb (C) , (k = 1, . . . , m) , (4.2)

map Bk onto B′
k. The group Σ := 〈σ1, . . . , σm〉 need not even be discrete.

The constructions of F contain a parameter ζ, a point on T between 1 and i.
Due to the high symmetry of F and G it is possible to choose ζ such that there
is a conformal map f of F onto G such that f (Ak) = Bk and f (A′

k) = B′
k for

k = 1, . . . , m. This means that the vertices of F are mapped onto the vertices
of G.

Proposition 10. The conformal map f from F onto G has a meromorphic
continuation to D and f is Γ-polymorphic with Σ = f∗ (Γ). Moreover we have

sup
z∈F

|f ′ (z)| < ∞. (4.3)

Proof. Let k = 1, . . . , m. It follows from the reflection principle and from (4.1)
and (4.2) that

f ◦ γk = f ◦ λk ◦ αk = λk ◦ f ◦ αk = λk ◦ βk ◦ f = σk ◦ f , (4.4)

holds on F ∪Ak ∪ αk (F ). The domains γk (F ) and σk (G) are symmetric with
respect to the circular arcs γk (Lk) and σk (Lk) where Lk = R or iR.

We do these for every pair and then keep on reflecting the resulting domains.
The domains in D obtained from F do not overlap whereas the domains in C
obtained from G may overlap. As a limit we obtain a meromorphic function
defined in D. By repeated application of (4.4) we see that f is Γ-polymorphic
with f∗ (γk) = σk, and since the γk generate Γ and the σk generate Σ, it follows
that Σ = f∗ (Γ).

Now we prove (4.3). Let h be a conformal map of D onto F preserving the
symmetries. Then g := f ◦ h is a conformal map of D onto G. Since F and G
are Jordan domains the functions h and g are continuous and injective in D.
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By the reflection principle applied to h and g this functions are analytic in D
except at the vertices.

It is therefore sufficient to consider h and g near the points sk ∈ T that
correspond to the vertices of F and G; note that f maps a vertex of F to a
vertex of G. Let πtk be the angle of G at g (sk).

Let s → sk, s ∈ D. Then

|g′ (s)| ∼





ck |s − sk|tk−1
if 0 < tk < 2,

ck |s − sk|−1
(
log 1

|s−sk |

)−2

if tk = 0.

See [23, Th. 3.9] for tk > 0 and [21, Th. 6], for tk = 0 using that the cusp is
formed by two circular arcs. Since all vertices of F are cusps, we have

|h′ (s)| ∼ c′k |s − sk|−1

(
log

1

|s − sk|

)−2

.

Hence it follows that

lim sup
z→ϕ(sk),z∈F

|f ′ (z)| = lim sup
s→sk ,s∈D

∣∣∣∣
g′ (s)

h′ (s)

∣∣∣∣ < ∞.

�X

We choose m = 2 in the first four examples. Let A1 be an h-line from ζ to
−ζ and A2 an h-line from ζ to ζ. Let A′

2 be obtained from A2 by reflecting in
iR instead of R. Then the transformations γ1 and γ2 are hyperbolic.

Example 1. Let B1 be an arc on a circle through ±1 and B2 an arc on a
circle through ±i; the arc B2 is obtained by reflecting in iR. Then σ1 is elliptic
with fixed points ±1 and σ2 is elliptic with fixed points ±i. Hence σ1 and σ2

belong to the group Rot
(
Ĉ

)
of rotations of the sphere and it follows that Σ ⊂

Rot
(
Ĉ

)
. Hence f is normal by (4.3) and Theorem 5. If the angle between

B1 and B2 is equal to 2π/3 then Σ is the group of order 6 associated with the
cube and f omits the 8 vertices of the cube. If the angle ϑ between B1 and B′

1

satisfies ϑ/π /∈ Q then Σ is not discrete and f (D) = Ĉ.

Example 2. Let p, q > 0 and B1 = [−p + iq, p + iq], B2 = [p + iq, p − iq].
Then G is a rectangle and σ1 (w) = w − 2iq, σ2 (w) = w − 2p. It follows that
Σ ⊂ Möb(C) and that Σ is discrete. We see from (4.3) and (3.7) that f ∈ B.
The function f omits all values (2n2 + 1) p + (2n1 + 1) qi with n1, n2 ∈ Z.

Example 3. Let f be the function of the previous example and f̃ = exp f .
With σ = f∗ (γ) we have

f̃ ◦ γ = exp (2n2p + 2n1qi) f̃ , (n1, n2 ∈ Z) ,
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so that Σ̃ ⊂ Möb(C\ {0}). The group Σ̃ is discrete if and only if q/π is rational

but the function f̃ is always normal by Theorem 6. If q = π then f̃ omits all

values exp[(2n2 + 1) p], if q > π then f̃ (D) = C\ {0}.
Example 4. Let q > 1 and p ≥ (q − 1) /

(
4
√

q
)
. We consider the two disjoint

circles

C± =

{
w ∈ C :

∣∣∣∣w ∓ p
q + 1

q − 1

∣∣∣∣ =
2p

√
q

q − 1

}
.

Let G be the domain between C−, C+ and the two lines {Im w = ±i/2} with
B1 on the upper line and B2 on C+. The four equal angles ϑ of G are given
by cosϑ = (q − 1) /

(
4p

√
q
)
. Now σ1 (w) = w − i is parabolic and

σ2 (w) =
− (q + 1)w + p (q − 1)

p−1 (q − 1)w − (q + 1)
, Fix(σ2) = {−p, p}

is hyperbolic. The three standard parameters [5] of the two-generator group Σ
in terms of the traces are

(tr σ1)
2 − 4 = 0 , (tr σ2)

2 − 4 =
(q − 1)

2

q
, [σ1, σ2] − 2 = −4 cos2 ϑ .

Klimenko and Kopteva have shown that Σ is discrete if and only if ϑ = π/n
with n = 3, 4, . . . or ϑ = 0. See Table 1 # 4 in [10] and Table 2 # 6, # 7 in
[11]. Inspection of the fundamental polyhedra [12] shows moreover that Σ has

a domain of discontinuity in Ĉ if ϑ = π/n or ϑ = 0; see also [13].

If ϑ = 0 then Σ is a Schottky group with
⋃

σ∈Σσ (G) ⊂ Ĉ\L (Σ) so that f is
normal. The situation remains unclear if ϑ = π/n; computer drawings indicate
that f is normal. Now let 0 < ϑ 6= π/n. Since tr(σ1 ◦ σ2) /∈ R and Σ is not
discrete we obtain from Corollary 9 (i) that f is not normal.

We choose m = 3 in the next two examples. Let A1 be again the h-line from
ζ to −ζ but now let A2 be the h-line from 1 to ζ and A3 the h-line from −ζ to
−1. Then γ1 is hyperbolic whereas γ2 and γ3 are now parabolic.

Example 5. The domain G also lies in D. Let B1 be the h-line from eπi/4 to
e3πi/4 and let B2 and B3 be h-arcs from eiπ/4 to p > 0 and from e3πi/4 to −p.
Now σ1 is hyperbolic whereas σ2 and σ3 are elliptic. If the angle ϑ of G at p is
2π/n with n ≥ 3 then Σ is discrete with fundamental domain G by the Klein
combination theorem ([17], p. 119); in this case the elliptic fixed point p lies
in ∂f (D). If ϑ/π /∈ Q then σ2 is of infinite order and Σ is not discrete; in this
case f (D) = D so that p lies in f (D). But f is bounded and therefore always
normal.

Example 6. Let q > 0 and let C be a circular arc from 1 through iq to −1.
Let B2 and B3 be the two arcs of C \ {iq}. Furthermore let B1 be a circle in H
that touches C at iq. Then σ1 is hyperbolic whereas σ2 = σ3 is elliptic. If the
angle ϑ of G at 1 is 2π/n, n ≥ 2 then Σ is discontinuous with G as fundamental
domain by the Klein combination theorem ([20], p. 139) so that f is normal
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and f (D) is infinitely connected. If ϑ/π /∈ Q then Σ is not discrete and f is
not normal because f (0) = 0 lies in L(Σ) = iR.

The group Σ leaves invariant the right halfplane, where Σ acts as a Fuchsian
group of the second kind. Hence Σ is not “truly spatial” ([11], Th. 1.1) and
therefore does not appear in Table 2 of that paper.

The final three examples are somewhat different. The second example twice
uses the construction process described at the begin of the section, whereas the
third example uses the uniformisation theorem.

Example 7. Let A1 and A2 be the h-lines from ±1 to i. Then γ1 and γ2 are
parabolic. Let B1 = [1, iq] and B2 = [−1, iq], where q is chosen such that the
angle ϑ between B1 and B′

1 at 1 satisfies ϑ/π /∈ Q. Then σ1 and σ2 are elliptic
of infinite order. We have f (D) = C but f is normal by Theorem 6(i) and
Proposition 10.

Example 8. (a) We again consider the domain of Example 7 which we now
call F0. Let G0 ⊂ D be bounded by four h-segments Ck, C ′

k from ±i to p
and −p where p > 0 is chosen such that the angle at p is π/2. Let g be the
conformal map of F0 onto G0 mapping vertices to vertices. We obtain parabolic
λ1 and λ2 for F0 and elliptic σ1, σ2 of order 4 for G0. Then Λ := 〈λ1, λ2〉 and
Σ := 〈σ1, σ2〉 are Fuchsian groups and g is Λ-polymorphic with g (D) = D and
g∗ (Λ) = Σ.

(b) Let H1 and H2 be disjoint symmetric horodisks that touch T at ±1.
First we construct F . Let B1 and B2 be the h-lines from ζ to i and from −ζ
to i, and let B′

1, B
′
2 be their reflections in R. Furthermore let L1 and L2 be

the arcs of T from ζ to ζ and from −ζ to −ζ. The domain F is bounded by
Bk, B′

k and Lk (k = 1, 2). Now we make repeated reflections starting with the
arcs Bk and B′

k in D but not using the arcs Lk on T. Then we stay in D and
finally obtain a Fuchsian group Γ.

Let h be a conformal map of F onto F1 = F0 \ (H1 ∪ H2) preserving the
symmetries. Reflecting in the arcs Ak ∩ F1 and A′

k ∩ F1 we extend h analyt-
ically to D. The function h is Γ-polymorphic with h∗ (Γ) = Λ where Λ was
constructed in (a). We have

h (D) = D \ ⋃
λ∈Λλ

(
H1 ∪ H2

)
. (4.5)

The function f := g ◦ h is Γ-polymorphic with f∗ = g∗ ◦ h∗ and therefore
f∗ (Γ) = g∗ (Λ) = Σ. We see from (4.5) that f (D) consists of D minus countably
many closed Jordan domains which contain the elliptic fixed points σ (±p) in
their interior. It follows that Fix(σ)∩f

(
D

)
= ∅. Note furthermore that ∂f (D)

is larger than L (Σ) = T. The function f is bounded and therefore normal.

Example 9. Let f be the universal covering map of D onto

V = C\⋃n∈Z
{n + i, n − i} ,

such that f (0) = 0, f ′ (0) > 0. Then V is conformally equivalent to D/Λ
for some infinitely generated Fuchsian group Λ. We have V + 1 ⊂ V . Since
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f is locally univalent it follows that γ := f−1 ◦ (f + 1) is locally defined in
D and is therefore globally defined in D by the monodromy theorem. Since
γ is locally univalent and maps D onto D it follows that γ ∈ Möb(D) and
f is Γ-polymorphic where Γ = 〈Λ, γ〉; the group Σ = f∗ (Γ) is generated by
w 7−→ w + 1. The function f is normal but f /∈ B; compare Theorem 7(i).
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