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Abstract. In this paper, we apply the invariant region theory [1] and the com-
pensated compactness method [2] to study the singular limits of stiff relaxation
and dominant diffusion for the Cauchy problem of a system of quadratic flux
and the Le Roux system, and obtain the convergence of the solutions to the
equilibrium states of these systems.
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Resumen. En este art́ıculo aplicamos la teoŕıa de la región invariante [1] y el
método de la compactificación compensada [2] para estudiar los ĺımites singu-
lares de la relajación ŕıgida y difusión dominante para el problema de Cauchy
de un sistema de flujo cuadrático y el sistema Roux obteniendo la convergencia
de las soluciones para el estado de equilibrio de esos sistemas.

1. Introduction

We are concerned with singular limits of stiff relaxation and dominant diffu-
sion for the Cauchy problem of two special quasilinear conservation laws with
relaxation and diffusion: one is related to a system of quadratic flux

{
ut + 3

2 (u2 + v2)x + u−h(v)
τ = εuxx,

vt + (uv)x = εvxx
(1.1)

with bounded measurable initial data

(u(x, 0), v(x, 0)) = (u0(x), v0(x)); (1.2)

the other one is related to the Le Roux system:
{

ut + (u2 + v)x + u−h(v)
τ = εuxx,

vt + (uv)x = εvxx
(1.3)
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with bounded measurable initial data

u(x, 0) = u0(x), v(x, 0) = v0(x) + ε, v0(x) ≥ 0. (1.4)

In this paper, we only consider the case of stiff relaxation and dominant
diffusion, that is, τ = o(ε) as ε → 0 (see [3]). We will show that the solutions
of the Cauchy problem (1.1)-(1.2), (1.3)-(1.4) are uniformly bounded in L∞ by
the invariant region theory, and the relaxation limits are always stable and no
oscillation arises.

2. The relaxation system of quadratic flux

The relaxation system of quadratic flux is described by
{

ut + 1
2 (u2 + v2)x + u−h(v)

τ = εuxx,
vt + (uv)x = εvxx.

(2.1)

By simple calculations, the two eigenvalues of system (2.1) are

λ1 = 2u− s
1
2 , λ2 = 2u + s

1
2

and the two Riemann invariants are

w(u, v) = u + s
1
2 , z(u, v) = u− s

1
2 .

Hereafter s = u2 + v2.
In this section, we use the compensated compactness method and the invari-

ant region theory to study the Cauchy problem (1.1)-(1.2) and get the following
theorem.

Theorem 2.1. Let τ = o(ε) as ε → 0, h(v) ∈ C2(R) and meas{v : g′′(v) =
0} = 0, where g(v) = vh(v). Suppose that there exists a region

Σ1 = {(u, v) : w(u, v) ≤ N, z(u, v) ≥ −L}
for some N, L > 0, such that the curve u = h(v) and the initial data (u0(x), v0(x))
are inside the region Σ1, and u = h(v) passes the two intersections (v1, u1) and
(v2, u2) of the curves w = N and z = −L (see Figure 1). Then, the solutions
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(uε, vε) = (uε,τ(ε), vε,τ(ε)) of the Cauchy problem (1.1)-(1.2) satisfying

|uε(x, t)| ≤ M, |vε(x, t)| ≤ M, (x, t) ∈ R×R+,

where M is independent of ε. Moreover, there exists a subsequence (still labeled)
(uε, vε) converging strongly to the functions (u, v) as ε → 0, which are the
equilibrium states uniquely determined by (E1)− (E2):

(E1) u(x, t) = h(v(x, t)), for almost all (x, t) ∈ R×R+;
(E2) v(x, t) is the L∞ entropy solution of the Cauchy problem

vt + (vh(v))x = 0, v(x, 0) = v0(x).

Proof. By simple calculations, we have

wu = 1 +
u√
s
, wv =

v√
s
, wuu =

v2

s
3
2
, wuv = −uv

s
3
2
, wvv =

u2

s
3
2
;

zu = 1− u√
s
, zv = − v√

s
, zuu = − v2

s
3
2
, zuv =

uv

s
3
2
, zvv = −u2

s
3
2
.

Then
wuu ≥ 0, wvv ≥ 0, wuuwvv − w2

uv ≥ 0;
zuu ≤ 0, zvv ≤ 0, zuuzvv − z2

uv ≥ 0,

which implies that both w(u, v) and −z(u, v) are convex. Thus

wuuu2
x + 2wuvuxvx + wvvv2

x ≥ 0, zuuu2
x + 2zuvuxvx + zvvv2

x ≤ 0.

Multiplying the first equation in system (1.1) by wu and the second by wv,
then adding the result, we obtain

wt + λ2wx + wu
u− h(v)

τ
= εwxx − ε(wuuu2

x + 2wuvuxvx + wvvv2
x).

and hence

wt + λ2wx + wu
u− h(v)

τ
≤ εwxx;

similarly,

zt + λ1zx + zu
u− h(v)

τ
≥ εzxx.

If the curve u = h(v) passes the two intersections points(v1, u1), (v2, u2) of
the curves w = N, z = −L and is above the curve z = −L and below the
curve w = N as v1 ≤ v ≤ v2, then it is easy to check that on the intersection
of ∂Σ2 and the curve w(u, v) = N , wu

u−h(v)
τ ≥ 0; on the intersection of ∂Σ2

and the curve z(u, v) = −L, zu
u−h(v)

τ ≤ 0. This shows that the region Σ1 =
{(u, v) : w(u, v) ≤ N, z(u, v) ≥ −L} is an invariant region by the Theorem 4.4
of [1]. Thus we get the estimates

|uε(x, t)| ≤ M, |vε(x, t)| ≤ M

for a suitable positive constant M , which is independent of ε. Hence there
exists a subsequence (still labeled) (uε, vε) such that

w? − lim(uε(x, t), vε(x, t)) = (u(x, t), v(x, t)),
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where w? − lim denotes the weak-star limit.

We now prove that ε(uε
x)2, ε(uε

x)2 and (uε−h(vε))2

τ are bounded in L1
loc. For

simplicity, we will drop the superscript ε.
Since (u, v) is bounded, we can choose a large constant C1 such that the

function p(u, v) = u2

2 − h(v)u + C1v2

2 satisfies

puuu2
x + 2puvuxvx + pvvv2

x ≥ C2(u2
x + v2

x) (2.2)

for some constant C2 > 0.
Multiplying system (1.1) by (pu, pv), we have from (2.2) that

p(u, v)t + pu(u, v)(
3
2
u2 +

1
2
v2)x + pv(u, v)(uv)x +

(u− h(v))2

τ
≤

ε[pxx(u, v)− C2(u2
x + v2

x)].
(2.3)

Direct calculations show that
pu(u, v)( 3

2u2 + 1
2v2)x

= 3
2 (pu(u, v)(u2 − h2(v)))x + pu(h(v), v)( 3

2h2(v) + 1
2v2)x

− 3
2pux(u, v)(u2 − h2(v)) + (pu(u, v)− pu(h(v), v))( 3

2h2(v) + 1
2v2)x

= ( 3
2pu(u, v)(u2 − h2(v)) +

∫ v
pu(h(s), s)(3h(s)h′(s) + s)ds)x

− 3
2 (puuux + puvvx)(u + h(v))(u− h(v))
+puu(β1, v)(u− h(v))(3h(v)h′(v) + v)vx

= T1 + T2 + T3,

and
pv(u, v)(uv)x

= (pv(u, v)v(u− h(v)) +
∫ v

pv(h(s), s)(h(s) + h′(s)s)ds)x

−(puvux + pvvvx)v(u− h(v)) + puv(β2, v)(u− h(v))(h(v) + h′(v)v)vx

= T̃1 + T̃2 + T̃3,

where pv(h(v), v) = pv(u, v)|u=h(v) and β1, β2 take values between u and h(v).
Using the elementary inequality δa2 + b2

4δ ≥ |ab| (δ > 0) and noticing that (u, v)
is bounded, we have

|T2| ≤ C
√

τ(|ux|+ |vx|) |u− h(v)|√
τ

≤ δ
(u− h(v))2

τ
+ C1(δ)τ(u2

x + v2
x). (2.4)

Similarly,

|T̃2| ≤ δ
(u− h(v))2

τ
+ C2(δ)τ(u2

x + v2
x), (2.5)

and

|T3| ≤ δ
(u− h(v))2

τ
+ C3(δ)τv2

x, |T̃3| ≤ δ
(u− h(v))2

τ
+ C4(δ)τv2

x. (2.6)

Let q(u, v)x = T1 + T̃1, δ = 1
8 . It follows from (2.3)-(2.6) that

p(u, v)t + q(u, v)x +
1
2

(u− h(v))2

τ
+ (εC2 − τC3)(u2

x + v2
x) ≤ εpxx(u, v) (2.7)
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for a positive constant C3 depending on the bounds of second derivatives of
p(u, v).

Since τ = o(ε) as ε → 0, 2τC3 ≤ εC2 if ε is sufficiently small. Let K ⊂
R × R+ be an arbitrary compact set. Choose φ ∈ C∞0 (R × R+) such that
φK = 1, 0 ≤ φ ≤ 1 and write S = suppφ. Then, multiplying (2.7) by φ and
integrating by parts over R×R+, we get

∫ ∞

0

∫ ∞

−∞

C2

2
ε(u2

x + v2
x)φ +

(u− h(v))2

τ
φdxdt

≤
∫ ∞

0

∫ ∞

−∞
pφt + qφx + εpφxxdxdt ≤ M(φ),

that is, εu2
x, εu2

x and (u−h(v))2

τ are bounded in L1
loc.

Next, we verify the compactness of η(v)t + q(v)x in H−1 for any entropy-
entropy flux pair (η(v), q(v)) of the scalar equation

vt + (h(v)v)x = 0. (2.8)

We rewrite the second equation in (1.1) as follows:

vt + (h(v)v)x = εvxx + ((h(v)v)− (uv))x. (2.9)

Let (η(v), q(v)) be any entropy-entropy flux pair of (2.8). Then, multiplying
(2.9) by η′(v), we have

η(v)t + q(v)x = −η′(v)((uv)− (h(v)v))x + εη′(v)vxx

= −(η′(v)v(u− h(v)))x + εη(v)xx

+vη′′(v)(u− h(v))vx − η′′(v)v2
x.

(2.10)

In view of the boundedness of ε(uε
x)2, ε(uε

x)2 and (uε−h(vε))2

τ in L1
loc, we obtain

∫

Ω

|vη′′(v)(u− h(v)vx|dxdt ≤ c

(∫

Ω

(u− h(v))2

τ
dxdt

) 1
2

(∫

Ω

τv2
xdxdt

) 1
2

→ 0,

∣∣∣∣
∫

Ω

(η′(v)v(u− h(v)))xΦdxdt

∣∣∣∣ =
∣∣∣∣
∫

Ω

η′(v)v(u− h(v))Φxdxdt

∣∣∣∣

≤ c

(∫

Ω

τΦ2
xdxdt

) 1
2

(∫

Ω

(u− h(v))2

τ
dxdt

) 1
2

→ 0;

and ∣∣∣∣
∫

Ω

(εη(v)xx)Φdxdt

∣∣∣∣ =
∣∣∣∣
∫

Ω

(ε
1
2 η′(v)vx)(ε

1
2 Φx)dxdt

∣∣∣∣

≤ c

(∫

Ω

εv2
x)

1
2 (

∫

Ω

εΦ2
x

) 1
2

→ 0

as ε → 0, where Ω ⊂ R × R+ is any bounded open set and Φ ∈ H1
0 (R ×

R+). Moreover, since εη′′v2
x is bounded in L1

loc, the right-hand side of (2.10)
is compact in W−1,q for a constant q ∈ (1, 2). Noticing that the left-hand
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side of (2.10) is bounded in W−1,∞, we have from the Murat lemma [5] that
η(vε)t + q(vε)x is compact in H−1

loc with respect to the viscosity solution vε.

Finally, we use the compactness framework [4] about the scalar equation to
show that vε converge to the weak solution v of (2.8) almost everywhere. Let
(η1(θ), q1(θ)) = (θ−k, g(θ)−g(k)), (η2(θ), q2(θ)) = (g(θ)−g(k),

∫ θ

k
(g′(s))2ds),

where k is an arbitrary constant, g(θ) = θh(θ). Then using the Tartar-Murat
Lemma(see[5-7]), we have

η1(vε)q2(vε)− η2(vε)q1(vε) = η1(vε) q2(vε)− η2(vε) q1(vε). (2.11)

Here and below we use the notation η(vε) = w? − lim η(vε), q(vε) = w? −
lim q(vε).

By simple calculations, we have from the equality (2.11)

(vε − v)
∫ vε

v

(g′(s))2ds− (g(vε)− g(v))2 + (g(vε)− g(v))2 = 0. (2.12)

Since both terms in the left-hand side of (2.12) are nonnegative, we get g(v) =
g(vε) and

(vε − v)
∫ vε

v

(g′(s))2ds− (g(vε)− g(v))2 = 0. (2.13)

Thus for any bounded open set Ω ⊂ R×R+, we have

lim
ε→0

∫

Ω

(vε − v)
∫ vε

v

(g′(s))2ds− (g(vε)− g(v))2dxdt = 0

and hence

lim
ε→0

∫

Ω(|vε−v|>α)

(vε − v)
∫ vε

v

(g′(s))2ds− (g(vε)− g(v))2dxdt = 0.

Since
d

dθ
((θ − v)

∫ θ

v

(g′(s))2ds− (θ)− g(v))2 =
∫ θ

v

(g′(θ)− g′(s))2ds

and if g′′(v) 6= 0, a.e., then
∫

Ω(vε−v>α)

(vε−v)
∫ vε

v

(g′(s))2ds−(g(vε)−g(v))2dxdt ≥ Cαmeas(Ω(vε−v > α))

and
∫

Ω(vε−v<−α)

(vε − v)
∫ vε

v

(g′(s))2ds− (g(vε)− g(v))2dxdt

≥ Cαmeas(Ω(vε − v < −α))

for a suitable positive constant Cα, which is independent of ε. Therefore for
any given α > 0, we have

lim
ε→0

meas(Ω(|vε − v| > α)) = 0,
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i.e., vε converge in measure to v which satisfies E2. This implies the pointwise
convergence of a subsequence (still denoted by) vε. Because (uε−h(vε))2

τ ∈ L1
loc,

we obtain that for any compact set K ⊂ R×R+,∫ ∫

K

(uε − h(vε))2dxdt → 0, as ε → 0,

which implies that there is a subsequence uε converging to u = h(v) almost
everywhere. So we end the proof of the theorem. ¤X

3. The Le Roux System with Relaxation

Adding a relaxation term to the Le Roux system, we get{
ut + (u2 + v)x + u−h(v)

τ = εuxx,
vt + (uv)x = εvxx.

(3.1)

By simple calculations, the two eigenvalues of system (3.1) are

λ1 =
3u

2
− D

2
, λ2 =

3u

2
+

D

2
and the two Riemann invariants are

W (u, v) = u + D, Z(u, v) = u−D.

Here and below D =
√

u2 + 4v.
The main result in this section is given as follows:

Theorem 3.1. Let τ = o(ε) as ε → 0, h(v) ∈ C2(R) and meas{v : g′′(v) =
0} = 0, where g(v) = vh(v). Suppose that there exists a region

Σ2 = {(u, v) : W (u, v) ≤ N, Z(u, v) ≥ −L, v ≥ 0}
for some N, L > 0 such that the curve u = h(v) and the initial data (u0(x), v0(x)
+ε) are inside the region Σ2, and u = h(v) passes (0, h(0)) and the intersection
(v̄, ū) of the curves w = N and z = −L (see Figure 2). Then, the solutions

(uε, vε) = (uε,τ(ε), vε,τ(ε)) of the Cauchy problem (1.3)-(1.4) satisfying

|uε(x, t)| ≤ M, |vε(x, t)| ≤ M, (x, t) ∈ R×R+,
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where M is independent of ε. Moreover, there exists a subsequence (still labeled)
(uε, vε) converging strongly to the functions (u, v) as ε → 0, which are the
equilibrium states uniquely determined by (E1)− (E2) :

(E1) u(x, t) = h(v(x, t)), for almost all (x, t) ∈ R×R+;
(E2) v(x, t) is the L∞ entropy solution of the Cauchy problem

vt + (vh(v))x = 0, v(x, 0) = v0(x).

To prove the theorem, we need the following lemma.

Lemma 3.1. Let (uε, vε) ∈ C∞(R× (0, T ]) be the local solution of the Cauchy
problem (1.3)-(1.4). Then vε(x, t) > 0, (x, t) ∈ R× (0, T ].

Proof. We rewrite the second equation in system (1.3) as

wt + uwx + uxu = ε(wxx + w2
x), (3.2)

where w = log v. Then

wt = εwxx + ε(wx − u

2ε
)2 − ux − u2

4ε
.

The solution w of (3.2) with initial data w0(x) = log(v0(x) + ε) can be repre-
sented by a Green function Gε(x− y, t) = 1√

4πεt
exp {− (x−y)2

4εt } :

w =
∫∞
−∞Gε(x− y, t)w0(y)dy

+
∫ t

0

∫∞
−∞[ε(wx − u

2ε )2 − ux − u2

4ε ]Gε(x− y, t− s)dyds.
(3.3)

Since
∫ ∞

−∞
Gε(x− ξ, t)dξ = 1,

∫ t

0

∫ +∞

−∞
|Gε

y(x− y, t− s)|dyds = 2

√
t

πε
(t > 0),

it follows from (3.3) that

w ≥ log ε +
∫ t

0

∫∞
−∞(−ux − u2

4ε )G(x− y, t− s)dyds

= log ε +
∫ t

0

∫∞
−∞(uGy(x− y, t− s)− u2

4ε G(x− y, t− s))dyds

≥ log ε− 2K
√

t
πε −K1t ≥ −C(t, δ, ε) > −∞.

Thus vε(x, t) has a positive lower bound c(t, ε). ¤X

Proof of Theorem 3.1. By simple calculation, we have

Wu = 1 +
u

D
,Wv =

2
D

, Wuu =
4v

D3
, Wuv = − 2u

D3
, Wvv = − 4

D3
;

Zu = 1− u

D
, Zv = − 2

D
, Zuu = − 4v

D3
, Zuv =

2u

D3
, Zvv =

4
D3

.

Thus, multiplying system (1.3) by ∇W (u, v), ∇Z(u, v) respectively, we obtain

W (u, v)t + λ2W (u, v)x + (1 +
u

D
)
u− h(v)

τ
= εWxx − ε

D
W (u, v)xZ(u, v)x;
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and

Z(u, v)t + λ1Z(u, v)x + (1− u

D
)
u− h(v)

τ
= εWxx +

ε

D
W (u, v)xZ(u, v)x.

Clearly, on the intersection of ∂Σ2 and the curve W (u, v) = N , (1+ u
D )u−h(v)

τ ≥
0; on the intersection of ∂Σ2 and the curve Z(u, v) = −L, (1− u

D )u−h(v)
τ ≤ 0.

Therefore, by Theorem 4.4 of [1], the region Σ2 is an invariant region and
hence |uε(x, t)| ≤ M, 0 < vε(x, t) ≤ M by Lemma 3.2, where M is a positive
constant depending only on the L∞ norm of the initial data.

Using the same technique as in the proof of Theorem 2.1, we can complete
the rest of the proof for Theorem 3.1. ¤X

We conclude this paper with the following remark.

Remark 3.1. If the relaxation terms in (1.1),(1.3) both are α(u, v)u−h(v)
τ ,

where α(u, v) > 0 is lipchitz continuous, then from the proof of the theorems,
we have the same conclusions.
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