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A remark on exponential dichotomies

Raúl Naulin∗

Universidad de Oriente, Cumaná, Venezuela

Abstract. A proof of the existence of an exponential dichotomy for the lin-
ear system x′(t) = A(t)x(t) is given, based on the admissibility of the pair
(B(∞),BA(∞)), where B(∞) is the space of continuous functions on the semi-
axis J = [0,∞), values in Cn and having a limit as t → ∞, and BA(∞) is the
space of bounded functions f on J such that A−1f ∈ B(∞).
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1. Introduction

In this paper we consider the system of differential equations

x′(t) = A(t)x(t) + f(t), t ∈ J := [0,∞), (1)

where A(t) is a continuous matrix function with complex entries. The function
f(t) belongs to a functional space we will define in the course of the paper.

Definition 1. Let C and D be function spaces. We say that the pair (C, D) is
admissible for equation (1) if for each f in the space D there exists a solution
of (1) belonging to C.
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Admissible pairs are important in the theory of differential equations (see [1],
[2]), as they define the dichotomic behavior of the linear system

x′(t) = A(t)x(t). (2)

Definition 2. We say that equation (2) has an exponential dichotomy on J , if
there exist a fundamental matrix Φ of (2), a projection matrix P (i.e., PP = P )
and positive constants K, α such that

|Φ(t)PΦ−1(s)| ≤ Keα(s− t), t ≥ s ≥ 0,

|Φ(t)(I − P )Φ−1(s)| ≤ Keα(t−s), s ≥ t ≥ 0.
(3)

In this paper, we are concerned with the following classical result [1]:
Theorem A. Equation (2) has an exponential dichotomy on J if for any
bounded and continuous function f(t) on J , equation (1) has at least one
bounded solution.

The aim of this paper is the characterization of exponential dichotomy by
means of the admissibility of a pair of spaces of functions with limit at infinity.

2. Preliminaries

We will make use of the following spaces

B := {f : J → Cn : f is bounded and continuous} ,

B(∞) :=
{

f ∈ B : lim
t→∞

f(t) exists
}

.

We call B(∞) the space of functions with limit at infinity. These spaces, en-
dowed with the norm |f |∞ = sup{|f(t)| : t ∈ J}, become Banach spaces.
Furthermore, if F : J → Cn×n and F (t) is invertible for each t ∈ J , we define

BF (∞) :=
{
f ∈ B : F−1f ∈ B(∞)

}
.

To this space we give the norm |f |F = |F−1f |∞. Provided that F is bounded on
J , also BF (∞) is a Banach space. If equation (2) has an exponential dichotomy,
then for any f ∈ B, equation (1) has the following bounded solution:

xf (t) =
∫ t

0

Φ(t)PΦ(s)f(s) ds−
∫ ∞

t

Φ(t)(I − P )Φ−1(s)f(s) ds.

Let us introduce the following Green function:

G(t, s) =

{
Φ(t)PΦ(s), t ≥ s,

−Φ(t)(I − P )Φ−1(s), s > t.
(4)
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By means of this function we can write the solution xf in the form:

xf (t) =
∫

J

G(t, s)f(s)ds. (5)

If A(t) is a bounded function, we will use the following identity:

Φ(t)PΦ−1(0)− I =
∫

J

G(t, s)A(s)ds. (6)

3. The main result

Theorem 1. If the function A(t) is bounded on J and the matrix A(t) is
invertible for each t ∈ J , then the following assertions are equivalent:

(A) The pair (B, B) is admissible.
(B) The pair (B(∞), BA(∞)) is admissible.
(C) Equation (2) has an exponential dichotomy on J .

Proof.
(A) ⇔ (C). This follows from Theorem A. We observe that this equivalence
holds without the requirements of invertibility of the matrices A(t) or the
boundedness of the function A(t).
(A) ⇒ (B). Let f ∈ BA(∞). Since f ∈ BA, formula (5) makes sense. There-
fore xf defines a solution of (1) belonging to B(∞). We have to prove that
limt→∞ xf exists. Using (6) we may write

xf (t) = −A−1(t)f(t) + Φ(t)PΦ−1(0)A−1(t)f(t) + I1(t) + I2(t), (7)

where

I1(t) :=
∫ t

0

G(t, s)A(s)
[
A−1(s)f(s)−A−1(t)f(t)

]
ds,

I2(t) :=
∫ ∞

t

G(t, s)A(s)
[
A−1(s)f(s)−A−1(t)f(t)

]
ds.

Taking into account (3), we can estimate Ii, i = 1, 2. We have

|I1(t)| ≤
∫ t

0

|Φ(t)PΦ−1(s)||A(s)||A−1(s)f(s)−A−1(t)f(t)| ds

≤
∫ t/2

0

· · ·+
∫ t

t/2

· · ·

≤ 2K|A|∞α−1e−
α
2 t|A−1f |∞

+ α−1K sup
s∈[t/2, t]

|A−1(s)f(s)−A−1(t)f(t)|

(8)
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and

|I2(t)| ≤ |A|∞
∫ ∞

t

eα(t−s)|A−1(s)f(s)−A−1(t)f(t)|ds

≤ 2α−1|A|∞K sup
s∈[t, ∞)

|A−1(s)f(s)−A−1(t)f(t)|.
(9)

Since f ∈ BA(∞), it is clear from (8) and (9) that limt→∞ Ii(t) = 0. From
(7) we obtain that limt→∞ xf (t) = −(A−1f)(∞). Therefore, the function pair
(B(∞),BA(∞)) is admissible.

(B) ⇒ (A). Let S be the subspace of Cn of values of initial conditions of
solutions of equation (2) belonging to B(∞), and let U be a supplementary
subspace of S. We have the direct sum Cn = S

⊕
U . Then it is easy to prove

that equation (1) has, for any f ∈ BA(∞), a unique solution, which we denote
by T (f), that belongs to B(∞) and is such that the initial condition satisfies
T (f)(0) ∈ U . It is also easy to verify that this correspondence is linear. Thus,
we define this way a linear map T : BA(∞) → B(∞) such that T (f) satisfies
(1) and T (f)(0) ∈ U . This map has a closed graph (the proof of this assertion
is exactly the same as that of Proposition 3.4 in [1]). Therefore, it is bounded,
i.e., there exists a constant M , such that

|T (f)| ≤ M |f |A. (10)

Let f ∈ B and for each n = 1, 2, ..., let θn(t) be a continuous function such that
|θn|∞ = 1, θn(t) = 1 if t ∈ [0, n] and θn(t) = 0 if t ≥ n + 1. Let {fn} be the
sequence in BA defined by

fn(t) = θn(t)f(t). (11)

For each function fn, we consider the solution xn = T (fn) of the equation

x′(t) = A(t)x(t) + fn(t). (12)

According to (10), for any index n we have

|xn|∞ ≤ M |fn|A ≤ M |f |A. (13)

From (12) and (13) we obtain that the sequences {xn} and {x′n} are bounded
on any compact subinterval of J . From the Ascoli-Arzelá theorem, there exists
then a subsequence {x1

n} of {xn} uniformly convergent on [0, 1] to a continuous
function u1 on the interval [0, 1]. By the same argument, there exists a subse-
quence {x2

n} of {x1
n} converging uniformly on the interval [0, 2] to a continuous

function u2 such that u1 = u2 on [0, 1]. Carrying out this process iteratively,
we obtain, for any natural number N , a subsequence {xN

n } of {xN−1
n }, converg-

ing uniformly to a continuous function uN on the interval [0, N ], and such that
uN = uN−1 on [0, N−1]. Defining u(t) = uN (t) if t ∈ [0, N ], we obtain that the
diagonal sequence {xn

n} converges uniformly to u on each compact subinterval
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of J . From (13), we obtain that u ∈ B. From (11) and (12) it follows that u
satisfies u′ = A(t)u + f . This means that u is a solution of (1) in the space B.
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[2] J. L. Massera, J. J. Schäffer, Linear Differential Equations and Function Spaces, Aca-
demic Press, 1966.

Departamento de Matemáticas
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