Nonderogatory directed windmills

Molinos de viento dirigidos no derogatorios

Juan Rada ${ }^{a}$

Universidad de Los Andes, Mérida, Venezuela

Abstract

A directed graph G is nonderogatory if its adjacency matrix A is nonderogatory, i.e., the characteristic polynomial of A is equal to the minimal polynomial of A. Given integers $r \geq 2$ and $h \geq 3$, a directed windmill $M_{h}(r)$ is a directed graph obtained by coalescing r dicycles of length h in one vertex. In this article we solve a conjecture proposed by Gan and Koo ([3]): $M_{h}(r)$ is nonderogatory if and only if $r=2$.

Key words and phrases. Nonderogatory matrix, characteristic polynomial of directed graphs, directed windmills. 2000 Mathematics Subject Classification. 05C50. Resumen. Un grafo dirigido G es no-derogatorio si su matriz de adyacencia A es no-derogatoria, es decir el polinomio característico de A es igual al polinomio minimal de A. Dados enteros $r \geq 2$ y $h \geq 3$, el molino de viento dirigido $M_{h}(r)$ es un grafo dirigido que se obtiene por medio de la coalescencia de r diciclos de longitud h en un vértice. En este artículo resolvemos una conjetura propuesta por Gan y Koo ([3]) : $M_{h}(r)$ es no-derogatorio si, y sólo si, $r=2$.

Palabras y frases clave. matriz no-derogatoria, polinomio característico de grafos dirigidos, molinos de viento dirigidos.

1. Introduction

A digraph (directed graph) $G=(V, E)$ is defined to be a finite set V and a set E of ordered pairs of elements of V. The sets V and E are called the set of vertices and arcs, respectively. If $(u, v) \in E$ then u and v are adjacent and (u, v) is an arc starting at vertex u and terminating at vertex v.

Let $\mathcal{M}_{n}(\mathbb{C})$ denote the space of square matrices of order n with entries in \mathbb{C}. Suppose that $\left\{u_{1}, \ldots, u_{n}\right\}$ is the set of vertices of G. The adjacency matrix of G is the matrix $A \in \mathcal{M}_{n}(\mathbb{C})$ whose entry $a_{i j}$ is the number of arcs starting

[^0]at u_{i} and terminating at u_{j}. The characteristic polynomial of G is denoted by $\Phi_{G}(x)$ (or simply Φ_{G}) and it is defined as the characteristic polynomial of the adjacency matrix A of G, i.e., $\Phi_{G}(x)=|x I-A|$, where I is the identity matrix.

The monic polynomial of least degree which annihilates A is called the minimal polynomial of G and is denoted by $m_{G}(x)=m_{G}$; it divides every polynomial $f \in \mathbb{C}[x]$ such that $f(A)=0$. In particular, by the Cayley-Hamilton Theorem, $m_{G}(x)$ divides $\Phi_{G}(x)$. Moreover, $\Phi_{G}(x)$ and $m_{G}(x)$ have the same roots.

A digraph G is nonderogatory if its adjacency matrix A is nonderogatory, i.e., if $\Phi_{G}(x)=m_{G}(x)$; otherwise, G is derogatory. For example, dipaths P_{n}, dicycles C_{n}, difans F_{n} and diwheels W_{n} are classes of nonderogatory digraphs. These classes of digraphs have been studied by Gan, Lam and Lim ([2],[4] and [5]). More recently ([3]), Gan and Koo considered the problem of determining when the directed windmills are nonderogatory.

Let h, r be integers such that $h \geq 3$ and $r \geq 2$. A directed windmill $M_{h}(r)$ is the directed graph with $r(h-1)+1$ vertices obtained from the coalescence of r dicycles of length h in one vertex (see Figure 1).

Figure 1. The directed windmill $M_{h}(r): r$ copies of the dicycle C_{h}.

Gan and Koo showed that $M_{3}(r)$ is nonderogatory if and only if $r=2$. Moreover, they conjectured that for every $h \geq 3$

$$
M_{h}(r) \text { is nonderogatory } \Leftrightarrow r=2 \text {. }
$$

In this paper we show that this conjecture is true.

2. Nonderogatory directed windmills

Recall that a linear directed graph is a digraph in which each indegree and each outdegree is equal to 1 (i.e. it consists of cycles). The coefficient theorem for digraphs ([1, Theorem 1.2]) relates the coefficients of the characteristic polynomial with the structure of the digraph.
Theorem 2.1. Let

$$
\Phi_{G}(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}
$$

be the characteristic polynomial of the digraph G. Then for each $i=1, \ldots, n$

$$
a_{i}=\sum_{L \in \mathcal{L}_{i}}(-1)^{p(L)},
$$

where \mathcal{L}_{i} is the set of all linear directed subgraphs L of G with exactly i vertices; $p(L)$ denotes the number of components of L.

Lemma 2.2. The characteristic polynomial of $M_{h}(r)$ is

$$
\Phi_{M_{h}(r)}=x^{r(h-1)+1}-r x^{r(h-1)+1-h}=x^{r(h-1)+1-h}\left[x^{h}-r\right] .
$$

Proof. This is an immediate consequence of Theorem 2.1.
Let G be a directed graph and $A=\left(a_{i j}\right)$ its adjacency matrix. By a walk of length k in G we mean a sequence of vertices $v_{0} v_{1} \cdots v_{k}$ in which each $\left(v_{i-1}, v_{i}\right)$ is an arc of G. It is well known that the number of walks of length k between two vertices v_{i} and v_{j} of G is $a_{i j}^{(k)}$, the entry $i j$ of the power matrix A^{k} ([1, Theorem 1.9]).
Theorem 2.3. $M_{h}(r)$ is nonderogatory if and only if $r=2$.
Proof. The characteristic polynomial of $M_{h}(2)$ is

$$
\Phi_{M_{h}(2)}=x^{h-1}\left(x^{h}-2\right) .
$$

Let $f(x)=x^{h-2}\left(x^{h}-2\right)$ and $A=\left(a_{i j}\right)$ the adjacency matrix of $M_{h}(2)$. From the structure of $M_{h}(2)$ it can be easily seen that $a_{h+1, h}^{(2 h-2)}=1$ and $a_{h+1, h}^{(h-2)}=0$. Consequently $f(A) \neq 0$, which implies that $\Phi_{M_{h}(2)}=m_{M_{h}(2)}$ and $M_{h}(2)$ is nonderogatory.

We next show that if $r \geq 3$ then $M_{h}(r)$ is derogatory. For $i=1, \ldots, h-1$, we denote by e_{i} the canonical row vector of \mathbb{C}^{h-1} and f_{i} the canonical column vector of \mathbb{C}^{h-1}. Labeling the vertices of $M_{h}(r)$ as shown in Figure 1, the adjacency matrix A of $M_{h}(r)$ has the form

$$
A=\left(\begin{array}{ccccc}
0 & e_{1} & e_{1} & \cdots & e_{1} \\
f_{h-1} & X & \mathbf{0} & \cdots & \mathbf{0} \\
\vdots & & \ddots & & \vdots \\
f_{h-1} & \mathbf{0} & \cdots & X & \mathbf{0} \\
f_{h-1} & \mathbf{0} & \mathbf{0} & \cdots & X
\end{array}\right)
$$

where $\mathbf{0} \in \mathcal{M}_{h-1}(\mathbb{C})$ is the zero matrix and $X=\left(x_{i j}\right) \in \mathcal{M}_{h-1}(\mathbb{C})$ is the matrix such that $x_{i, i+1}=1$ for $i=1, \ldots, h-2$, and the rest of the entries of X are zero. Set $Y_{1}=X, Z_{1}=\mathbf{0}$ and for $j=2, \ldots, h-1$ define recursively

$$
\begin{equation*}
Y_{j}=f_{h+1-j} e_{1}+Y_{j-1} X \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{j}=f_{h+1-j} e_{1}+Z_{j-1} X \tag{2}
\end{equation*}
$$

We next show that for every $j=1, \ldots, h-1$

$$
A^{j}=\left(\begin{array}{ccccc}
0 & e_{j} & e_{j} & \cdots & e_{j} \tag{3}\\
f_{h-j} & Y_{j} & Z_{j} & \cdots & Z_{j} \\
\vdots & & \ddots & & \vdots \\
f_{h-j} & Z_{j} & \cdots & Y_{j} & Z_{j} \\
f_{h-j} & Z_{j} & Z_{j} & \cdots & Y_{j}
\end{array}\right)
$$

In fact, this is clear for $j=1$. Assume (3) holds for $1 \leq i \leq h-2$. Note that

$$
\begin{equation*}
e_{i} f_{h-1}=\mathbf{0} \text { and } e_{i} X=e_{i+1} \tag{4}
\end{equation*}
$$

On the other hand, since $X f_{j}=f_{j-1}$ for every $j=2, \ldots, h-1$ then

$$
Y_{i} f_{h-1}=f_{h+1-i} e_{1} f_{h-1}+Y_{i-1} X f_{h-1}=Y_{i-1} f_{h-2}
$$

and after $i-1$ steps we deduce

$$
Y_{i} f_{h-1}=Y_{i-1} f_{h-2}=Y_{i-2} f_{h-3}=\cdots=Y_{1} f_{h-i}
$$

But recall that $Y_{1}=X$ and so

$$
\begin{equation*}
Y_{i} f_{h-1}=f_{h-(i+1)} . \tag{5}
\end{equation*}
$$

Similarly,

$$
Z_{i} f_{h-1}=Z_{i-1} f_{h-2}=\cdots=Z_{1} f_{h-i}
$$

but $Z_{1}=0$ implies

$$
\begin{equation*}
Z_{i} f_{h-1}=0 . \tag{6}
\end{equation*}
$$

Also we know that

$$
\begin{equation*}
f_{h-i} e_{1}+Y_{i} X=f_{h+1-(i+1)} e_{1}+Y_{(i+1)-1} X=Y_{i+1} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{h-i} e_{1}+Z_{i} X=Z_{i+1} \tag{8}
\end{equation*}
$$

Consequently, it follows from equations (4)-(8) that

$$
A^{i+1}=A^{i} A=\left(\begin{array}{ccccc}
0 & e_{i+1} & e_{i+1} & \cdots & e_{i+1} \\
f_{h-(i+1)} & Y_{i+1} & Z_{i+1} & \cdots & Z_{i+1} \\
\vdots & & \ddots & & \vdots \\
f_{h-(i+1)} & Z_{i+1} & \cdots & Y_{i+1} & Z_{i+1} \\
f_{h-(i+1)} & Z_{i+1} & Z_{i+1} & \cdots & Y_{i+1}
\end{array}\right)
$$

hence (3) holds for every $j=1, \ldots, h-1$.

On the other hand,

$$
\begin{aligned}
& e_{h-1} f_{h-1}=1, e_{h-1} X=\mathbf{0} \\
& Y_{h-1} f_{h-1}=\mathbf{0}=Z_{h-1} f_{h-1}
\end{aligned}
$$

and from repeated use of (1) and the fact that $X^{h}=\mathbf{0}$,

$$
\begin{aligned}
f_{1} e_{1}+Y_{h-1} X & =f_{1} e_{1}+\left(f_{2} e_{1}+Y_{h-2} X\right) X \\
& =f_{1} e_{1}+f_{2} e_{2}+Y_{h-2} X^{2}=\cdots \\
& =\sum_{k=1}^{h-2} f_{k} e_{k}+Y_{2} X^{h-2}=\sum_{k=1}^{h-2} f_{k} e_{k}+\left(f_{h-1} e_{1}+Y_{1} X\right) X^{h-2} \\
& =\sum_{k=1}^{h-2} f_{k} e_{k}+f_{h-1} e_{1} X^{h-2}+X^{h}=\sum_{k=1}^{h-1} f_{k} e_{k}=I .
\end{aligned}
$$

Similarly, using (2) it can be shown that $f_{1} e_{1}+Z_{h-1} X=I$. It follows from these relations and (3) that

$$
A^{h}=A^{h-1} A=\left(\begin{array}{cccc}
r & 0 & \cdots & 0 \tag{9}\\
0 & I & \cdots & I \\
\vdots & \vdots & & \vdots \\
0 & I & \cdots & I
\end{array}\right)
$$

where the $0^{\prime} s$ in the first row are the zero vectors in \mathbb{C}^{h-1}, the $0^{\prime} s$ in the first column are the zero column vectors of \mathbb{C}^{h-1} and $I \in \mathcal{M}_{h-1}(\mathbb{C})$ is the identity.

Relation (9) implies that for every integer $k \geq 2$

$$
A^{k h}=\left(\begin{array}{cccc}
r^{k} & 0 & \cdots & 0 \tag{10}\\
0 & r^{k-1} I & \cdots & r^{k-1} I \\
\vdots & \vdots & & \vdots \\
0 & r^{k-1} I & \cdots & r^{k-1} I
\end{array}\right)=r A^{(k-1) h}
$$

Now consider the polynomial $g \in \mathbb{C}[x]$ defined as

$$
g(x)=x^{r h-r-h}\left(x^{h}-r\right),
$$

we will show that $g(A)=0$. To see this, note that since $r \geq 3$ and $h \geq 3$, by the division algorithm, we can find integers $q \geq 2$ and $0 \leq s \leq h-1$ such that

$$
r h-r=q h+s
$$

From relation (10) we deduce that

$$
A^{r h-r}=A^{q h+s}=r A^{(q-1) h+s}=r A^{q h+s-h}=r A^{r h-r-h}
$$

which implies $g(A)=0$ and so $M_{h}(r)$ is derogatory.

References

[1] Cvetković, D., Doob, M., And Sachs, H. Spectra of graphs. Academic Press, New York, 1980.
[2] Gan, C. Some results on annihilatingly unique digraphs. M.Sc. Thesis, Univesity of Malaya, 1995. Kuala Lumpur, Malaysia.
[3] Gan, C., and Koo, V. On annihilating uniqueness of directed windmills. In Proceedings of the ATCM (2002), ATCM. Melaka, Malaysia.
[4] Lam, K. On digraphs with unique annihilating polynomial. Ph.D. Thesis, University of Malaya, 1990. Kuala Lumpur, Malaysia.
[5] Lam, K., and Lim, C. The characteristic polynomial of ladder digraph and an annihilating uniqueness theorem. Discrete Mathematics 151 (1996), 161-167.
(Recibido en octubre de 2007. Aceptado en febrero de 2008)

Departamento de Matemáticas
Universidad de Los Andes 5101 Mérida, Venezuela e-mail: juanrada@ula.ve

[^0]: ${ }^{\text {a }}$ Financial support was received from CDCHT-ULA, Project No. C-13490505B.

