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Abstract. We provide a semilocal convergence analysis for a cubically conver-
gent two-step Newton method (2) recently introduced by H. Homeier [8], [9],

and also studied by A. Özban [13]. In contrast to the above works we examine
the semilocal convergence of the method in a Banach space setting, instead of
the local in the real or complex number case. A comparison is given with a two
step Newton–like method using the same information.
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Resumen. Proporcionamos un análisis de convergencia semilocal para un método
de Newton de dos pasos, cúbicamente convergente, recientemente introducido
por H. Homeier [8], [9], también estudiado por A. Özban [13]. En contraste
con esto, examinamos la convergencia local del método en espacios de Banach
en lugar del local, en el caso real y complejo. Damos una comparación con el
método de Newton de dos pasos usando la misma información.

Palabras y frases clave. Método de Newton de dos pasos, método de Newton,
espacio de Banach, secuencia mayorante, hipótesis de Newton–Kantorovich,
convergencia semilocal, derivada de Fréchet.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of the nonlinear equation

F (x) = 0, (1)
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16 IOANNIS K. ARGYROS

where F is a Fréchet-differentiable operator defined on the closure U(x0, R)
(R > 0) of a ball U(x0, R) = {x | x ∈ X | ‖x − x0‖ < R} in a Banach space X

with values in a Banach space Y .
Many problems in applied mathematics, and also in engineering, can be

formulated as in equation (1) for a suitable choice of the operator F [4], [10],
[12].

Recently H. Homeier [8], [9] and A. Özban [13] studied the local convergence
of the cubically convergent two-step Newton method

yn = xn − F ′(xn)−1F (xn) (n ≥ 0), (x0 ∈ D),

xn+1 = xn − F ′(zn)−1F (xn), zn =
xn + yn

2
(2)

for all n ≥ 0 in the special case when X = Y = R or C. In [7], [10] it was
already demonstrated experimentally that method (2) can compete in efficiency
with other methods using the same information.

Method (2) was originally studied in [11], [5], where the cubic convergence
was established under hypotheses on the second Fréchet–derivative of operator
F .

Semilocal and local convergence theorems on Newton-like methods under
various conditions can be found in [1], [14], and the references there. Therefore
one can immediately obtain sufficient convergence conditions for the local as
well as the semilocal case by simply referring to those results (see, in particular
[3], [4]).

Results on other fast methods can be found in [1], [6], [7]. However here we
decided to study the semilocal convergence of method (2) on a Banach space
setting motivated by the efficiency of the method when X = Y = R or C using
a direct approach and precise majorizing sequences along the lines of our works
in [3], [4].

We assume that for some x0 ∈ D, F ′(x0)
−1 ∈ L(Y, X) and for all x, y ∈

U(x0, R)

‖F ′(x0)
−1[F ′(x) − F ′(x0)]‖ ≤ w0(‖x − x0‖), (3)

‖F ′(x0)
−1[F ′(x) − F ′(y)]‖ ≤ w(‖x − y‖) (4)

for some monotonically increasing functions w0, w defined on [0, R] and satis-
fying

lim
r→0

w0(r) = lim
r→0

w(r) = 0. (5)

Conditions of the form (3) - (5) were inaugurated in the elegant work in [2]
(see also [3], [4]) in connection with the study of Newton’s method

xn+1 = xn − F ′(xn)−1 F (xn) (n ≥ 0), (x0 ∈ D), (6)

in the special case when w0(r) = w(r) for all r ∈ [0, R].
The advantages of introducing function w0 in the study of Newton-like me-

thods have been explained in [3], [4]. In fact this way under the same or even
weaker hypotheses finer error bounds on the distances ‖yn −xn‖, ‖xn+1 −xn‖,
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‖yn − x∗‖, ‖xn − x∗‖ (n ≥ 0) can be obtained and an at least as precise
information on the location of the solution x∗.

A comparison with the two–step Newton-like method

yn = xn − F ′(xn)−1F (xn) (n ≥ 0), (x0 ∈ D)
xn+1 = xn − F ′(yn)−1F (xn)

(7)

is given. Note that both methods (2) and (7) use two inverses and one function
evaluation at every step. Numerical examples can also be found in [8], [13].

2. Semilocal convergence analysis of Newton-like method

Let η ≥ 0. It is convenient for us to define scalar sequences {sn}, {tn} (n ≥ 0)
for t0 = 0, s0 = η, t1 = s0 + s0

1−w0

(

s0+t0
2

) by

sn+1 = tn+1 +

∫ 1

0
w (t (tn+1 − tn)) (sn − tn)dt + [1 + w0(tn)](tn+1 − sn)

1 − w0(tn+1)
, (8)

and

tn+2 = tn+1 +

∫ 1

0
w

[

1
2 (sn − tn) + t(tn+1 − tn)

]

(tn+1 − tn)dt

1 − w0

(

tn+1+sn+1

2

) , (9)

for all n ≥ 0.
It follows by the definition of sequences {sn}, {tn} that if there exists α ∈

[0, R] such that

sn ≤ tn+1 ≤ α < w−1
0 (1) for all n ≥ 0, (10)

then both sequences are monotonically increasing, bounded above by α, and
as such they converge to a common limit t∗ such that

tn ≤ sn ≤ tn+1 (n ≥ 0), (11)

and
t∗ ≤ α. (12)

We can show the following semilocal convergence theorem for Newton-like
method (2) using majorizing sequences {tn} and {sn}.

Theorem 2.1. Under conditions (3), (4) and (8) for
∣

∣F ′(x0)
−1F (x0)

∣

∣ ≤ η,

‖F ′(z0)
−1F (x0)‖ ≤ t1 sequence {xn} (n ≥ 0) generated by Newton-like method

(2) is well defined, remains in U(x0, t
∗) for all n ≥ 0, and converges to a unique

solution x∗ of equation F (x) = 0 in U(x0, t
∗).

Moreover the following estimates hold for all n ≥ 0:

‖yn − xn‖ ≤ sn − tn, (13)

‖xn+1 − xn‖ ≤ tn+1 − tn, (14)

‖yn − x∗‖ ≤ t∗ − sn, (15)

and
‖xn − x∗‖ ≤ t∗ − tn. (16)
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Furthermore if there exists R0 ∈ (t∗, R] such that
∫ 1

0

w[tt∗ + (1 − t)R0]dt < 1, (17)

then the solution x∗ is unique in U(x0, R0).

Proof. We shall show:

‖yk − xk‖ ≤ sk − tk, (18)

‖xk+1 − xk‖ ≤ tk+1 − tk, (19)

U(yk, t∗ − sk) ⊆ U(xk , t∗ − tk), (20)

and

U(xk+1, t
∗ − tk+1) ⊆ U(xk , t∗ − tk). (21)

For every z ∈ U(y0, t
∗ − s0),

‖z − y0‖ ≤ ‖z − y0‖ + ‖y0 − x0‖ ≤ t∗ − s0 + s0 = t∗ = t∗ − t0

implies z ∈ U(y0, t
∗ − t0). Similarly, for every w ∈ U(x1, t

∗ − t1)

‖w − x0‖ ≤ ‖w − x1‖ + ‖x1 − x0‖ ≤ t∗ − t1 + t1 = t∗

implies w ∈ U(x0, t
∗ − t0).

Estimates (16) and (17) hold true for k = 0 by the initial conditions. Let us
assume estimates (16) - (19) hold for n = 0, 1, . . . , k, then

‖yk − x0‖ ≤ ‖yk − xk‖ +

k
∑

i=1

‖xi − xi−1‖

≤ sk − tk + tk − t0 = sk − t0 ≤ t∗

‖xk+1 − x0‖ ≤

k+1
∑

i=1

‖xi − xi−1‖ ≤

k+1
∑

i=1

(ti − ti−1)

= tk+1 − t0 ≤ t∗,
∥

∥

∥

∥

yk + xk

2
− x0

∥

∥

∥

∥

≤
1

2
[‖yk − x0‖ + ‖xk − x0‖]

≤
1

2
(sk + tk) ≤

1

2
(t∗ + t∗) = t∗,

and

‖xk + t(xk+1 − xk) − x0‖ ≤ tk + t(tk+1 − tk) ≤ t∗ for all t ∈ [0, 1].

Let u ∈ U(x0, t
∗), then using (3) and the induction hypotheses we get

∥

∥F ′(x0)
−1 [F ′(u) − F ′(x0)]

∥

∥ ≤ w0(‖u− x0‖) ≤ w0(t
∗) < 1. (22)

It follows from (20) and the Banach Lemma on invertible operators [10] that
F ′(u)−1 exists and

∥

∥F ′(u)−1F ′(x0)
∥

∥ ≤ [1 − w0(‖u − x0‖)]
−1

. (23)
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In view of (2) we obtain the identity

F (xk+1) = F (xk+1) − F (xk) − F ′(xk)(yk − xk)

=

∫ 1

0

[F ′ (xk + t (xk+1 − xk)) − F ′(xk)] (xk+1 − xk)dt

+ [F ′(xk) − F ′(x0)] (xk+1 − yk) + F ′(x0)(xk+1 − yk), (24)

and by composing by F ′(x0)
−1 we get using (4)

∥

∥F ′(x0)
−1F (xk+1)

∥

∥

=

∥

∥

∥

∥

∫ 1

0

F ′(x0)
−1 [F ′(xk + t(xk+1 − xk)) − F ′(xk)] (xk+1 − xk)dt

∥

∥

∥

∥

+
∥

∥F ′(x0)
−1[F ′(xk) − F ′(x0)](xk+1 − yk)

∥

∥ + ‖xk+1 − yk‖

≤

∫ 1

0

w (‖t(xk+1 − xk)‖) ‖xk+1 − xk‖dt

+ w0(‖xk − x0‖)‖xk+1 − yk‖ + ‖xk+1 − yk‖

≤

∫ 1

0

w(t(tk+1 − tk))(tk+1 − tk)dt + w0(tk)(tk+1 − sk)

+ (tk+1 − sk). (25)

Similarly from (2) we obtain the identity

F (xk+1) = F (xk+1) − F (xk) − F ′

(

xk + yk

2

)

(xk+1 − xk) (26)

=

∫ 1

0

[

F ′(xk + t(xk+1 − xk)) − F ′

(

xk + yk

2

)]

(xk+1 − xk)dt.

Therefore again by (24) and (4), we get
∥

∥F ′(x0)
−1F (xk+1)

∥

∥

≤

∫ 1

0

w

[∥

∥

∥

∥

xk + t(xk+1 − xk) −
xk + yk

2

∥

∥

∥

∥

]

‖xk+1 − xk‖dt

≤

∫ 1

0

w

[

1

2
‖yk − xk‖ + t‖xk+1 − xk‖

]

‖xk+1 − xk‖dt

≤

∫ 1

0

w

[

1

2
(sk − tk) + t(tk+1 − tk)

]

(tk+1 − tk)dt. (27)

In view of (2), (21) (for u = xk+1, and u =
xk+1+yk+1

2 respectively), (23)
and (25), we obtain:

‖yk+1 − xk+1‖ ≤
∥

∥F ′(xk+1)
−1F ′(x0)

∥

∥ ·
∥

∥F ′(x0)
−1F (xk+1)

∥

∥ ≤ sk+1 − tk+1,

(28)
and

‖xk+2 − xk+1‖ ≤ tk+2 − tk+1, (29)

which show (16) and (17) for all n ≥ 0.
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Thus for every w ∈ U (xk+2, t
∗ − tk+2), we have

‖w − xk+1‖ ≤ ‖w − xk+2‖ + ‖xk+2 − xk+1‖ ≤ t∗ − tk+2 + tk+2 − tk+1

= t∗ − tk+1, (30)

which imply

z ∈ U(xk+1, t
∗ − tk+1). (31)

Similarly for every z ∈ U(yk+1, t
∗ − sk+1), we get

z ∈ U(yk, t∗ − sk). (32)

The induction for estimates (16) - (19) is now complete.
In view of (8), (9), and (16) - (19), sequences {xn}, {yn} are Cauchy in a

Banach space X and as such they converge to a common limit x∗ ∈ U(x0, t
∗)

(since U(x0, t
∗) is a closed set). By letting k → ∞ in (26) we get F (x∗) = 0. Es-

timates (13) and (14) follow from (11) and (12) by using standard majorization
techniques [4], [10], [12].

To show uniqueness of x∗ first in U(x0, t
∗), let y∗ be a solution of equation

F (x) = 0 in U(x0, t
∗). In view of (3) and (8), we get

∥

∥

∥

∥

F ′(x0)
−1

∫ 1

0

[F ′(y∗ + t(x∗ − y∗)) − F ′(x0)]dt

∥

∥

∥

∥

≤

∫ 1

0

w0

[

t ‖x∗ − x0‖ + (1 − t) ‖y∗ − x0‖
]

dt ≤ w0(t
∗) < 1. (33)

It follows from (30) and the Banach Lemma on invertible operators that
linear operator L given by

L =

∫ 1

0

F ′ (y∗ + t (x∗ − y∗)) dt (34)

is invertible.
Using the identity

0 = F (x∗) − F (y∗) = L(x∗ − y∗), (35)

we deduce x∗ = y∗.
Finally to show uniqueness in U(x0, R0), again as in (30) we obtain

∥

∥F ′(x0)
−1(L − F ′(x0))

∥

∥ ≤

∫ 1

0

w0 (tt∗ + (1 − t)R0) dt < 1, (36)

which again together with (33) yields to x∗ = y∗. That completes the proof of

the theorem. �X

Remark 2.1. Although stronger but easier to verify conditions implying crucial
hypothesis (8) have already been given in [2], when w0(r) = w(r) for all r ∈
[0, R], and us [3], [4], when functions w0 and w are not necessarily the same,
we decided to leave condition (8) as uncluttered as possible. In order for us
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to find conditions other than (8), let us assume there exists a monotonically
increasing function w̃ satisfying (5) and for all t ≥ s, with s, t ∈ [0, R]:

∫ t−s

0

w(t)dt ≤

∫ t

s

[w̃(t) − w(s)] dt. (37)

Such an estimate can follow e.g. from

w̃(r) = sup{w(u) + w(v) : u + v = r}. (38)

This function may be calculated explicitly in some cases. For example, in the
Hölder case

w(r) = `rλ (0 < λ ≤ 1) (39)

we have
w̃(r) = 21−λ`rλ. (40)

In general, if w is a concave function on [0, R], we have w̃(r) = 2w
(

r
2

)

. Clearly
w̃ is always increasing, concave, and

w(r) ≤ w(r) for all r ∈ [0, R]. (41)

Conditions of the form (35) - (36) were first given in [2]. More information on
the motivation for the introduction of function w̃ can be found in [2] - [4].

It is convenient for us to define scalar functions f , g on [0, R], and sequences

{sn},
{

tn
}

,
{

sn

}

,
{

tn

}

(n ≥ 0) for all n ≥ 0 by

f(r) = η − r +

∫ r

0

w̃(t)dt, (42)

g(r) = η − r +

∫ 1

0

w(t)dt, (43)

t0 = 0, s0 = η, t1 = s0 +
s0

1 − w
(

s0+t0
2

) ,

sn+1 = tn+1 +

∫ 1

0
w

(

t
(

tn+1 − tn
)) (

sn − tn
)

dt

1 − w(tn+1)
, (44)

tn+2 = tn+1 +

∫ 1

0
w

[

1
2

(

sn − tn
)

+ t
(

tn+1 − tn
)] (

tn+1 − tn
)

dt

1 − w
(

tn+1+sn+1

2

) (45)

t0 = t0, s0 = s0, t1 = t1,

sn+1 = tn+1 −
f1

(

tn, sn, tn+1

)

g′
(

tn+1

) , (46)

tn+2 = tn+1 −
f2

(

tn, sn, tn+1

)

g′
(

tn+1+sn+1

2

) , (47)
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where,

f1(a, b, c) =

∫ 1

0

w[a + t(c − a)](b − a)dt − w(a)(b − a),

and

f2(a, b, c) =

∫ 1

0

w[b + t(c − a)](c − a)dt − w

(

a + b

2

)

(c − a).

In view of (3) and (4) it follows that

w0(r) ≤ w(r) for all r ∈ [0, R], (48)

and w(r)
w0(r) can be arbitrarily large [3], [4]. By comparing sequences {sn}, {tn}

with {sn} and
{

tn
}

and using induction on n ≥ 0 we deduce

sn ≤ sn, (49)

tn ≤ tn, (50)

sn − tn ≤ sn − tn, (51)

tn+1 − tn ≤ tn+1 − tn, (52)

t∗ − sn ≤ t
∗

− sn, t
∗

= lim
n→∞

tn, (53)

t∗ − tn+1 ≤ t
∗

− tn+1, (54)

and

t∗ ≤ t
∗

. (55)

Note also that strict inequality holds in (47) - (50) if (44) also holds as a strict
inequality.

Moreover if (35) or (36) hold then

sn ≤ sn, (56)

tn ≤ tn, (57)

sn − tn ≤ sn − tn, (58)

tn+1 − tn ≤ tn+1 − tn, (59)

t
∗

− sn ≤ t
∗

− sn, t
∗

= lim
n→∞

tn, (60)

t
∗

− tn+1 ≤ t
∗

− tn+1, (61)

and

t
∗

≤ t
∗

. (62)

Clearly, if conditions for the convergence of sequences
{

sn

}

,
{

tn

}

are imposed,

the same conditions will imply the convergence of the finer sequences {sn},
{tn}, {sn}, and

{

tn
}

(n ≥ 0). Such a condition is:

(C) Equation

f(r) = 0 (63)

has a unique solution δ ∈ [0, R].
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Note that in this case

lim
n→∞

sn = lim
n→∞

tn ≤ δ.

The proof is omitted since it has essentially been given in Theorem 2 in [2,
p. 5].

Remark 2.2. Concerning related method (7), let us consider the corresponding
scalar majorizing sequences {pn}, {qn}, {pn}, {qn},

{

pn

}

,
{

qn

}

, (n ≥ 0)
defined as the s–t–sequences, respectively.

For example, sequences {pn}, {qn} as defined as {sn}, {tn} given in (6) and

(7) but sn, tn, tn+1,
tn + sn

2
are now pn, qn, pn+1, pn, respectively, etc.

Clearly, method (7) also converges under condition (C).

Note that a similar proof as in Theorem 2.1 can be given for method (7).
We do not known if the s–t–sequences are finer than the p–q–sequences. In
practice, we will use both to see which ones provide the more precise estimates
on the distances ‖ yn − xn ‖, ‖ xn+1 − xn ‖, ‖ yn − x∗ ‖ (n ≥ 0).

Finally note that the results obtained here can be extended to the more
general method (2) where zn = (1 − λ)xn + λyn, 0 ≤ λ ≤ 1. However here we
decided to examine (2) only in the case λ = 1

2 which although seems to be the
most popular [7], [8], [13] we do not know yet if it is always the best choice.
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24 IOANNIS K. ARGYROS

[10] Kantorovich, L. V., and Akilov, G. P. Functional Analysis in Normed Spaces. Perg-
amon Press, Oxford, 1982.

[11] K.Argyros, I., and Chen, D. The midpoint method for solving equations in Banach
spaces. Appl. Math. Letters 5 (1992), 7–9.

[12] Ortega, J. M., and Rheinboldt, W. C. Iterative Solution of Nonlinear Equations in

Several Variables. Academic Press, New York, 1970.
[13] Ozban, A. Y. Some new variants of Newton’s method. Appl. Math. Letters 17 (2004),

677–682.
[14] Yamamoto, T. A convergence theorem for Newton-like methods in Banach spaces. Nu-

mer. Math. 51 (1987), 545–557.

(Recibido en octubre de 2007. Aceptado en marzo de 2008)

Department of Mathematical Sciences

Cameron University

Lawton OK 73505

Lawton, USA

e-mail: iargyros@cameron.edu
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