![]() |
![]() |
||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] Bapat, R.B. (1992). Mixed discriminants and spanning trees. Sankhya. Special Volume 54 49–55 MR1234678 [2] Benjamini, I., Lyons, R., Peres, Y. and Schramm, O. (2001). Uniform spanning forests. Ann. Probab. 29, 1–65. MR1825141 [3] Borodin, A., Okounkov, A., Olshanski, G. (2000). Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13, 481–515. MR1758751 [4] Burton, R. and Pemantle, R. (1993). Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21, 1329–1371. MR1235419 [5] Costin, O. and Lebowitz, J. (1995). Gaussian fluctuation in random matrices. Phys. Rev. Lett., 75 69–72. [6] Cox, D.R. (1955). Some statistical methods connected with series of events. J. R. Statist. Soc. B. 17 129–164. MR0092301 [7] Daley, D.J. and Vere-Jones, D. (2003). An introduction to the theory of point processes. Vol. I. Elementary theory and Methods. Second edition. Springer-Verlag, New York. MR1950431 [8] Diaconis, P. (2003). Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture. Bull. Amer. Math. Soc. 40 155–178. MR1962294 [9] Gasiorowicz, S. (1996). Quantum Physics. John Wiley & Sons, Inc., New York, second edition. [10] Ginibre, J. (1965). Statistical ensembles of complex, quaternion and real matrices. J. Math. Phys. 6, 440–449. MR0173726 [11] Goodman, N. and Dubman, M. (1969). Theory of time-varying spectral analysis and complex Wishart matrix processes. Multivariate Analysis, II (Proc. Second Internat. Sympos., Dayton, Ohio, 1968) pp. 351–366 Academic Press, New York MR0263205 [12] Griffiths, R. C. (1984). Characterization of infinitely divisible multivariate gamma distributions. J. Multivariate Anal. 15, 13–20. MR0755813 [13] Griffiths, R. C. and Milne, R. K. (1987). A class of infinitely divisible multivariate negative binomial distributions. J. Multivariate Anal. 22, 13–23. MR0890879 [14] Johansson, K. (2004). Determinantal processes with number variance saturation. Comm. Math. Phys. 252 , 111–148. MR2103906 [15] Karlin, S. and McGregor, J. (1959). Coincidence probabilities. Pacific J. Math. 9, 1141–1164. MR0114248 [16] Khare, Avinash. (1997). Fractional statistics and quantum theory. World Scientific Publishing Co., Inc., River Edge, NJ. MR1795025 [17] Kostlan, E. (1992). On the spectra of Gaussian matrices. Linear Algebra Appl., 162/164, 385–388. MR1148410 [18] Lenard, A. (1973). Correlation functions and the uniqueness of the state in classical statistical mechanics. Comm. Math. Phys. 30, 35–44. MR0323270 [19] Lenard, A. (1975). States of classical statistical mechanical systems of infinitely many particles. I-II. Arch. Rational Mech. Anal. 59, 219–256. MR0391830 [20] Lyons, R. (2003). Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. 98, 167–212. MR2031202 [21] Lyons, R. and Steif, J. (2003). Stationary determinantal processes: phase multiplicity, Bernoullicity, entropy, and domination. Duke Math. J. 120, 515–575. MR2030095 [22] Macchi, O. (1975). The coincidence approach to stochastic point processes. Adv. Appl. Probab., 7, 83–122. MR0380979 [23] Peres, Y. and Virág, B. (2004). Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta Math., to appear. arXiv:math.PR/0310297. [24] Rains, E. (1997). High powers of random elements of compact Lie groups. Probab. Theory Related Fields 107, 219–241. MR1431220 [25] Shirai, T. and Takahashi, Y. (2003). Random point fields associated with certain Fredholm determinants I: Fermion, Poisson and Boson processes. J. Funct. Analysis 205, 414–463. MR2018415 [26] Shirai, T. and Takahashi, Y. (2003) Random point field associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties. Ann. Probab. 31, 1533–1564. MR1989442 [27] Soshnikov, A. (2000). Determinantal random point fields. Russian Math. Surveys, 55, 923–975. MR1799012 [28] Soshnikov, A. (2002). Gaussian limit for determinantal random point fields. Ann. Probab., 30, 171–187. MR1894104 [29] Vere-Jones, D. (1997). Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions. New Zealand J. Math. 26, 125–149. MR1450811 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |