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Nontrivial solitary waves of GKP
equation in multi-dimensional spaces
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Abstract. In this paper, using the Mountain Pass Lemma without (PS) con-
dition due to Ambrosetti and Rabinowitz, we obtain the existence of the non-
trivial solitary waves of Generalized Kadomtsev-Petviashvili equation in multi-
dimensional spaces and for superlinear nonlinear term f(u) which satisfies some
growth condition. By the Pohozaev type variational identity, we obtain the
nonexistence of the nontrivial solitary waves for power function nonlinear case,
i.e. f(u) = up where p ≥ 2(2n − 1)/(2n − 3).
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1. Introduction

In this paper, we shall investigate the existence and nonexistence of the non-
trivial solitary waves of Generalized Kadomtsev-Petviashvili equation in multi-
dimensional spaces

wt + wxxx + (f(w))x = D−1
x ∆yw, (1.1)

where (t, x, y) ∈ R
+ × R × R

n−1, n ≥ 2, D−1
x h(x, y) =

∫ x

−∞
h(s, y)ds and

∆y := ∂2

∂y2

1

+ ∂2

∂y2

2

+ · · · + ∂2

∂y2

n−1

.

Kadomtsev-Petviashvili equation and its generalization appear in many Phy-
sic progress (cf. [3], [4], [5], [6], [7] and the references therein). A solitary wave
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is a solution of the form

w(t, x, y) = u(x − ct, y),

where c > 0 is fixed. Substituting in (1.1), there holds

−cux + uxxx + (f(u))x = D−1
x ∆yu,

or
(

− uxx + D−2
x ∆yu + cu − f(u)

)

x
= 0. (1.2)

In [4] and [5], using constrained minimization, De Bouard and Saut obtained
the existence and nonexistence of solitary waves in the case where power non-
linearities f(u) = up, p = m/n, m, n are relatively prime, n is odd. In Chapter
7 of [7], Willem extended the results of [4] to the case where n = 2, f(u) is a
continuous function satisfying some structure conditions.

In this paper we mainly deal with the case where n ≥ 2 and f(u) is a con-
tinuous function. The rest of this paper is organized as: §2 gives the functional
setting of the problem and some embedding theorems which will be used latter;
§3 deals with the existence of the nontrivial solitary waves. In §4, first we de-
rive a variational identity and then use this identity to prove the nonexistence
of the nontrivial solitary waves.

2. Preliminaries

In order to attack the existence and nonexistence of the nontrivial solitary
waves of problem (1.1) we apply the following functional setting:

Definition 2.1. On Y := {gx | g ∈ D(Rn)}, we define the inner product

(u, v) :=

∫

Rn

[

uxvx + D−1
x ∇yu · D−1

x ∇yv + cuv
]

dV, (2.1)

where ∇y = (
∂

∂y1
, · · · ,

∂

∂yn−1
), dV = dxdy, and the corresponding norm

‖u‖ :=
(

∫

Rn

[

u2
x + |D−1

x ∇yu|2 + cu2
]

dV
)1/2

. (2.2)

A function u : R
n → R belongs to X if there exists {um}+∞

m=1 ⊂ Y such that:

(a) um → u a.e. on R
n;

(b) ‖uj − uk‖ → 0 as j, k → ∞.

Note that the space X with inner product (2.1) and norm (2.2) is a Hilbert
space.

We will show that if estimate

‖u‖Lq(Rn) ≤ C
(

∫

Rn

[

u2
x + |D−1

x ∇yu|2
]

dV
)1/2

(2.3)
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holds for a certain constant C > 0 and all functions u ∈ Y , there is only one

possibility: q = p̄ = 2(2n−1)
2n−3 . In fact, let u ∈ Y, u 6≡ 0, and define for λ > 0 the

rescaled function

uλ(x, y) = u(λx, λ2y), (x, y) ∈ R × R
n−1.

Applying (2.3) to uλ, there holds

‖uλ‖Lq(Rn) ≤ C
(

∫

Rn

[

(uλ)2x + |D−1
x ∇yuλ|

2
]

dV
)1/2

. (2.4)

But simple computation implies
∫

Rn

|uλ|
q dV =

1

λ2n−1

∫

Rn

|u|q dV, (2.5)

∫

Rn

(uλ)2x dV =
1

λ2n−3

∫

Rn

u2
x dV, (2.6)

and
∫

Rn

|D−1
x ∇yuλ|

2 dV =
1

λ2n−3

∫

Rn

|D−1
x ∇yu|2 dV. (2.7)

Inserting these equalities into (2.4), there holds

1

λ(2n−1)/q
‖u‖Lq(Rn) ≤ C

1

λ(2n−3)/2

(

∫

Rn

[

u2
x + |D−1

x ∇yu|2
]

dV
)1/2

.

That is

‖u‖Lq(Rn) ≤ Cλ
2n−1

q
− 2n−3

2

(

∫

Rn

[

u2
x + |D−1

x ∇yu|2
]

dV
)1/2

(2.8)

But then if 2n−1
q − 2n−3

2 6= 0, upon sending λ to either 0 or ∞ in (2.8), we can

obtain a contradiction. Thus the only possibility is that 2n−1
q − 2n−3

2 = 0, i.e,

q = p̄ = 2(2n−1)
2n−3 .

Actually, from the embedding theorems for anisotropic Sobolev spaces(cf.
[2], p. 323), the following lemma asserts that (2.3) holds if and only if q = p̄.

Lemma 2.2. If q = p̄ = 2(2n−1)
2n−3 , there exists a constant C > 0 such that (2.3)

holds for all functions u ∈ X.

From the interpolation theorem and estimate (2.3), there is an embedding
theorem about X as follows:

Lemma 2.3. The following embeddings are continuous:

X ↪→ Lp(Rn), 2 ≤ p ≤ p̄.

Lemma 2.4. The following embeddings are compact:

X ↪→↪→ Lp
loc(R

n), 2 ≤ p < p̄.
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Proof. Suppose that {um}∞m=1 ⊂ X is bounded in norm (2.2). Without loss of
generality, assume that there exists {gm}∞m=1 ⊂ L2

loc(R
n) such that um = ∂xgm.

Let vm = (vm,1, vm,2, · · · , vm,n−1) = ∇ygm ∈ (L2(Rn))n−1.
Multiplying gm by ψ ∈ D(Rn) such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on B(0, R)

and suppψ ⊂ B(0, 2R), we may assume that supp gm ⊂ B(0, 2R). Selecting
if necessary to a subsequence, we may assume that um ⇀ u = ∂xg in X and
replacing gm by gm − g, we may assume that g = 0. Denote by F [u](r, s) the
Fourier transform of u(x, y).

Let

Q−1 = {(r, s) ∈ R
n

∣

∣ |r| ≤ ρ, |si| ≤ ρ2, i = 1, 2, · · · , n − 1},

Q0 = {(r, s) ∈ R
n

∣

∣ |r| > ρ}, Q1 = {(r, s) ∈ R
n

∣

∣ |r| < ρ, |s1| > ρ2},

...

Qi = {(r, s) ∈ R
n

∣

∣ |r| < ρ, |s1| < ρ2, · · · , |si−1| < ρ2, |si| > ρ2},

...

Qn−1 = {(r, s) ∈ R
n

∣

∣ |r| < ρ, |s1| < ρ2, · · · , |sn−2| < ρ2, |sn−1| > ρ2}.

Then R
n =

n−1
⋃

i=−1

Qi and Qi ∩ Qj = ∅, i 6= j.

For ρ > 0, there holds

∫

B(0,2R)

|um|2 dV =

∫

Rn

|F [um]|2 drds =

n−1
∑

i=−1

∫

Qi

∣

∣F [um]
∣

∣

2
drds. (2.9)

It is clear that
∫

Q0

∣

∣F [um]
∣

∣

2
drds =

∫

Q0

1

4π2r2

∣

∣F [∂xum]
∣

∣

2
drds ≤

1

4π2ρ2
|∂xum|22,

and for i = 1, · · · , n − 1, there holds
∫

Qi

∣

∣F [um]
∣

∣

2
dxdy =

∫

Qi

r2

|si|2
∣

∣F [vm,i]
∣

∣

2
drds ≤

1

ρ2
|vm|22.

For any ε > 0, there exists ρ > 0 large enough, such that

n−1
∑

i=0

∫

Qi

∣

∣F [um]
∣

∣

2
drds ≤ ε/2.

Since um ⇀ 0 in L2(Rn), there holds

F [um](r, s) =

∫

B(0,2R)

um(x, y)e−2iπ(xr+y·s) dV → 0, as m → ∞

and
∣

∣F [um](r, s)
∣

∣ ≤ c0|um|2 ≤ c1.
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Lebesgue’s dominated convergence theorem implies that
∫

Q
−1

∣

∣F [um]
∣

∣

2
drds → 0, as m → ∞.

Thus we have proved that um → 0 in L2
loc(R

n). By Lemma 2.3 and interpola-

tion theorem, there holds um → 0 in Lp
loc(R

n) if 2 ≤ p < p̄. ¤X

Lemma 2.5. If {um}+∞
m=1 is bounded in X and if

sup
(x,y)∈Rn

∫

B(x,y;r)

|um|2 dV → 0, as n → ∞. (2.10)

Then um → 0 in Lp(Rn) for 2 < p < p̄.

Proof. Let 2 < s < p̄ and u ∈ X. By Hölder inequality and Lemma 2.3, there
holds

|u|Ls(B(x,y;r)) ≤ |u|1−λ
L2(B(x,y;r))|u|

λ
Lp̄(B(x,y;r))

≤ c0|u|
1−λ
L2(B(x,y;r))

(

∫

B(x,y;r)

[

u2
x + |D−1

x ∇yu|2 + cu2] dV
)

λ
2 ,

(2.11)

where
1

s
=

1 − λ

2
+

λ

p̄
. Choosing s such that

λs

2
= 1, i.e., s =

2(2n + 1)

2n − 1
, there

holds
∫

B(x,y;r)

|u|s dV ≤ cs
0|u|

(1−λ)s
L2(B(x,y;r))

∫

B(x,y;r)

[

u2
x + |D−1

x ∇yu|2 + cu2] dV. (2.12)

Now, covering R
n by balls of radius r in such a way that each point of R

n is
contained in at most 3 balls, then there holds
∫

Rn

|u|s dV ≤ 3cs
0 sup

(x,y)∈Rn

|u|
(1−λ)s
L2(B(x,y;r))

∫

Rn

[

u2
x + |D−1

x ∇yu|2 +cu2] dV. (2.13)

Under assumption (2.10), (2.13) implies um → 0 in Ls(Rn). By Hölder in-

equality and Lemma 2.3, there holds um → 0 in Lp(Rn) for all 2 < p < p̄. ¤X

We recall the following Mountain Pass Lemma without (PS) condition as
our Lemma 2.6 (cf. [1]).

Lemma 2.6 (Mountain Pass Lemma). Suppose X is a Banach space and
E ∈ C1(X,R) satisfies the following geometrical properties:

(1) E(0) = 0, and there exists ρ > 0, such that E
∣

∣

∣

∂Bρ(0)
≥ α > 0;

(2) There exists e ∈ X \ Bρ(0), such that E(e) ≤ 0.

Let Γ be the set of all passes which connects 0 and e, i.e.,

Γ = {g ∈ C([0, 1], E)
∣

∣ g(0) = 0, g(1) = e}, (2.14)

and
c = inf

g∈Γ
max

t∈[0,1]
E(g(t)). (2.15)
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Then c ≥ α and E possesses a (PS)c sequence at level c defined by (2.15), i.e.,
there exists a sequence {um}+∞

m=1 such that E(um) → c and DE(um) → 0 as
m → ∞.

3. Existence of nontrivial solitary waves

The solitary waves of problem (1.1) satisfies:
{

(

− uxx + D−2
x ∆yu + cu − f(u)

)

x
= 0,

u ∈ X,
(3.1)

where c > 0. The weak solutions of (3.1) are the critical points of the functional
E defined on X as

E(u) :=

∫

Rn

(1

2
[u2

x + |D−1
x ∇yu|2 + cu2] − F (u)

)

dV,

where F (u) =

∫ u

0

f(s) ds. Assume:

(f1) f ∈ C0(R, R), f(0) = 0 and for some 2 < p < p̄ = 2(2n−1)
2n−3 , 0 < c0 <

c, c1 > 0, there holds

|f(u)| ≤ c0|u| + c1|u|
p−1;

(f2) There exists v ∈ X such that

f(λv)

λ
→ +∞, as λ → +∞;

(f3) There exists α > 2 such that, for u ∈ R, there holds

αF (u) ≤ uf(u).

By assumption (f1) and Lemma 2.3, E ∈ C1(X, R).

Lemma 3.1. Under assumptions (f1) and (f2), there exists e ∈ X and r > 0
such that ‖e‖ ≥ r and

b := inf
‖u‖=r

E(u) > E(0) = 0 ≥ E(e).

Proof. From (f1), there holds

|F (u)| = |

∫ u

0

f(s) ds| ≤ c0
|u|2

2
+

c1

p
|u|p.

Then from the definition of the norm (2.2) in X, there holds

E(u) ≥
‖u‖2

2
−

∫

Rn

(c0

2
|u|2 +

c1

p
|u|p

)

dV ≥ (
1

2
−

c0

2c
)‖u‖2 − c1|u|

p
p.

By Lemma 2.3, there exists r > 0 such that

b := inf
‖u‖=r

E(u) > E(0) = 0.
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It follows from assumption (f2) that

E(λv) → −∞, as λ → +∞.

Hence there exists λ0 > 0 such that e = λ0v satisfies ‖e‖ > r, E(e) ≤ 0. ¤X

Define

d := inf
γ∈Γ

max
t∈[0,1]

E(γ(t)),

Γ := {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = e}.

Clearly, d ≥ b > 0. Applying Lemma 2.6, there exists a (PS)c sequence
{um}+∞

m=1 at level c = d such that

E(um) → d and DE(um) → 0 as m → ∞.

Theorem 3.2. Under assumptions (f1)–(f3), problem (3.1) possesses a non-
trivial solution.

Proof. 1. Boundness of (PS)c sequence.
Let {um}+∞

m=1 be the sequence derived by Lemma 2.6, i.e., E(um) → d and
DE(um) → 0 as m → ∞. As m → ∞, from assumption (f3), there holds

d + o(1) + o(1)‖um‖ ≥ E(um) − α−1(DE(um), um)

= (1
2 − 1

α )‖um‖2 +

∫

Rn

[

α−1umf(um) − F (um)
]

dV

≥ ( 1
2 − 1

α )‖um‖2.

Hence {um}+∞
m=1 is bounded in X.

2. δ := lim
m→∞

sup
(x,y)∈Rn

∫

B(x,y; 1)

|um|2 dV 6= 0.

Otherwise, by Lemma 2.5, there holds um → 0 in Ls(Rn) for 2 < s <
2(2n−1)
2n−3 . It follows that

0 < d = E(um) − 1
2 (DE(um), um) + o(1)

=

∫

Rn

[
1

2
umf(um) − F (um)] dV + o(1) = 0(1),

which is a contradiction.
3. Existence of a nontrivial solution of problem (3.1).

Selecting if necessary a subsequence, we can assume that there existes a
sequence (xm, ym) ⊂ Rn such that

∫

B(xm,ym;1)

|um|2 dV > δ/2.

Define vm(x, y) := um(x + xm, y + ym) so that
∫

B(0;1)

|vm|2 dV > δ/2.
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Selecting if necessary a subsequence, we can assume that there existes a v ∈ X
such that

vm ⇀ v in X, as m → ∞.

By Lemma 2.4, vm → v in L2
loc(R

n) and so v 6= 0, and for every w ∈ X, there
holds

∫

Rn

(f(vm) − f(v))w dV =

∫

B(0,R)

(f(vm) − f(v))w dV

+

∫

Rn\B(0,R)

(f(vm) − f(v))w dV.

Since w ∈ X, then w ∈ Lp(Rn) and {vm} is bounded in X, hence {vm} is
bounded in Lp(Rn), thus for any ε > 0, there exists R = R(ε) > 0 large
enough and independent on m such that

∫

Rn\B(0,R)

(f(vm) − f(v))w dV < ε, ∀m

On the other hand, for this R > 0, from Lemma 2.4, there holds
∫

B(0,R)

(f(vm) − f(v))w dV → 0, as m → ∞.

Thus, there holds
∫

Rn

f(vm)w dV →

∫

Rn

f(v)w dV, as m → ∞,

which implies
(DE(v), w) = lim

m→∞
(DE(vm), w) = 0

Hence DE(v) = 0 and v is a nontrivial solution of problem (3.1). ¤X

4. Nonexistence of nontrivial solitary waves

In this section, we derive a Pohozaev type variational identity of the solitary
wave of problem:

(

− uxx + D−2
x ∆yu − g(u)

)

x
= 0,

where g ∈ C1(R, R) such that g(0) = 0 and define G(u) :=

∫ u

0

g(s) ds.

First, we give a formal argument explaining the variational identity. For any
λ > 0, define a transformation T (λ) : X → X as

T (λ)u(x, y) := u(x/λ, y/λ2), (x, y) ∈ R × R
n−1.

Then T (1) = idX . If u ∈ X is a critical point of functional E(u), we conjecture
that

∂

∂λ

∣

∣

∣

∣

∣

λ=1

E(T (λ)u) = 0. (4.1)
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A simple computation shows that

E(T (λ)u) =
λ2n−3

2

∫

Rn

(

u2
x + |D−1

x ∇yu|2
)

dV − λ2n−1

∫

Rn

G(u) dV. (4.2)

and

∂

∂λ

∣

∣

λ=1
E(T (λ)u) =

2n − 3

2

∫

Rn

(

u2
x + |D−1

x ∇yu|2
)

dV − (2n − 1)

∫

Rn

G(u) dV,
(4.3)

which implies that

∫

Rn

(

u2
x + |D−1

x ∇yu|2
)

dV =
2(2n − 1)

2n − 3

∫

Rn

G(u) dV. (4.4)

In fact, we have the following Theorem:

Theorem 4.1. Any solution of


















(

− uxx + D−2
x ∆yu − g(u)

)

x
= 0,

u ∈ X ∩ H2
loc(R

n),

G(u), g(u)u ∈ L1(Rn), g(u)D−1
x ∇yu ∈ (L1(Rn))n−1,

(4.5)

satisfies (4.4).

Proof. 1. Let

J(u) :=

∫

Rn

(1

2
[u2

x + |D−1
x ∇yu|2] − G(u)

)

dV.

Then a weak solution of problem (4.5) is a critical point of operator J . Let
ψ ∈ D(R) be such that 0 ≤ ψ ≤ 1, ψ(r) = 1 for r = 1 and ψ(r) = 0 for
r ≥ 2, |ψ′(r)| ≤ 2, |ψ′′(r)| ≤ 4. Define a sequence of functions on R

n as:

ψm(x, y) := ψ(
x2 + |y|2

m2
), ∀(x, y) ∈ R

n.

2. For any solution of problem (4.5), there holds

3

2

∫

Rn

u2
x dV −

1

2

∫

Rn

|D−1
x ∇yu|2 dV +

∫

Rn

(

G(u) − g(u)u
)

dV = 0. (4.6)

For every integer m, there holds
∫

Rn

(

− uxx + D−2
x ∆yu − g(u)

)(

ψmxu
)

x
dV = 0. (4.7)
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Integrating by parts, there holds

−

∫

Rn

uxx

(

ψmxu
)

x
dV = −

∫

Rn

uxx

(

ψm,xxu + ψmu + ψmxux

)

dV

=

∫

Rn

[

3

2
u2

x(ψm,xx + ψm) + 2ψm,xuux + ψm,xxxuux

]

dV.

Lebesgue dominated convergence theorem implies that, as m → ∞, there holds

−

∫

Rn

uxx

(

ψmxu
)

x
dV =

3

2

∫

Rn

u2
x dV + o(1). (4.8)

Similarly, there hold
∫

Rn

D−2
x ∆yu

(

ψmxu
)

x
dV

= −

∫

Rn

(

D−1
x ∆yu

)(

ψmxu
)

dV

= −

∫

Rn

n−1
∑

i=1

∂

∂yi

(

D−1
x uyi

)(

ψmxu
)

dV

=

∫

Rn

n−1
∑

i=1

D−1
x uyi

∂

∂yi

(

ψmxu
)

dV

=

∫

Rn

(

n−1
∑

i=1

D−1
x uyi

ψm,yi
xu +

n−1
∑

i=1

D−1
x uyi

ψmx
∂

∂x
D−1

x uyi

)

dV

=

∫

Rn

(

n−1
∑

i=1

D−1
x uyi

ψm,yi
xu −

1

2

n−1
∑

i=1

|D−1
x uyi

|2(ψm,xx + ψm)
)

dV

= −
1

2

∫

Rn

|D−1
x ∇yu|2 dV + o(1),

(4.9)

and

−

∫

Rn

g(u)
(

ψmxu
)

x
dV

= −

∫

Rn

g(u)
(

ψm,xxu + ψmu + ψmxux

)

dV

= −

∫

Rn

(

g(u)ψmu + g(u)ψm,xxu +
dG(u)

dx
ψmx

)

dV

=

∫

Rn

(G(u) − g(u)u) dV + o(1).

(4.10)

Substituting (4.8)–(4.10) into (4.7) yields (4.6)
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3. On the other hand, since u is a weak solution of problem (4.5), i.e., DJ(u) =
0, then from (DJ(u), u) = 0, there holds

∫

Rn

(

u2
x + |D−1

x ∇yu|2
)

dV =

∫

Rn

g(u)u dV. (4.11)

4. For any solution of problem (4.5), there holds

−
n − 1

2

∫

Rn

u2
x dV −

n − 3

2

∫

Rn

|D−1
x ∇yu|2 dV +(n−1)

∫

Rn

G(u) dV = 0. (4.12)

For every integer m, there also holds

∫

Rn

(

− uxx + D−2
x ∆yu − g(u)

)(

ψmy · D−1
x ∇yu

)

x
dV = 0. (4.13)

Integrating by parts and applying Lebesgue dominated convergence theorem
imply that, as m → ∞, there hold

−

∫

Rn

uxx

(

ψmy · D−1
x ∇yu

)

x
dV

= −

∫

Rn

uxx

(

ψm,xy · D−1
x ∇yu + ψmy · ∇yu

)

dV

=

∫

Rn

ux

(

ψm,xy · D−1
x ∇yu + ψmy · ∇yu

)

x
dV

=

∫

Rn

ux

(

ψm,xxy · D−1
x ∇yu + 2ψm,xy · ∇yu + ψmy · ∇yux

)

dV

= −
n − 1

2

∫

Rn

u2
x dV + o(1),

(4.14)

∫

Rn

(

D−2
x ∆yu

)(

ψmy · D−1
x ∇yu

)

x
dV

= −

∫

Rn

(

D−1
x ∆yu

)(

ψmy · D−1
x ∇yu

)

dV

= −

∫

Rn

(

n−1
∑

i=1

∂

∂yi
(D−1

x uyi
)
)(

ψmy · D−1
x ∇yu

)

dV

=

∫

Rn

n−1
∑

i=1

(D−1
x uyi

)
(

ψmy · D−1
x ∇yu

)

yi
dV

= −
n − 3

2

∫

Rn

|D−1
x ∇yu|2 dV + o(1)

(4.15)
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and

−

∫

Rn

g(u)
(

ψmy · D−1
x ∇yu

)

x
dV

= −

∫

Rn

g(u)
(

ψm,xy · D−1
x ∇yu + ψmy · ∇yu

)

dV

= −

∫

Rn

(

g(u)ψm,xy · D−1
x ∇yu +

n−1
∑

i=1

dG(u)

dyi
yiψm

)

dV

= (n − 1)

∫

Rn

G(u) dV + o(1).

(4.16)

Thus, from equations (4.13)–(4.16) (4.12) holds. Equations (4.6), (4.11) and

(4.12) imply equation (4.4). ¤X

Theorem 4.2. (Nonexistence of nontrivial solitary wave) If g ∈ C1(R; R)
satisfies g(0) = 0 and

2(2n − 1)

2n − 3
G(u) − g(u)u < 0, ∀u 6= 0, (4.17)

then 0 is the only solution of problem (4.5).

Proof. If u 6≡ 0 is a solution of problem (4.5), then (4.4)-(4.11), there holds
∫

Rn

[2(2n − 1)

2n − 3
G(u) − g(u)u

]

dV = 0

which contradicts (4.17). ¤X

Corollary 4.3. Let c > 0, and p ≥ 2(2n−1)
2n−3 , then 0 is the only solution of

problem:


















(

− uxx + D−2
x ∆yu + cu − |u|p−2u

)

x
= 0,

u ∈ X ∩ H2
loc(R

n),

|u|p−2uD−1
x ∇yu ∈ (L1(Rn))n−1.

(4.18)

Proof. Since g(u) = |u|p−2u− cu, then G(u) =
1

p
|u|p −

c

2
u2, thus (4.17) holds.

¤X
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Bogotá Colombia

e-mail: wenyuanxbj@yahoo.com

e-mail: bjxuan@matematicas.unal.edu.co




