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Abstract

This paper presents a frequentist comparison of the performance of con-

fidence and credibility intervals for the difference of two proportions from

two independent samples. The comparison is carried out considering three

frequentist criteria. It was found that the intervals with the best perfor-

mance, in terms of coverage probability, are Bayesians; in terms of expected

length and variance of the length, the Newcombe interval shows the best

performance. As a final remark, it was found that traditional intervals such

as the Wald and adjusted Wald have a poor performance.
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proportions..

Resumen

Este artículo presenta una comparación del comportamiento de interva-

los de confianza frecuentistas y de credibilidad bayesianos para la diferencia

de dos proporciones provenientes de muestras aleatorias independientes. La

comparación se lleva cabo considerando tres criterios frecuentistas con los

cuales se concluyó que el mejor comportamiento, en términos de la proba-

bilidad de cobertura, lo tienen los intervalos bayesianos, y en términos de la

longitud esperada y varianza de la longitud el mejor comportamiento está

dado por el intervalo frecuentista de Newcombe. Como resultado de esta in-

vestigación se encontró que los intervalos frecuentistas más populares como

Wald y Wald ajustado tienen un comportamiento deficiente.
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1. Background

A common problem in practical statistics is estimatig the difference of two
proportions by means of interval estimation. This topic is especially important
in clinical trials where it is necessary to investigate cure rates of two drugs or
treatments. The theoretical background of this research is as follows: suppose
that X1, . . . , Xn1

and Y1, . . . , Yn2
are two independent samples such that Xi ∼

Bernoulli(p1) and Yj ∼ Bernoulli(p2), with i = 1, . . . , n1 and j = 1, . . . , n2.
It is necessary to construct a confidence interval or a credibility interval for the
difference of the proportions p1 − p2.

The most popular method for estimating p1−p2 by means of frequentist confi-
dence interval is the Wald interval, which is presented in most introductory statis-
tics textbooks in spite of its poor performance. Many modifications have been
made to the Wald interval in order to improve it. One of them is the adjusted
Wald interval obtained by widening the Wald interval to increase the coverage
probability. This improvement is especially meaningful when the sample sizes are
small. Another important interval is the score interval (Wilson 1927), obtained
by inverting the score test statistics. This interval was first obtained for one
proportion, and thereafter was to be extended to deal with the difference of two
proportions. However, in that case, the interval lacks a closed form (Pan 2002)
and must be computed by numerical approximations. Agresti & Caffo (2000)
analyzed the score interval, and derived the Adding-4 method: add 2 successes
and 2 failures to sample observation. A considerable number of authors agree
that Agresti and Caffo method has a very good performance (Pan 2002, Correa &
Sierra 2003, Agresti et al. 2008). Another interval obtained by modifying the score
method is the Newcombe interval (Newcombe 1998a, 1998b), and it seems to have
a similar performance to the Agresti and Caffo interval (Correa & Sierra 2003).

In the Bayesian approach, Pham-Gia & Turkkan (1993) used the hypergeo-
metric Appell function and derived the posterior distribution of p1−p2 when beta
priors are used for each proportion. Given the exact posterior distribution, an
exact Bayesian credibility interval for p1 − p2 can be found. However the compu-
tational procedures are somewhat tedious, therefore new computational methods
such as the Markov Chain Monte Carlo (MCMC), can be used to make it easier
to evaluate posterior distributions for p1 − p2, as Agresti & Min (2005) argued.

In the literature, many comparisons between confidence intervals have been
done (Newcombe 1998a, Newcombe 1998b, Agresti & Caffo 2000, Pan 2002, Correa
& Sierra 2003). The aim of this research is to take into account Bayesian credibility
intervals jointly with frequentist confidence intervals. After a brief introduction,
Section 2 presents some frequentist and Bayesian intervals for p1 −p2. Traditional
confidence intervals such as the Wald and adjusted Wald are considered, as well
as Bayesian credibility intervals with two noninformative priors. Section 3 deals
with the comparison criteria for the considered intervals: the coverage probability,
the expected length, and the variance of the length are used in order to evaluate
the performance of the intervals. Section 4 presents results for the performance
of the intervals with varying sample sizes, varying values of a single proportion
and, finally, the difference of the two proportions. Other scenarios were analyzed,

Revista Colombiana de Estadística 33 (2010) 63–88



Confidence and Credibility Intervals for the Difference of Two Proportions 65

but all of them yield similar conclusions. Section 5 provides a survey of other
intervals and their performance, and finally Section 6 gives some conclusions and
recommendations.

2. Some intervals

In this section we introduce some confidence and credibility intervals that are
considered and lead the research through out this paper. We denote p̂1 as the

maximum likelihood estimator of p1 defined as
∑n1

i=1

Xi

n1
and analogously for p̂2.

2.1. Frequentist intervals

The Wald interval is based on the normal approximation to the distribution of
p̂1 − p̂2, when the sample sizes are large, by considering that

E(p̂1 − p̂2) = p1 − p2

V ar(p̂1 − p̂2) =
p1(1 − p1)

n1
+
p2(1 − p2)

n2

By the the central limit theorem a (1 − α)100% interval for p1 − p2 is clearly
defined by (Llow, Lupp), where

Llow = p̂1 − p̂2 − z1−α/2

√
p̂1(1 − p̂1)

n1
+
p̂2(1 − p̂2)

n2
(1)

and

Lupp = p̂1 − p̂2 + z1−α/2

√
p̂1(1 − p̂1)

n1
+
p̂2(1 − p̂2)

n2
(2)

The computation of this interval is very simple, and it is presented in most of
the statistical inference textbooks. Despite the fact of its popularity, many authors
have shown that the performance of this interval is quite poor (Ghosh 1979, Vollset
1993, Newcombe 1998a, Newcombe 1998b). Moreover, when the sample sizes are
large, the Wald interval still performs poorly (Brown et al. 2001).

Considering that the Wald interval uses a continuous distribution to approx-
imate a discrete distribution, an alternative to for improving the performance of
the Wald interval is to incorporate the continuity correction factor by adding a
constant term to both the lower and upper limits. The resulting limits of the
adjusted Wald interval are:

Llow = p̂1 − p̂2 − z1−α/2

√
p̂1(1 − p̂1)

n1
+
p̂2(1 − p̂2)

n2
−
n1 + n2

2n1n2
(3)
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and

Lupp = p̂1 − p̂2 + z1−α/2

√
p̂1(1 − p̂1)

n1
+
p̂2(1 − p̂2)

n2
+
n1 + n2

2n1n2
(4)

The adjusted Wald interval, by definition, has a wider length than the Wald
interval. This leads to an increasing the coverage probability, but at the same
time, widening the interval leads to a loss of precision.

Agresti & Caffo (2000) proposed to combine the Wald interval and the score
interval, due to Wilson (1927), by adding pseudo observations in order to increase
the coverage probability. They found that the optimum number of pseudo obser-
vations to add is four: two successes and two failures, and they showed that the
performance of the resulting Agresti-Caffo interval is surprisingly high even for
small sample sizes. The limits of Agresti-Caffo interval are:

Llow = p̃1 − p̃2 − z1−α/2
√
V (p̃1, ñ1) + V (p̃2, ñ2) (5)

and

Lupp = p̃1 − p̃2 + z1−α/2
√
V (p̃1, ñ1) + V (p̃2, ñ2) (6)

with

V (p̃i, ñi) =
1

ñi

[
p̃i − p̃i

ni
ñi

+
1

2ñi

]

where ñi = ni + 2 for i = 1, 2, p̃1 =
Pn1

j=1
Xj+1

en1

and p̃2 =
Pn2

j=1
Yj+1

en2

.

Another confidence interval obtained by combining the Wald and the score
interval is the Newcombe interval. To compute this interval, the following equation
for each pi should first be solved

|p̂i − pi| = z1−α/2

√
pi(1 − pi)

ni

Let’s denote the solutions by li and ui with li < ui, i = 1, 2. The limits of the
Newcombe interval are

Llow = p̂1 − p̂2 − z1−α/2

√
l1(1 − l1)

n1
+
u2(1 − u2)

n2
(7)

and

Lupp = p̂1 − p̂2 + z1−α/2

√
u1(1 − u1)

n1
+
l2(1 − l2)

n2
(8)

Newcombe found that this interval has good coverage and average length proper-
ties.
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2.2. Bayesian intervals

Bayesian inference is the process of fitting a probability model to a set of data
and summarizing the result by a probability distribution on the parameters of
the model and on unobserved quantities, such as predictions for new observations
(Gelman et al. 2004). This process can be carried out by using Markov Chain
Monte Carlo methods that simulate values from the posterior distribution of the
parameter of interest1. Thus, we appeal to the Gibbs sampling algorithm to sim-
ulate values from the posterior distribution.

In order to implement a Gibbs sampling algorithm for the problem of finding
a credibility interval for p1 − p2, we chose the prior distributions of p1 and p2

to be Beta(a1, b1) and Beta(a2, b2), respectively. Once the samples are drawn,
the observed information is given by x1, . . . , xn1

and y1, . . . , yn2
or equivalently by

Sx =
∑n1

j=1 xj and Sy =
∑n2

j=1 yj . The posterior marginal distributions of p1 and
p2 are obtained by Bayes theorem and are given by Beta(a1 +Sx, b1+n1−Sx) and
Beta(a2 + Sy, b2 + n2 − Sy), respectively (Gelman et al. 2004, p. 34). Since the
samples come from two independent populations, the posterior joint distribution
of (p1, p2) is a product of its marginal distributions and, for this reason, one can
get samples from the posterior distribution of p1 − p2 by simulating N values

from the posterior distribution of p1 and p2, say p
(1)
1 , . . . , p

(N)
1 and p

(1)
2 , . . . , p

(N)
2 ,

respectively. Then, by computing p
(1)
1 − p

(1)
2 , . . . , p

(N)
1 − p

(N)
2 , we obtain simulated

values from the posterior distribution of p1−p2. Note that the algorithm presented
here generates independent samples from the posterior, so it is fair to name it as
just a Monte Carlo algorithm, rather than a Markov Chain Monte Carlo algorithm.

After that, it is possible to compute the credibility interval2 of 100× (1−α)%
for p1 − p2 using the percentiles of the values simulated that induce the shortest
credible intervals. In this research, we consider two noninformative priors for p1

and p2: Beta(1, 1) and Beta(0.5, 0.5) priors. Beta(1, 1) corresponds to the uniform
distribution, which provides the same weight along all values in the range (0, 1)
for each pi with i = 1, 2. When both priors of p1 and p2 are uniform priors,
the prior distribution for the difference p1 − p2 is a triangular distribution with
vertices (−1, 0), (1, 0) and (0, 1). That is to say the prior distribution provides
greater weight to values of p1 − p2 close to 0, and small weights to values close to
the extremes −1 and 1.

The Beta(0.5, 0.5) is known as the Jeffreys prior, which, according to Carlin &
Louis (1998, p. 51), is noninformative in a transformation-invariate sense. How-
ever, it provides extra weight to extreme values of pi, that is, values close to 0 and
1. When both priors of p1 and p2 are the Jeffreys prior, the prior distribution of
p1 − p2 is symmetric at the value 0 where it is not defined, increasing for values

1In the case of estimating the difference of two proportions, the exact posterior distribution
of p1−p2 is given by Pham-Gia & Turkkan (1993). However, this exact distribution is somewhat
complicated and computationally expensive to obtain.

2There are many ways to construct a Bayesian credible interval from the posterior distribution.
A naive way to construct it is by using the upper and lower α/2 quantiles. However, as the
intervals are to be judged by expected length and its variance, it would make more sense to use
the highest posterior density intervals which are, by definition, the shortest credible intervals
with the given coverage (Carlin & Louis 1998, p. 43).
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in (0, 1) and decreasing for values in (−1, 0). The explicit density function of the
priori distribution of p1 − p2 when both priors of p1 and p2 are beta is studied in
Pham-Gia & Turkkan (1993).

3. Comparison criteria

In this section, we establish some criteria in order to measure the performance
of the intervals in a frequentist sense. A good confidence or credibility interval
should have the true coverage probability close to or larger than the nominal
value. Of course, in most cases, a way to increase the coverage probability is by
widening the interval, obtaining intervals with little precision. The comparison of
different methods for obtaining confidence intervals for one parameter must take
into account their lengths. To accomplish this, mean and variance of those lengths
are analyzed in this paper. In conclusion, we use the following criteria:

1. The true coverage probability defined by:

CP = E(I(X,Y, p1, p2)) (9)

where X and Y denote the number of successes in n1 and n2 trails, respec-
tively. I(x, y, p1, p2) defines an indicator function that is equal to one if the
interval contains p1 − p2 when X = x and Y = y, and equal to zero if the
interval does not contain p1 − p2. The coverage probability is given by:

CP =

n1∑

x=0

n2∑

y=0

I(x, y, p1, p2)

(
n1

x

)
px1(1 − p1)

n1−x

(
n2

y

)
py2(1 − p2)

n2−y (10)

2. The expected length defined by:

l = E(U(X,Y ) − L(X,Y )) (11)

where U(X,Y ) and L(X,Y ) are the upper and lower limit of the confidence
or credibility interval for p1−p2. Note that they are functions of the variables
X and Y . The expected length is given by:

l =

n1∑

x=0

n2∑

y=0

(U(x, y)−L(x, y))

(
n1

x

)
px1(1−p1)

n1−x

(
n2

y

)
py2(1−p2)

n2−y (12)

3. Analogously, we define the variance of length by:

V = V ar(U(X,Y ) − L(X,Y )) (13)
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and it is easy to show that

V =

n1∑

x=0

n2∑

y=0

(U(x, y) − L(x, y))2
(
n1

x

)
px1(1 − p1)

n1−x

(
n2

y

)
py2(1 − p2)

n2−y

−

(
n1∑

x=0

n2∑

y=0

(U(x, y) − L(x, y))

(
n1

x

)
px1(1 − p1)

n1−x

(
n2

y

)
py2(1 − p2)

n2−y

)2

(14)

Notice that these criteria are frequentist, in the sense that in (10), (12) and
(14), the proportions p1 and p2 are assumed to be fixed values, rather than random
variables.

4. Comparison among intervals

In this section, we compare several confidence and Bayesian credibility intervals
with respect to coverage probability and mean and variance of their lengths. For
confidence intervals (Wald, adjusted Wald, Agresti-Caffo and Newcombe), those
values were exactly computed for several combinations of p1, p2 and different
sample sizes. For Bayesian intervals, the computation was done by means of the
simulation of samples of the posterior distributions of p1 and p2. These distribu-
tions were obtained through the Markov Chain approach, and prior distributions
used for p1 and p2 were the same: Beta(1, 1) and Beta(0.5, 0.5). In subsection 4.1,
the true coverage probability of 0.95 confidence level or credibility level of intervals
are obtained for p2 = 0.5, p1 ∈ (0, 1) and nj ∈ {10, 50, 100}, with j = 1, 2, for the
two priors described above. Subsequently, the mean and variance of the intervals
were computed. Subsection 4.2 shows the same kind of study, with the same cho-
sen values as in 4.1, except that n2 is fixed at n2 = 30. In 4.3, n1 ∈ {1, 2, . . . , 500},
n2 = 30 and (p1 − p2) ∈ {0, 0.1, 0.5, 0.8}.

4.1. Performance of intervals by varying sample sizes

We compare the performance of the confidence and credibility intervals for
different sample sizes n1 and n2. First, we calculate the true confidence level
for the confidence intervals as a function of p1. The value p2 is fixed as 0.5, the
samples sizes of X and Y are assumed to be the same, and we consider the values
n1 = n2 = 10, 50, 100. The resulting coverage probabilities for the Wald and
adjusted Wald intervals are presented in Figure 1. It is seen that the coverage
probability of the adjusted Wald interval is always larger than the Wald interval;
this fact is intuitive since the adjusted Wald interval is obtained by widening the
Wald interval. Additionally, the coverage probability is not affected by the different
values of p1. Also, the poor performance of the Wald interval is noted, especially
in small samples.

On the other hand, the coverage probabilities of the Agresti-Caffo and New-
combe intervals are presented in Figure 2. It can be seen that both intervals have
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Figure 1: True coverage probability of the Wald and Adjusted Wald intervals varying

p1 with n1 = n2 = 10, 50, 100 with a nominal coverage probability of 0.95

coverage probability quite close to the nominal coverage 0.95, a desirable property
that the Wald and adjusted Wald do not have. Although the adjusted Wald in-
terval has coverage probability larger than 0.95, we will see later that its length is
the largest. Also, the coverage probability of the Newcombe interval is sean to be
affected by different values of p1, especially when the samples are small.

The coverage probability for Bayesian intervals is presented in Figure 3, where
it is seen that the performance of these two intervals are similar, and are quite
good in the sense that the coverage probability is stable with respect to p1, and
is close to the nominal 0.95 even when the samples are small. So we can conclude
that, in terms of true coverage probability, the Bayesian intervals are better than
the frequentist intervals, without ignoring the notable performance of the Agresti-
Caffo and Newcombe intervals. As a final remark, the true coverage probabilities
of all the intervals considered become more stable with respect to p1 as the sample
sizes increases.

We now compare the intervals in terms of the expected length. The expected
lengths of the considered intervals with different sample sizes are presented in
Figure 4. It is be seen that the interval with largest length is the adjusted Wald
interval. This shows that the high coverage probability is due to the length of the
interval, but is not due to its good performance. The shape of the curve for the
Wald interval is similar to the adjusted Wald; this is intuitive since the adjusted
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Figure 2: True coverage probability of the Agresti-Caffo and Newcombe intervals vary-

ing p1 with n1 = n2 = 10, 50, 100 with a nominal coverage probability of

0.95

Wald interval is obtained by subtracting and adding a constant to the lower and
upper limit of the Wald interval, respectively. As a result then, the following
relationship between the lengths of these intervals remains:

lA.Wald = lWald +
n1 + n2

n1n2
(15)

The Agresti-Caffo and Newcombe intervals have a more stable expected length
with respect to p1 than the Wald and adjusted Wald intervals. The improvement
is noted especially in small samples. In samples with n1 = n2 = 50, 100, the
length of the Agresti-Caffo and Newcombe intervals are smaller than the Wald
and adjusted Wald intervals.

The expected lengths of the Bayesian intervals are also presented also in Figure
4, where it is seen that the performance of the intervals with the uniform and
Jeffreys prior are similar. However, their expected lengths are larger than the
Agresti-Caffo and Newcombe intervals when n1 = n2 = 100; when n1 = n2 =
50, the lengths are similar; when n1 = n2 = 10, the Bayesian intervals show a
similar performance to the Newcombe interval while the Agresti-Caffo interval has
a slightly larger expected length. In conclusion, the Newcombe interval has the
smallest expected length in all sample sizes.

Revista Colombiana de Estadística 33 (2010) 63–88



72 Hanwen Zhang, Hugo Andrés Gutiérrez Rojas & Edilberto Cepeda Cuervo

Figure 3: True coverage probability of the Bayesian intervals varying p1 with n1 =

n2 = 10, 50, 100 with a nominal coverage probability of 0.95

Finally, we compare the intervals in terms of variance of the length. No-
tice that the variance of the length of the adjusted Wald interval is equal to the
Wald interval. Recalling (15) and using the property of variance, we have that
V ar(lA.Wald) = V ar(lWald). So in the figures related of the variance of the length,
we only plot the variance of length for the Wald interval.

The variances of length for Wald/adjusted Wald, Agresti-Caffo and Newcombe
intervals are presented in Figure 5. It is seen that the Newcombe interval has the
smallest variance, although very close to the variance of the Agresti-Caffo interval.
The huge variance of the Wald and adjusted Wald intervals in small samples is
also seen. On the other hand, the variances of the Bayesian intervals are presented
in Figure 6, and, the performance of the intervals with the uniform prior and the
Jeffreys prior are similar. However, their variance is larger than both the Agresti-
Caffo and Newcombe intervals.

In conclusion, in terms of true coverage probability, the best intervals are the
Bayesian; in terms of the expected length, the best interval is the Newcombe
interval, as well as in terms of variance of the length.
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Figure 4: Expected length of confidence and Bayesian intervals varying p1 with n1 =

n2 = 10, 50, 100.

4.2. Performance of intervals varying values of p1

In this section, we compare the performance of the intervals when different
values of p1 are considered.

First, we compute the true coverage probability as a function of n1, the value
of n2 is fixed to be 30, the value of p2 is 0.5, and we consider the values p1 =
0.01, 0.1, 0.3, 0.5. The true coverage probability for the Wald and adjusted Wald
intervals are presented in Figure 7. It is seen that, as in the previous section,
the coverage probability of the adjusted Wald interval is always larger than the
Wald interval. Additionally for the adjusted Wald interval, as the sample size
n1 increases, the coverage probability becomes more stable, while for the Wald
interval, the increasing sample size does not improve the coverage probability
when p1 = 0.01, 0.1, 0.3.

In Figure 8, the coverage probabilities of the Agresti-Caffo and Newcombe
intervals are presented. We see that the performance of the Newcombe interval is
better than Agresti-Caffo interval as its coverage probability is more stable; when
p = 0.01, 0.1, 0.3, it is always larger than the nominal 0.95, and when p1 = 0.5, i
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Figure 5: Variance of the length of the confidence intervals varying p1 with n1 = n2 =

10, 50, 100.
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Figure 6: Variance of the length of the Bayesian intervals varying p1 and n1 = n2 =

10, 50, 100.

tis very close to 0.95. Although the adjusted Wald interval has a larger coverage
probability than the Newcombe interval, we will see later that this interval also
has a larger expected length.

The results for the Bayesian intervals are those presented in Figure 9, where
it is seen that for both intervals, the coverage probability is close to the nominal
probability 0.95, and is not affected by different values of p1; however, it is smaller
than the adjusted Wald and Newcombe interval. In conclusion, the best intervals
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Figure 7: True coverage probability of the Wald and Adjusted Wald intervals varying

n1 and p1 with a nominal coverage probability of 0.95.

in terms of the true coverage probability, are the adjusted Wald and Newcombe
intervals.

We compare the intervals in terms of the expected length for different values
of p1. In Figure 10, the expected lengths of the Wald and adjusted Wald intervals
are presented. Note that, as in the previous section, the expected length of the
adjusted Wald interval is always larger. Thus we do not recommend this interval
in spite of its large coverage probability. It is also noted that the lengths get
smaller as the value of p1 decreases and n1 increases. The expected lengths of
theAgresti-Caffo and Newcombe intervals are presented in Figure 11. It can be
seen that their performance are very similar, although the length of the Newcombe
interval is slightly smaller. In addition it is seen that their lengths are similar to
the length of the Wald interval.

In Figure 12, the expected lengths of the Bayesian intervals are presented.
It is seen that their performances are almost the same as the Agresti-Caffo and
Newcombe intervals. In conclusion, except for the adjusted Wald interval, the
performance of the other intervals in terms of the expected length is very similar.

We also compare the intervals considering the variance of the length. The
performance of Wald and adjusted Wald intervals is presented in Figure 13. It is
seen that for large sample sizes, the variance is almost zero. The variance of the
Agresti-Caffo and Newcombe intervals is presented in Figure 14, where it is seen
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Figure 8: True coverage probability of the Agresti-Caffo and Newcombe intervals vary-

ing n1 and p1 with a nominal coverage probability of 0.95.

that when the sample size n1 is small, the Newcombe interval always has a smaller
variance than the Agresti-Caffo interval; while the difference is negligible when n1

is large. At any rate, the variance of the Agresti-Caffo and Newcombe intervals is
smaller than the Wald and adjusted Wald intervals.

In Figure 15, the variances for the Bayesian intervals are presented. Notice that
there is no significant difference between the uniform and Jeffreys prior. However,
their variances are smaller than the Wald and adjusted Wald intervals and larger
than the Agresti-Caffo and Newcombe intervals. In conclusion, the interval with
the smallest variance in length is the Newcombe interval.

4.3. Performance of intervals by varying values of p1 - p2

Since the parameter of interest is the difference between the proportions p =
p1−p2, it is natural to check the performance of the intervals when this parameter
changes. Therefore, we calculate the true coverage probability of the intervals in
the case that p1 − p2=0,0.1,0.5,0.8, the value of n2 is fixed to be 30, and n1 takes
values 1, 2, . . . , 500.

The performance of the Wald and adjusted Wald intervals are presented in
Figure 16, where we see that when the difference between p1 and p2 is large,
the coverage probability of the Wald interval is really small. Further more, in
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Figure 9: True coverage probability of the Bayesian intervals varying n1 and p1 with a

nominal coverage probability of 0.95.

previous sections, the adjusted Wald always has larger coverage probability than
the nominal 0.95, but in the case that p1 − p2 = 0.8, its coverage probability
decreases considerably.

The coverage probabilities of the Agresti-Caffo and Newcombe intervals are
presented in Figure 17, where we note that, contrary to the Wald and adjusted
Wald intervals, the Agresti-Caffo and Newcombe intervals have larger coverage
probability when p1 − p2 takes larger values. Regarding the Bayesian intervals,
whose coverage probabilities are presented in Figure 18, we note that their perfor-
mance is not affected by the values of p1 − p2, and that this is an advantage over
the confidence intervals.

5. Other intervals

There are many other confidence intervals in statistical literature. Some of
them will be briefly presented. Pan (2002) modified the Agresti-Caffo interval
using the t distribution instead of the normal distribution to take of the uncertainty
in estimating the variance of the observed pseudo proportion into account. It was
found that in some situations the proposed method can have a higher coverage
probability than the Agresti-Caffo interval. However, the price payed for the Pan
interval is the resulting wider length of the intervals. The limits of this interval
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Figure 10: Expected length of the Wald and adjusted Wald intervals varying n1 and

p1.

are:

Llow = p̃1 − p̃2 − td,1−α/2
√
V (p̃1, ñ1) + V (p̃2 + ñ2) (16)

and

Lupp = p̂1 − p̂2 + td,1−α/2
√
V (p̃1, ñ1) + V (p̃2 + ñ2) (17)

where

d ≈
2[V (p̃1, ñ1) + V (p̃2 + ñ2)]

Ω(p̃1, ñ1) + Ω(p̃2 + ñ2)

and

Ω(p̃i, ñi) =
p̃i − p̃2

i

ñ3
i

+ p̃i + (6ñi − 7)p̃2
i + 4(ñi − 1)(ñi − 3)p̃2

i−

2(ñi − 1)
(2ñi − 3)p̃3

i

ñ5
i

−
2p̃i + (2p̃i − 3)p̃2

i − 2(ñi − 1)p̃3
i

ñ4
i

where p̃i and ñi are similarly defined as in the Agresti-Caffo interval for i = 1, 2.
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Figure 11: Expected length of the Agresti-Caffo and Newcombe intervals varying n1

and p1.

Miettinen & Nurminen (1985) proposed an asymptotic method based on the
score test statistic, where the following system is considered:

H0 : p1 − p2 = p∗ versus H1 : p1 − p2 6= p∗

the score test statistic for testing this system is given by

S =
p̂1 − p̂2 − p∗√

p̃1(1 − p̃1)/n1 + p̃2(1 − p̃2)/n2

(18)

where p̃1 and p̃2 are the maximum likelihood estimates of p1 and p2, respectively,
under the restriction that p1 − p2 = p∗. The limits of the score interval Llow and
Lupp are defined to satisfy:

1 − Φ

(
p̂1 − p̂2 − Llow√

p̃1(1 − p̃1)/n1 + p̃2(1 − p̃2)/n2

)
= Φ

(
p̂1 − p̂2 − Lupp√

p̃1(1 − p̃1)/n1 + p̃2(1 − p̃2)/n2

)

=
α

2
(19)

and the solution of Llow and Lupp must be found using numerical methods.

In addition, there is the Clopper-Pearson interval, which is strongly associated
with the Clopper-Pearson test. However, many authors have criticized this inter-
val for being too conservative in its coverage probability (Vos & Hudson 2008).
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Figure 12: Expected length of the Bayesian intervals varying n1 and p1.

Another well-known interval is the Blaker interval. This interval has a smaller
length than the Clopper-Pearson interval, i.e. it is always contained within the
Clopper-Pearson intervals (Blaker 2000).

As we mentioned in Section 2, the exact Bayesian interval for p1 − p2 can
be obtained using the exact posterior distribution. Pham-Gia & Turkkan (1993)
established that when the prior distribution for pi is Beta(ai, bi) for i = 1, 2, the
posterior distribution for p = p1 − p2 is given by

p(p | x,y) =






1

k
B(α2, β1)p

β1+β2−1(1 − p)α2+β1−1

F1(β1, α1 + β1 + α2 + β2 − 2, 1 − α1, β1 + α2, 1 − p1 − p2)

for 0 < p ≤ 1

1

k
B(α1 + α2 − 1, β1 + β2 − 1) for p = 0

1

k
B(α1, β2)(−p)

β1+β2−1(1 + p)α1+β2−1

F1(β2, 1 − α1, α1 + β1 + α2 + β2 − 2, β2 + α1, 1 − p2, 1 + p)

for − 1 ≤ p < 0

(20)
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Figure 13: Variance of the length of the Wald and Adjusted Wald intervals varying n1

and p1.

where x = (X1, . . . , Xn1
) and y = (Y1, . . . , Yn2

).

k = B(a1, b1)B(a2, b2), with B(a, b) the beta function evaluated in a y b, that
is,

B(a, b) =

∫ 1

0

ta−1(1 − t)b−1dt (21)

And F1(ϕ, η1, η2, ψ, w1, w2) is the fourth hypergeometric Appell’s function, given
by

Γ(ψ)

Γ(ϕ)Γ(ψ − ϕ)

∫ 1

0

uϕ−1(1 − u)ψ−ϕ−1(1 − uw1)
−η1(1 − uw2)

−η2du (22)

when the real part of ϕ y ψ−ϕ are all positive, for more details, see Bailey (1934).

Given the exact posterior distribution of p = p1 − p2, a Bayesian interval is
defined by the lower limit l and upper limit u such that:

Pr(l ≤ p ≤ u | x,y) = 1 −
α

2

l and u are chosen to satisfy Pr(p < l | x,y) = Pr(p > u | x,y) = α/2. Pham-Gia
& Turkkan (1993) considered a numerical example where the prior distribution of
p1 and p2 are Beta(3, 5) and Beta(2, 8), respectively, and the sampling results are
n1 = 10, sx = 4, n2 = 6 and sy = 2. The resulting posterior distribution of p1−p2

Revista Colombiana de Estadística 33 (2010) 63–88



82 Hanwen Zhang, Hugo Andrés Gutiérrez Rojas & Edilberto Cepeda Cuervo

0 100 200 300 400 500

0e
+

00
2e

−
04

4e
−

04

p1=0.01

n1

Agresti−Caffo

Newcombe

0 100 200 300 400 500

0.
00

00
0.

00
10

0.
00

20
0.

00
30

p1=0.1

n1

Agresti−Caffo

Newcombe

0 100 200 300 400 500

0.
00

00
0.

00
10

0.
00

20
0.

00
30

p1=0.3

n1

Agresti−Caffo

Newcombe

0 100 200 300 400 500

0.
00

00
0.

00
05

0.
00

10
0.

00
15

p1=0.5

n1

Agresti−Caffo

Newcombe

Figure 14: Variance of the length of the Agresti-Caffo and Newcombe intervals varying

n1 and p1.

is bell-shaped, symmetric at the value 0.17, and an exact 90% credibility interval
is (−0.11, 0.39).

6. Conclusions

As a first conclusion, we point out that the performance of the Bayesian in-
tervals is not greatly affected by the sample sizes nor by different values of p1, p2

or p1 − p2. In terms of true coverage probability, the best interval is the Bayesian
interval, since its coverage probability is always close to the nominal coverage
probability and is always stable with respect to different samples sizes. They are
followed by the Newcombe and Agresti-Caffo intervals. We discard the use of ad-
justed Wald interval since its large coverage probability is obtained at the expense
of a large length. The Wald interval performs poorly although this poor perfor-
mance in small samples is a result that is well-known empirically and theoretically
(Cepeda 2008). In terms of expected length, the best interval is the Newcombe
interval followed by the Agresti-Caffo interval, Bayesian intervals, and the Wald
interval. The adjusted Wald interval always has largest length. In terms of the
variance of length, the best interval is again the Newcombe interval, followed by
the Agresti-Caffo interval, the Wald and adjusted Wald intervals. The intervals
with the largest length variance are the Bayesian intervals, there fore the New-
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Figure 15: Variance of the length of the Bayesian intervals varying n1 and p1.

combe interval is strongly recommend. The Wald and adjusted Wald intervals are
not recommended.
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Figure 16: True coverage probability of the Wald and Adjusted Wald intervals varying

n1 and p1 − p2=0,0.1,0.5,0.8 with a nominal coverage probability of 0.95.
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Figure 17: True coverage probability of the Agresti-Caffo and Newcombe intervals vary-

ing n1 and p1−p2=0,0.1,0.5,0.8 with a nominal coverage probability of 0.95.
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Figure 18: True coverage probability of the Bayesian intervals varying n1 and p1 −

p2=0,0.1,0.5,0.8 with a nominal coverage probability of 0.95.
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