![]() |
![]() |
||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] Aizenman, M., Chayes, J.T., Chayes, L. and Newman, C.M. (1988) Discontinuity of the magnetization in one-dimensional 1∕∣x-y∣2 Ising and Potts models, J. Statist. Phys. 50, 1–40. MR0939480 [2] Aizenman, M. and Grimmett, G.R. (1991) Strict monotonicity for critical points in percolation and ferromagnetic models, J. Statist. Phys. 63, 817–835. MR1116036 [3] Aizenman, M., Kesten, H. and Newman, C.M. (1987) Uniqueness of the infinite cluster and continuity of connectivity functions for short- and long-range precolation, Comm. Math. Phys. 111, 505–532. MR0901151 [4] Alexander, K.S. (1995a) Simultaneous uniqueness of infinite clusters in stationary random labeled graphs, Comm. Math. Phys. 168, 39–55. MR1324390 [5] Alexander, K.S. (1995b) Percolation and minimal spanning forests in infinite graphs, Ann. Probab. 23, 87–104. MR1330762 [6] Babson, E. and Benjamini, I. (1999) Cut sets and normed cohomology with application to percolation, Proc. Amer. Math. Soc. 127, 589–597. MR1622785 [7] Barsky, D.J., Grimmett, G.R. and Newman, C.M (1991) Percolation in half-spaces: equality of critical densities and continuity of the percolation probability, Probab. Th. Rel. Fields 90, 111–148. MR1124831 [8] Benjamini, I., Kesten, H., Peres, Y. and Schramm, O. (2004) Geometry of the uniform spanning forest: transitions in dimensions 4, 8, 12,..., Ann. Math. 160, 465–491. MR2123930 [9] Benjamini, I., Lyons, R., Peres, Y. and Schramm, O. (1999a) Critical percolation on any nonamenable graph has no infinite clusters, Ann. Probab. 27, 1347–1356. MR1733151 [10] Benjamini, I., Lyons, R., Peres Y. and Schramm, O. (1999b) Group-invariant percolation on graphs, Geom. Funct. Analysis 9, 29–66. MR1675890 [11] Benjamini, I., Lyons, R., Peres Y. and Schramm, O. (2001) Uniform spanning forests, Ann. Probab. 29, 1–65. MR1825141 [12] Benjamini, I. and Schramm, O. (1996) Percolation beyond ℤd, many questions and a few answers, Electr. Comm. Probab. 1, 71–82. MR1423907 [13] Benjamini, I. and Schramm, O. (2001) Percolation in the hyperbolic plane, J. Amer. Math. Soc. 14, 487–507. MR1815220 [14] van den Berg, J. and Steif, J.E. (1994) Percolation and the hard-core lattice gas model, Stoch. Proc. Appl. 49, 179–197. MR1260188 [15] Bollobás, B. (1998) Modern Graph Theory, Springer, New York. MR1633290 [16] Borgs, C., Chayes, J.T., van der Hofstad, R., Slade, G., and Spencer, J. (2005) Random subgraphs of finite graphs: I. The scaling window under the triangle condition, Random Structures Algorithms, to appear. MR2155704 [17] Borgs, C., Chayes, J.T., Kesten, H., and Spencer, J. (2001) The birth of the infinite cluster: finite-size scaling in percolation. Comm. Math. Phys. 224, 153–204. MR1868996 [18] Broadbent, S.R. and Hammersley, J.M. (1957) Percolation processes I: Crystals and mazes, Proc. Cambridge. Phil. Soc. 53, 629–641. MR0091567 [19] Burton, R.M. and Keane, M.S. (1989) Density and uniqueness in percolation, Comm. Math. Phys. 121, 501–505. MR0990777 [20] Burton, R.M. and Keane, M.S. (1991) Topological and metric properties of infinite clusters in stationary two-dimensional site percolation, Israel J. Math. 76, 299–316. MR1177347 [21] Campanino, M. and Russo, L. (1985) An upper bound on the critical percolation probability for the three-dimensional cubic lattice, Ann. Probab. 13, 478–491. MR0781418 [22] Chaboud, T. and Kenyon, C. (1996) Planar Cayley graphs with regular dual, Internat. J. Algebra Comput. 6, 553–561. MR1419130 [23] Chayes, J.T., Chayes, L. and Newman, C.M. (1985) The stochastic geometry of invasion percolation, Comm. Math. Phys. 101, 383–407. MR0815191 [24] Chayes, L. (1995) Aspects of the fractal percolation process, in Fractal geometry and stochastics (Finsterbergen, 1994), pp 113–143, Progr. Probab. 37, Birkhäuser, Basel. MR1391973 [25] Chayes, L. (1996) Percolation and ferromagnetism on ℤ2: the q-state Potts cases, Stoch. Proc. Appl. 65, 209–216. MR1425356 [26] Coniglio, A., Nappi, C.R., Peruggi, F. and Russo, L. (1976) Percolation and phase transitions in the Ising model, Comm. Math. Phys. 51, 315–323. MR0426745 [27] Durrett, R. (1991) Probability: Theory and Examples, Wadsworth & Brooks/Cole, Pacific Grove. MR1068527 [28] Edwards, R.G. and Sokal, A.D. (1988) Generalization of the Fortuin–Kasteleyn–Swendsen–Wang representation and Monte Carlo algorithm, Phys. Rev. D 38, 2009–2012. MR0965465 [29] van Enter, A.C.D. (1987) Proof of Straley’s argument for bootstrap percolation, J. Statist. Phys. 48, 943–945. MR0914911
[30] Erd [31] Fortuin, C.M. and Kasteleyn, P.W. (1972) On the random-cluster model. I. Introduction and relation to other models, Physica 57, 536–564. MR0359655 [32] Gandolfi, A., Keane, M. and Newman, C.M. (1992) Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses, Probab. Th. Rel. Fields 92, 511–527. MR1169017 [33] Gandolfi, A., Keane, M. and Russo, L. (1988) On the uniqueness of the infinite occupied cluster in dependent two-dimensional site percolation Ann. Probab. 16, 1147–1157. MR0942759 [34] Georgii, H.-O., Häggström, O. and Maes, C. (2001) The random geometry of equilibrium phases, Phase Transitions and Critical Phenomena, Volume 18 (C. Domb and J.L. Lebowitz, eds), pp 1-142, Academic Press, London. MR2014386 [35] Grimmett, G.R. (1994) Percolative problems, Probability and Phase Transition (ed. G.R. Grimmett), Kluwer, Dordrecht, 69–86. MR1283176 [36] Grimmett, G.R. (1995) The stochastic random-cluster process, and the uniqueness of random-cluster measures, Ann. Probab. 23, 1461–1510. MR1379156 [37] Grimmett, G.R. (1999) Percolation, Springer, Berlin. MR1707339 [38] Grimmett, G.R. (2003) The random-cluster model, in Probability on Discrete Structures, vol 110 of Encyclopedia of Mathematical Sciences, pp 73–123, Springer, Berlin. MR2023651 [39] Grimmett, G.R. (2005) Uniqueness and multiplicity of infinite clusters, in Dynamics and Stochastics: Festschrift in Honor of Michael Keane, IMS Lecture Notes-Monograph Series, pp 24–36. [40] Grimmett, G.R. (2006) The Random-Cluster Model, Springer, Berlin. MR2243761 [41] Grimmett, G.R. and Holroyd, A.E. (2000) Entanglement in percolation, Proc. London Math. Soc. 81, 485–512. MR1770617 [42] Grimmett, G.R. and Newman, C.M. (1990) Percolation in ∞ + 1 dimensions, In Disorder in Physical Systems (G.R. Grimmett and D.J.A. Welsh, eds), pp. 167–190, Oxford University Press, New York. MR1064560 [43] Grossman, J.W. (2002) The evolution of the mathematical research collaboration graph, Congressus Numerantium 158, 201–212. MR1985159
[44] Grossman, J.W. (2003) The Erd [45] Häggström, O. (1995) Random-cluster measures and uniform spanning trees, Stoch. Proc. Appl. 59, 267–275. MR1357655 [46] Häggström, O. (1996) The random-cluster model on a homogeneous tree, Probab. Th. Rel. Fields 104, 231–253. MR1373377 [47] Häggström, O. (1997a) Infinite clusters in dependent automorphism invariant percolation on trees, Ann. Probab. 25, 1423–1436. MR1457624 [48] Häggström, O. (1997b) Ergodicity of the hard-core model on Z2 with parity-dependent activities, Ark. Mat. 35, 171–184. MR1443040 [49] Häggström, O. (1999) Positive correlations in the fuzzy Potts model, Ann. Appl. Probab. 9, 1149–1159. MR1728557 [50] Häggström, O. (2001a) Uniqueness of the infinite entangled component in three-dimensional bond percolation, Ann. Probab. 29, 127–136. MR1825145 [51] Häggström, O. (2001b) Uniqueness in two-dimensional rigidity percolation, Math. Proc. Cambridge Phil. Soc. 130, 175–188. MR1797779 [52] Häggström, O. (2003) Uniqueness of infinite rigid components in percolation models: the case of nonplanar lattices, Probab. Th. Rel. Fields 127, 513–534. MR2021194 [53] Häggström, O. and Jonasson, J. (1999) Phase transition in the random triangle model, J. Appl. Probab. 36, 1101–1115. MR1742153 [54] Häggström, O., Jonasson, J. and Lyons, R. (2002) Explicit isoperimetric constants and phase transitions in the random-cluster model, Ann. Probab. 30, 443–473. MR1894115 [55] Häggström, O. and Pemantle, R. (2000) Absence of mutual unbounded growth for almost all parameter values in the two-type Richardson model, Stoch. Proc. Appl. 90, 207–222. MR1794536 [56] Häggström, O. and Peres, Y. (1999) Monotonicity of uniqueness for percolation on transitive graphs: all infinite clusters are born simultaneously, Probab. Th. Rel. Fields 113, 273–285. MR1676835 [57] Häggström, O., Peres, Y., and Schonmann, R.H. (1999) Percolation on transitive graphs as a coalescent process: relentless merging followed by simultaneous uniqueness, in Perplexing Probability Problems: Papers in Honor of Harry Kesten (M. Bramson and R. Durrett, eds), pp. 53–67, Birkhäuser, Boston. MR1703125 [58] Häggström, O., Peres, Y., and Steif, J. (1997) Dynamical percolation, Ann. Inst. H. Poincaré, Probab. Stat. 33, 497–528. MR1465800
[59] Hallberg, P. (2004) Gibbs Measures and Phase Transitions in Potts
and Beach Models, Ph.D. thesis, Royal Institute of Technology, Stockholm,
[60] Hammersley, J.M. (1961) Comparison of atom and bond percolation processes, J. Math. Phys. 2, 728–733. MR0130722 [61] Hara, T. and Slade, G. (1994) Mean-field behaviour and the lace expansion, in Probability and Phase Transition (G. R. Grimmett, ed.), pp. 87–122, Kluwer Acad. Publ., Dordrecht. MR1283177 [62] Harris, T.E. (1960) A lower bound for the critical probability in a certain percolation process, Proc. Cambridge Phil. Soc. 56, 13–20. MR0115221 [63] Higuchi, Y. (1982) Coexistence of the infinite *-clusters: a remark on the square lattice site percolation, Z. Wahrsch. Verw. Gebiete 61, 75–81. MR0671244 [64] Holroyd, A.E. (1998) Existence and uniqueness of infinite components in generic rigidity percolation, Ann. Appl. Probab. 8, 944–973. MR1627815 [65] Holroyd, A.E. (2000) Existence of a phase transition for entanglement percolation, Math. Proc. Cambridge Phil. Soc. 129, 231–251. MR1765912 [66] Holroyd, A.E. (2001) Rigidity percolation and boundary conditions, Ann. Appl. Probab. 11, 1063–1078. MR1878290 [67] Holroyd, A.E. (2002) Entanglement and rigidity in percolation models, In and Out of Equilibrium (Mambucaba, 2000), pp 299–307, Progr. Probab. 51, Birkhäuser, Boston. MR1901959 [68] Jacobs, D.J. and Thorpe, M.F. (1995) Generic rigidity percolation: the pebble game, Phys. Rev. Lett 75, 4051–4054. [69] Jacobs, D.J. and Thorpe, M.F. (1996) Generic rigidity percolation in two dimensions, Phys. Rev. E 53, 3682–2693. [70] Janson, S., Łuczak, T. and Rucinski, A. (2000) Random Graphs, Wiley, New York. MR1782847 [71] Jonasson, J. (1999) The random cluster model on a general graph and a phase transition characterization of nonamenability, Stoch. Proc. Appl. 79, 335–354. MR1671859 [72] Jonasson, J. and Steif, J. (1999) Amenability and phase transition in the Ising model, J. Theor. Prob. 12, 549–559. MR1684757 [73] Kantor, T. and Hassold, G.N. (1988) Topological entanglements in the percolation problems, Phys. Rev. Lett. 60, 1457–1460. MR0935098 [74] Kesten, H. (1959) Full Banach mean values on countable groups, Math. Scand. 7, 146–156. MR0112053 [75] Kesten, H. (1959) Symmetric random walks on groups, Trans. Amer. Math. Soc. 92, 336–354. MR0109367
[76] Kesten, H. (1980) The critical probability of bond percolation on the
square lattice equals [77] Kesten, H. (1982) Percolation Theory for Mathematicians, Birkhäuser, Boston. MR0692943 [78] Lalley, S. (1998) Percolation on Fuchsian groups, Ann. Inst. H. Poincaré, Probab. Stat. 34, 151–178. MR1614583 [79] Lyons, R (2000) Phase transitions on nonamenable graphs, J. Math. Phys. 41, 1099–1126. MR1757952
[80] Lyons, R. and Peres, Y.
(2005) Probability on Trees and Networks, Cambridge University Press, to
appear, http://mypage.iu.edu/ [81] Lyons, R., Peres, Y. and Schramm, O. (2006) Minimal spanning forests, Ann. Probab., to appear. [82] Lyons, R. and Schramm, O. (1999) Indistinguishability of percolation clusters, Ann. Probab. 27, 1809–1836. MR1742889 [83] Meester, R. (1994) Uniqueness in percolation theory, Statist. Neerl. 48, 237–252. MR1310339 [84] Meester, R. and Roy, R. (1996) Continuum Percolation, Cambridge University Press. MR1409145 [85] Mohar, B. (1988) Isoperimetric inequalities, growth and the spectrum of graphs, Lin. Alg. Appl. 103, 119–131. MR0943998 [86] Newman, C.M. and Schulman, L.S. (1981) Infinite clusters in percolation models, J. Statist. Phys. 26, 613–628. MR0648202 [87] Newman, C.M. and Stein, D.L. (1996) Ground-state structure in a highly disordered spin-glass model, J. Statist. Phys. 82, 1113–1132. MR1372437 [88] Pak, I. and Smirnova-Nagnibeda, T. (2000) Uniqueness of percolation on nonamenable Cayley graphs, Comptes Rendus Acad. Sci. Paris, Ser. I Math. 330, 495–500. MR1756965 [89] Pemantle, R. (1991) Choosing a spanning tree for the integer lattice uniformly, Ann. Probab. 19, 1559–1574. MR1127715 [90] Peres, Y. (2000) Percolation on nonamenable products at the uniqueness threshold, Ann. Inst. H. Poincaré, Probab. Stat. 36, 395–406. MR1770624 [91] Peres, Y., Pete, G. and Scolnicov, A. (2006) Critical percolation on certain nonunimodular graphs, New York J. Math. 12, 1–18. MR2217160 [92] Peres, Y. and Steif, J.E. (1998) The number of infinite clusters in dynamical percolation, Probab. Th. Rel. Fields 111, 141–165. MR1626782 [93] Pfister, C.-E. and Vande Velde, K. (1995) Almost sure quasilocality in the random cluster model, J. Statist. Phys. 79, 765–774. MR1327908 [94] Schonmann, R.H. (1999) Percolation in ∞ + 1 dimensions at the uniqueness threshold, in Perplexing Probability Problems: Papers in Honor of Harry Kesten (M. Bramson and R. Durrett, ed.), pp. 53–67, Birkhäuser, Boston. MR1703124 [95] Schonmann, R.H. (1999) Stability of infinite clusters in supercritical percolation, Probab. Th. Rel. Fields 113, 287–300. MR1676831 [96] Schramm, O. and Steif, J.E. (2005) Quantitative noise sensitivity and exceptional times for percolation, preprint. [97] Sheffield, S. (2005) Random surfaces, Astrisque 304, vi+175 pp. MR2251117 [98] Stacey, A.M. (1996) The existence of an intermediate phase for the contact process on trees, Ann. Probab. 24, 1711–1726. MR1415226 [99] Timár, A. (2006a) Cutsets in infinite graphs, Comb. Probab. Computing 16, 1–8. [100] Timár, A. (2006b) Percolation on nonunimodular graphs, Ann. Probab., to appear. [101] Timár, A. (2006c) Neighboring clusters in Bernoulli percolation,Ann. Probab., to appear. [102] Trofimov, V.I. (1985) Automorphism groups of graphs as topological groups, Math. Notes 38, 717–720. MR0811571 [103] Wierman, J.C. (1981) Bond percolation on honeycomb and triangular lattices, Avd. Appl. Probab. 13, 298–313. MR0612205 [104] Zhang, Y. (1988) Unpublished, although see Grimmett [37, pp. 289–291]. |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |