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Abstract: This is a survey paper on Poisson approximation using Stein’s
method of exchangeable pairs. We illustrate using Poisson-binomial trials
and many variations on three classical problems of combinatorial probabili-
ty: the matching problem, the coupon collector’s problem, and the birthday
problem. While many details are new, the results are closely related to a
body of work developed by Andrew Barbour, Louis Chen, Richard Arratia,
Lou Gordon, Larry Goldstein, and their collaborators. Some comparison
with these other approaches is offered.
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1. Introduction

Charles Stein has introduced a general method for proving limit theorems with
explicit error terms, the essential idea of which is the notion of a characterizing
operator. Given a probability measure Po on a space Ω with expectation Eo, a
characterizing operator To is an operator on a suitable function space on Ω with
the properties that:

1. EoTo ≡ 0.
2. If E is expectation for a different probability on Ω and ETo ≡ 0, then
E = Eo.

The idea is then to prove that E .= Eo by showing that ETo
.= 0. To do this,

Stein has introduced a method which he calls the method of exchangeable pairs.
In this survey, we specialize his general approach to Poisson approximation.

Very roughly, the idea is to show that a random variable W has an approx-
imate Poisson distribution by studying how a small stochastic change affects
the law of W. An appropriate such change is often easily found by constructing
a reversible Markov chain resulting in an exchangeable pair (W,W ′). Stein’s
general approach is developed for the Poisson setting in section 2. This devel-
opment is somewhat technical; as motivation for the machinery, we offer the
following rough overview. The aim is to prove that W =

∑
Xi has an approx-

imate Poisson distribution, where the Xi are (perhaps dependent) indicators.
First, a probabilistic construction is used to create a second random variable
W ′ such that (W,W ′) is exchangeable. This construction is often one step in a
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reversible Markov chain with W as stationary distribution. Then the machinery
from section 2 gives the following bound:

|P(W ∈ A)− Poiλ(A)| ≤ (0.7)λ−1/2(E1 + E2)

with

E1 = E|λ− cP(W ′ = W + 1|{Xi})|
E2 = E|W − cP(W ′ = W − 1|{Xi})|

with c a parameter chosen to minimize the error terms. Thus the error will be
small provided

P(W ′ = W + 1|{Xi})
.=
λ

c

and
P(W ′ = W − 1|{Xi})

.=
W

c
.

In applications, W =
∑

Xi with the Xi indicators of rare events. The Xi

are thus mostly zero and W of them are one. The example to keep in mind
is when a point of the sequence is chosen at random, and that Xi is changed
to its opposite, giving W ′. Heuristically, since most of the Xi are 0, there are
constants a and b such that

P(W ′ = W + 1|{Xi})
.= a

P(W ′ = W − 1|{Xi})
.= bW.

By the symmetry of the exchangeable pair,

a
.= E[P(W ′ = W + 1|{Xi})]
= P(W ′ = W + 1)
= P(W = W ′ + 1)
= E[P(W ′ = W − 1|{Xi})]
.= E(bW )
= bλ.

Thus choosing c = λ
a gives b = 1

c , and makes the error terms small. In many
cases, just changing one Xi to its opposite doesn’t quite work to produce an
exchangeable pair, but most of our exchangeable pairs are constructed in ways
which are rather similar to this. The reader will see rigorous versions of these
heuristics starting in section 3.

The contents of the rest of the paper are as follows. Section 2 develops a
general bound. In section 3, we give a first example of using Stein’s method:
Poisson-binomial trials. The method is shown to give close to optimal results
with explicit error bounds. In sections 4-6, the method is applied to three clas-
sical probability problems: the matching problem, the birthday problem, and
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the coupon collector’s problem. Sections 7 and 8 give multivariate and Poisson
process approximations.

The Poisson heuristic and the Chen-Stein approach to Poisson approximation
have been actively developed since 1970. Substantial contributions from Louis
Chen, Andrew Barbour and their many coauthors are surveyed in sections 9 and
10. These approaches share common roots with the present exchangeable pair
approach, and all have different strengths and weaknesses; we attempt some
comparison. Section 11 lists some interesting open problems.

Acknowledgements. This paper is based on notes from a seminar at S-
tanford University in the winter of 2004. We thank the other speakers and
participants, particularly Susan Holmes and Charles Stein. We also thank Geir
Helleloid for a careful reading of the manuscript.

2. The Method of Exchangeable Pairs and Poisson Approximation

Let W be an integer-valued random variable defined on a probability space
(Ω,A,P). Let X be the bounded measurable functions on Ω. We write Ef =∫
f(ω)P(dω) and think of E as a linear map, E : X → R. Throughout we

suppose that E(W ) = λ < ∞. Let Xo be the bounded real-valued functions
on N = {0, 1, 2, ...}, and let Eo : Xo → R be expectation with respect to Poiλ
measure on N. The random variable W allows us to define a map β : Xo → X

by
βf(ω) = f(W (ω)). (1)

Heuristically, W has an approximate Poiλ distribution if Eo(f) .= E(f(W )); i.e.,
Eo

.= Eβ. This is equivalent to saying that the following diagram approximately
commutes:

X

E

  AAAAAAAA

R

Xo

β

OO

Eo

>>~~~~~~~~

(2)

Stein constructs a symmetric probability Q on Ω × Ω with margins P (i.e.,
Q(A,B) = Q(B,A) and Q(A,Ω) = P(A)), which gives an exchangeable pair. It
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is used to define the following enlarged diagram:

F
T // X

E

  AAAAAAAA

R

Fo

α

OO

To

// Xo

β

OO

Eo

>>~~~~~~~~

(3)

Stein’s lemma, developed and proved in lemma (2) below, shows in a precise
sense that if the left square approximately commutes, then the triangle approx-
imately commutes. This leads to explicit bounds on Poisson approximation.

We begin by constructing the top row of the diagram. We define the charac-
terizing or Stein operator To for the Poiλ distribution by

Tof(j) = λf(j + 1)− jf(j) (4)

and we let Fo ⊆ Xo be the functions f : N → R such that Tof is a bounded
function. Note that Fo contains all of the functions f on N such that f(n) = 0
eventually, thus it is rich enough for our purposes.

A simple calculation verifies that EoTo = 0; i.e., if X ∼ Poiλ, then

E(λf(X + 1)−Xf(X)) = 0

for every bounded function f .

Remark: To is called characterizing because it also has the property that if

p is a probability on N with the property that
∞∑
j=0

(λf(j + 1) − jf(j))p(j) = 0

for every bounded function f : N → R, then p is the Poisson distribution with
parameter λ. To see this, let f = δk. This yields the equation λp(k−1) = kp(k),
which leads to a recursion relation that describes Poiλ.

Next we will define a map Uo, which is almost an inverse to To. Define:

Uof(j) =
(j − 1)!
λj

j−1∑
k=0

λk

k!
(f(k)− Eof). (5)

It is easy to check that

ToUof(j) = f(j)− Eof. (6)

Thus Uo is inverse to To on ker(Eo). The following lemma, proved by Barbour
and Eagleson in [7], gives bounds on expressions involving Uo.
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Lemma 1. 1. For f ∈ Xo with 0 ≤ f ≤ 1 and j ∈ N, the map Uo of (5)
satisfies

|Uof(j)| ≤ min(1, 1.4λ−1/2)

|Uof(j + 1)− Uof(j)| ≤ 1− e−λ

λ

2. Let δo(j) =

{
1 j = 0,
0 otherwise.

For f(j) = δo(j)− e−λ,

|Uof(j)| ≤ 1− e−λ

λ
.

A reviewer has pointed to a sharper bound in [38]. We have not seen this
and will use lemma (1) in what follows. This lemma and equation (6) show that
Uof ∈ Fo for every f ∈ Xo. To complete the top row, let i denote the map
R → Xo which associates to each constant c the map on N which takes the
value c for each n.

To construct the bottom row of diagram (3), define

F = {f : Ω× Ω→ R : f bounded, measurable, andf(ω, ω′) = −f(ω′, ω)}.

Using a probability Q on Ω× Ω as discussed above, define the operator T by:

Tf(ω) = EQ(f(ω, ω′)|ω). (7)

Observe that Tf is a bounded function on Ω for f ∈ F. Further,

ETf =
∫
f(ω, ω′)Q(dω, dω′)

=
∫
f(ω′, ω)Q(dω, dω′)

= −
∫
f(ω, ω′)Q(dω, dω′)

where the first equality is by the symmetry of Q and the second is by the
anti-symmetry of f . Thus ET = 0.

Finally, define α : Fo → F to be any linear map, for example, αf(ω, ω′) =
f(W (ω))−f(W (ω′)). Stein’s lemma is true regardless of what α is, so we choose
α to work well with the problem at hand. In applications, α is often a localized
version of the example given above; see proposition (3) below for an example.

We can now state and prove:
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Lemma 2 (Stein). Suppose that in the following diagram of linear spaces and
linear maps, ET = 0 and ToUo = Id− iEo.

F
T // X

E

  AAAAAAAA

R

i

~~~~~~~~~~

Fo
To //

α

OO

Xo
Uo

oo

β

OO

Eo

>>~~~~~~~~

(8)

Then
Eβ − Eo = E(βTo − Tα)Uo (9)

Proof. We have:

0 = ETαUo

= E(Tα− βTo)Uo + EβToUo
= E(Tα− βTo)Uo + Eβ(Id− iEo)
= E(Tα− βTo)Uo + Eβ − Eo

as desired.

Remarks:

1. Stein’s lemma makes precise the sense in which the Poisson approximation
Eβ

.= Eo holds provided βTo−Tα is small; this expression must have small
expectation on the range of Uo. A good choice of α can put this expression
into a useful form (see proposition (3) below).

2. In what follows, the equality in Stein’s lemma is used to bound the error
term E(Tα−βTo)Uo with analysis. The same equality can also be used to
simulate the error term using the exchangeable pair as a reversible Markov
chain. This approach is developed in Stein et al. (2003).

3. Stein’s method is often used to study a random variable W which is a sum
of indicators Xi. In the previous development, the operator T was defined
as conditional on W . The lemma holds if T is defined by conditioning on
any σ-algebra with respect to which W is measurable; in particular, one
can condition on {Xi}. An application of Jensen’s inequality shows that
conditioning on W alone rather than conditioning on {Xi} always gives
better results. However, conditioning on only W can make bounding the
error terms more difficult, and in practice we often condition on all of the
Xi.

4. One reason for presenting the diagrammatic view of the subject is that it
applies, in essentially the same way, to any type of approximation. The
fact that we’re approximating by a Poisson random variable enters into
the diagram only in the top row, as the characterizing operator is the one
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corresponding to the Poiλ distribution. To use Stein’s method in other
contexts, one needs only to find the appropriate characterizing operator;
the rest of the picture remains unchanged. Holmes (in chap. 3 of [23]) gives
bounds for general discrete measures.

5. Note that for lemma (2) and the bounds to follow, it is only required that
W and W ′ are exchangeable. While this is most easily achieved by making
Q symmetric, examples of Fulman [28] and Rinott-Rotar [45] show that
other constructions are possible.

The following proposition gives us a more workable form for the error term.

Proposition 3. Let W be a random variable on (Ω,A,P) and Q a symmetric
probability on Ω× Ω with margins P. Let W = W (ω) and W ′ = W (ω′). Then

1. βTof = λf(W + 1)−Wf(W ) for f ∈ Xo.
2. Let αf(ω, ω′) = cf(W ′)I{W ′−1}(W ) − cf(W )I{W−1}(W ′) for a constant

c. Then for f ∈ Fo,

Tαf(ω) = cf(W +1)Q(W ′ = W +1|ω)−cf(W )Q(W ′ = W −1|ω). (10)

Remarks: For this choice of α, the error term from Stein’s lemma will be
small if the exchangeable pair can be chosen so that

Q(W ′ = W − 1|ω) ≈ W

c
(11)

Q(W ′ = W + 1|ω) ≈ λ

c
(12)

for some c. One then uses this c in defining α to obtain cancellation in the error
term, and then uses the bounds in lemma (1) to bound the error term. The
examples which follow show that (11) and (12) often hold for natural choices of
Q, for some c. We observe that if (11) and (12) hold, the ratio method proposed
by Stein [52] is also a way to approach Poisson approximation.

3. Poisson-Binomial Trials

Let X1, X2, ..., Xn be independent {0, 1}-valued random variables with P(Xi =

1) = pi and P(Xi = 0) = 1− pi, such that
n∑
i=1

pi = λ. To put this example into

the framework of section (2), let Ω = {0, 1}n, with P(ω1, ..., ωn) =
n∏
i=1

pωii (1 −

pi)1−ωi , and let X be the bounded functions on Ω. Let W (ω) =
∑n
i=1 ωi. One

way to build a symmetric probability Q on Ω× Ω is the following probabilistic
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construction: choose an index I uniformly in {1, ..., n}, and let εI = 1 with
probability pI and εI = 0 with probability 1 − pI . Given ω ∈ Ω, set ω′i ={
ωi if i 6= I,
εI if i = I.

. This constructs a probability Q on Ω × Ω: assign to the pair

(ω, ω′) the probability of choosing ω from Ω according to P and then going from
ω to ω′ by the process described. It is clear from the construction that Q is
symmetric and has margins P. From these definitions,

Q(W ′ = W − 1|ω) =
1
n

n∑
i=1

ωi(1− pi)

=
W −

∑n
i=1 piωi
n

.

Q(W ′ = W + 1|ω) =
1
n

n∑
i=1

(1− ωi)pi

=
λ−

∑n
i=1 piωi
n

.

Combining these calculations with (10) and choosing c = n gives

(βTo − Tα)f(ω) = [λf(W + 1)−Wf(W )]− [f(W + 1)(λ−
n∑
i=1

piωi)− f(W )(W −
n∑
i=1

piωi)]

= (f(W + 1)− f(W ))
n∑
i=1

piωi.

As we consider f = Uog for functions g with 0 ≤ g ≤ 1, lemma (1) yields the
following:

Theorem 4. Let X1, X2, ..., Xn be independent {0, 1}-valued random variables

with P(Xi = 1) = pi and
n∑
i−1

pi = λ. Then, if W =
n∑
i=1

Xi,

‖L(W )− Poiλ‖TV ≤
(

1− e−λ

2λ

) n∑
i=1

p2
i .

Remark: The factor of 2 in the denominator arises because

‖µ− ν‖TV = sup
A
|µ(A)− ν(A)| = 1

2
sup
f

∣∣∣∣∫
A

dµ−
∫
A

dν

∣∣∣∣ ,
where the first supremum is taken over all measurable sets A and the second is
over all measurable funtions f such that ‖f‖∞ ≤ 1.

Example 1: Let pi = λ
n . For λ fixed and n > λ, the bound becomes (1−e−λ)λ

2n .
This bound was derived by a different argument by Barbour and Hall. A com-
parison with other available bounds and approximations for the i.i.d. case is in
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Kennedy and Quine [35], where there are also extensive references given. The
bound that we give is sharp for small λ and can be improved for large λ.

Example 2: Let pi = 1
i for 1 ≤ i ≤ n. Thus λ = logn−γ+O

(
1
n

)
. The bound

becomes

(
(1− eγ

n )π2

12 logn

)(
1 +O

(
1
n

))
. Here, the factor of λ in the denominator

saves the day.

Remarks: Under the conditions of theorem (4), there are methods for com-
puting the exact distribution of W and a host of approximations that differ from
the Poisson. See Stein [49] or Percus and Percus [42] for further discussion. An
extensive collection of random variables which can be represented as sums of
independent binary indicators is in Pitman [43].

4. The Matching Problem

Because of its appearance in Montmort [18], the matching problem is one of
the oldest problems in probability. It asks for the distribution of the number of
fixed points in a random permutation. Takács [53] gives an extensive history.
To put this problem into our set up, let Sn be all n! permutations of n objects
with P(σ) = 1

n! , and let W (σ) = |{i : σ(i) = i}|; that is, W (σ) is the number of

fixed points of σ. Note that W =
n∑
i=1

Xi where Xi indicates whether σ fixes i.

This approach of writing a random variable as a sum of {0, 1}-valued random
variables, called the method of indicators, is one of our main tools for computing
expectations of N-valued random variables. Using this representation of W , it is
easy to see that EW = 1. Build an exchangeable pair (σ, σ′) by choosing σ ∈ Sn
according to P and then choosing σ′ given σ by following σ with a random
transposition τ chosen uniformly among the non-trivial transpositions in Sn.
Then

Q(W ′ = W − 1|σ) =
2W (σ)(n−W (σ))

n(n− 1)

Q(W ′ = W + 1|σ) =
2(n−W (σ)− 2a2(σ))

n(n− 1)

where a2(σ) is the number of transpositions which occur when σ is written as
a product of disjoint cycles. The first expression is calculated by observing that
if W ′ = W − 1, then τ must choose one of the fixed points and switch it with
something which is not a fixed point. The second calculation is done by similar
considerations.

Define α to be the localized operator as in proposition (3) and choose c = n−1
2 .
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Then, for g : N→ [0, 1],

(βTo − Tα)Uog(σ) =[Uog(W + 1)−W · Uog(W )]

−
[
Uog(W + 1)

(n−W − 2a2)
n

− Uog(W )
W (n−W )

n

]
=Uog(W + 1)

(W + 2a2)
n

− Uog(W )
W 2

n
(13)

Using the method of indicators, it is easy to check that E(W 2) = 2 and E(2a2) =
1. Further, for ‖g‖∞ ≤ 1, ‖Uog‖∞ ≤ 1 by lemma (1). Putting all of this together
proves

Theorem 5. Let W be the number of fixed points in a randomly chosen per-
mutation on n letters. Then

‖L(W )− Poi1‖TV ≤
2
n
.

Remarks:

1. In this example, the bound is not sharp. As is well known, ‖L(W ) −
Poi1‖TV ≤ 2n

n! . It is interesting to speculate on just where sharp control
is lost. We have proceeded by equality through (13).

2. The super exponential bound of remark (1) is an algebraic accident. This
can be seen by considering the number of fixed points in only part of the
permutation, that is, considering Wk(σ) = |{1 ≤ i ≤ k : σ(i) = i}| for
some k < n. Essentially the same argument shows that Wk ∼̇Poi k

n
. In

section 8, we show that the fixed point process (scaled to [0,1]) converges
to a Poisson process of rate 1. Here, the error may be seen to be of order
1
n

.

Generalized matching

Consider now the more general problem of fixed points of permutations of the
set A = {1, 1, ..., 1, 2, ..., 2, ..., k, ..., k} where the number i appears li times. For
example, if two ordinary decks of cards are shuffled, placed on a table and turned
up simultaneously, one card at a time, a match is counted if two cards of the
same number appear at the same time, without regard to suits. This is the
matching problem with k = 13 and li = 4 for each i.

Let |A| = n and let Sn be the set of all permutations of the elements of A
with P(σ) = 1

n! for each σ. Let W (σ) be the number of fixed points of σ and

Wi(σ) the number of times that i is a fixed point of σ, thus W =
k∑
1

Wi. Let



S. Chatterjee et al./Exchangeable pairs and Poisson approximation 74

Wij(σ) = |{i : σ(i) = j}|, that is, Wij is the number of times σ sends i to j.
Finally, let

Xi
m(j) =

{
1 if σ(im) = j,
0 otherwise,

where im is the mth i in the set A.
Build an exchangeable pair in this situation in the same way as in the pre-

vious situation: follow a permutation σ by a random transposition of the n set
elements. Then

Q(W ′ = W + 1|σ) =
1(
n
2

) k∑
i=1

∑
j 6=i

Wji(li −Wi −Wij)

=
2

n(n− 1)

k∑
i=1

l2i − 2liWi +W 2
i −

∑
i 6=j

WjiWij

 ,

Q(W ′ = W − 1|σ) =
1(
n
2

) ∑
i

Wi(n−W − li +Wi)

=
2

n(n− 1)

[
nW −

k∑
i=1

liWi −W 2 +
k∑
i=1

W 2
i

]

To calculate the first expression, make use of the fact that for fixed i,
∑
j 6=iWji =

li −Wi. The first line follows as one determines the probability in question by,
for each fixed i and each j 6= i, counting the number of ways to choose a symbol
i with σ(j) = i and a symbol k 6= i, k 6= j with σ(i) = k. These will then
be switched by a transposition, and the number of fixed points will have been
increased by 1. The second calculation is done similarly.

In order to bound the error term, the following moments are needed:

λ = E(W ) = E

(
k∑
i=1

li∑
m=1

Xi
m(i)

)
=

1
n

k∑
i=1

l2i .

E(Wi) = E

(
li∑

m=1

Xi
m(i)

)
=
l2i
n
.

E(W 2
i ) = E

( li∑
m=1

Xi
m(i)

)2
 =

l2i [n+ l2i − 2li]
n(n− 1)

.
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E(WijWji) = E

 li∑
p=1

lj∑
m=1

Xi
p(j)X

j
m(i)

 =
l2i l

2
j

n(n− 1)
(for i 6= j).

E

(
W 2 −

k∑
i=1

W 2
i

)
= E

 k∑
i=1

∑
j 6=i

WiWj


= E

 k∑
i=1

∑
j 6=i

li∑
p=1

lj∑
m=1

Xi
p(i)X

j
m(j)


=

1
n(n− 1)

k∑
i=1

∑
j 6=i

l2i l
2
j .

Now choose (in analogy with the previous case) c = n−1
2 and make use of

proposition (1) to estimate:

|Ef(W + 1)[λ − cQ(W ′ = W + 1|σ)]|

≤ (1.4)λ−1/2 1
n
E

∣∣∣∣∣∣
k∑
i=1

2liWi −W 2
i +

∑
j 6=i

WijWji

∣∣∣∣∣∣
≤ 1.4

nλ1/2

E( k∑
i=1

liWi

)
+ E

(
k∑
i=1

W 2
i

)
+ E

 k∑
i=1

∑
j 6=i

WjiWij


=

1.4
n2(n− 1)λ1/2

k∑
i=1

(2n− 4)l3i + l2i

k∑
j=1

l2j


=

1.4
n2(n− 1)λ1/2

k∑
i=1

[(2n− 4)l3i + l2i (nλ)]

≤ (1.4)

[(
λ3/2

n− 1

)
+
(

2
n2λ1/2

) k∑
i=1

l3i

]

for f = Uog with g : N→ [0, 1].
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For the other half of the error term,

|Ef(W )(cQ(W ′ = W − 1|σ)−W )| ≤ 1.4
nλ1/2

[
E

(
k∑
i=1

liWi

)
+ E

(
W 2 −

k∑
i=1

W 2
i

)]

=
1.4

n2(n− 1)λ1/2

k∑
i=1

l3i (n− 1) +
∑
j 6=i

l2i l
2
j


≤ (1.4)

[(
λ3/2

n− 1

)
+
(

1
n2λ1/2

) k∑
i=1

l3i

]
.

for f = Uog and g : N→ [0, 1].
Putting these two estimates together with proposition (3) proves

Theorem 6. Let A = {1, ..., 1, 2, ..., 2, ..., k, ..., k}, with the number i appearing
li times, |A| = n. Let W be the number of fixed points of a random permutation

of the elements of A, and let µ =
k∑
i=1

l3i . Then λ := E(W ) =
1
n

k∑
i=1

l2i and

‖L(W )− Poiλ‖TV ≤ (1.4)
[
λ3/2

n− 1
+

3µ
2n2λ1/2

]
.

Remarks:

1. In particular, if li = l for each i, then the theorem gives:

‖L(W )− Poil‖TV ≤ (3.5)l3/2

n− 1
.

2. A celebrated paper of Kaplansky [33] first showed that W had an approx-
imate Poisson distribution under suitable restrictions on the li.

3. Stein’s method may be used to prove Poisson approximation in the match-
ing problem for some non-uniform distributions µ on Sn. In outline, the
technique is similar: construct Q on Sn × Sn by choosing σ according to
µ and then choosing σ′ by making a random transposition and using the
Metropolis algorithm to ensure that σ′ is also µ-distributed.

4. Essentially the same techniques can be used to study approximate match-
es. Here, W = |{i : |i− σ(i)| ≤ c}| for some c.

5. Generalizing the problem in remark 4, one may study
∑

Aiπ(i) where
Aij is an n×n matrix with entries in {0, 1}. Similarly, one may study the
number of permutations which violate a given set of restrictions at most
k times with this method, if the restrictions are given by a {0, 1}-matrix
(that is, π(i) = j is allowed if Aij = 1). Classically, these problems are
solved using rook theory or the extensive development connected to the
permanent (see [21] for extensive references).
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5. The Birthday Problem

For the classical birthday problem, k balls are dropped independently into n
boxes, such that any ball is equally likely to fall into any of the n boxes. How
many balls should there be to have some specified chance of having a box with
more than one ball in it? Let us set up the problem in the framework of Stein’s
method. Let [n] = {1, . . . , n}, and let Ω = [n]k. An element ω = (b1, . . . , bk) ∈ Ω
will represent an arrangement of the k balls in the n boxes: bi is the number of
the box into which we put ball i. Thus the bi are i.i.d. and uniformly chosen from
[n]. Denote this probability measure on Ω by P. Let Mm be the number of boxes
containing exactly m balls, and let Mm+ be the number of boxes containing m
or more balls. We will show that if k = θ

√
n, then W = M2+ is approximately

Poisson distributed with parameter θ2

2 .
Consider the random variables M2,W and V =

∑
i<j

I{bi = bj}. Clearly, M2 ≤

W ≤ V . Also, they are all equal when M3+ = 0. Now M3+ ≤
∑
i<j<l

I{bi = bj =

bl}, since any box which contains more than two balls must contain one such
triplet as in the sum. Thus,

E(M3+) ≤
∑
i<j<l

P(bi = bj = bl) =
(
k

3

)
1
n2
≤ θ3

6
√
n
.

Thus, P(M3+ 6= 0) = P(M3+ ≥ 1) ≤ θ3

6
√
n

. In particular, dTV (LW ,LV ) ≤

P(W 6= V ) ≤ θ3

6
√
n

. Note that EV =
(
k

2

)
1
n
≈ θ2

2
.

Build an exchangeable pair (ω, ω′) as follows: choose ω ∈ Ω according to
P and then choose an index I ∈ [k] uniformly. Let b∗I be i.i.d. with the {bi},
and let ω′ = (b1, . . . , b∗I , . . . , bk). Thus the exchangeable pair is formed by first
distributing the k balls independently and uniformly in the n boxes, and then
choosing a ball at random and choosing a new box for it at random. As before,
let W = W (ω), W ′ = W (ω′), and compute:

Q(W ′ = W − 1|ω) =
2M2(n−M1 − 1)

kn

Q(W ′ = W + 1|ω) =
M1

k

(
M1

n
− 1
n

)
+
k −M1 − 2M2

k

(
M1

n

)
=

M1(k − 2M2 − 1)
kn

.

The first equality holds as in order to make W go down by 1, we must choose
a ball from a box that contains exactly two balls and put it into any box except
either the one it came from or any of the boxes which started with exactly one
ball. The second computation is similar.
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By proposition (3) and choosing c = k
2 , the error term for Poisson approxi-

mation is given by:

1
2

sup{E(Af(W + 1)−Bf(W )) : f : N→ [0, 1]}

where

A =
θ2

2
− M1(k − 2M2 − 1)

2n
and

B = W − M2(n−M1 − 1)
n

.

Observe that θ = kn−1/2 implies that

A =
k(k −M1) + 2M1M2 +M1

2n
≥ 0.

Now E(k −M1) = E(W ) ≤ E(V ) ≤ θ2/2, and E(M1M2) ≤ kE(M2) ≤ kθ2/2.
Thus,

E|A| ≤ k

2n

(
θ2

2
+ θ2 + 1

)
=
((

3
4

)
θ3 +

(
1
2

)
θ

)(
1√
n

)
.

Finally,

E|B| = E

∣∣∣∣W −M2 +
M2(M1 + 1)

n

∣∣∣∣ = E(M3+) +
(k + 1)θ2

2n
≤ 2θ3

3
√
n

+
θ2

2n

since E(M3+) ≤ θ3

6
√
n

, as shown before. Applying lemma (1), proves

Theorem 7. If we drop k = θ
√
n balls independently and uniformly into n

boxes, and let W be the number of boxes containing at least two balls, then

‖L(W )− Poiθ2/2‖TV ≤ min{1,
√

2θ−1}
[

19θ3 + 6θ
12
√
n

+
θ2

2n

]
.

Triple matches

We next consider a variation of the birthday problem: triple matches. As before,
let Ω be the space of possible arrangements of k balls in n boxes with proba-
bility P given by independent and uniform placement of the balls. This time,
the random variable W (ω) will denote the number of triple matches in ω; i.e.,
|{(i, j, l) : 1 ≤ i < j < l ≤ k, bi = bj = bl}|, where bi is the box in which we
put ball i. One can write W =

∑
i<j<l

I{bi=bj=bl}, and from this representation,

we get EW =
(
k

3

)
1
n2

.
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Let Mi(ω) be the number of boxes containing exactly i balls, thus W =
k∑
l=3

(
l

3

)
Ml. Let X l

i be the indicator that box i contains exactly l balls. Then

E(Ml) =
n∑
i=1

E(X l
i)

= n

(
k

l

)(
1
n

)l (
1− 1

n

)k−l
.

Construct an exchangeable pair in this case exactly as in the previous case:
choose a ball at random and then choose a new box at random to put it in. We
have:

Q(W ′ = W + 1|ω) =
1
kn

[M1M2 + 2M2(M2 − 1)]

=
1
kn

[M1M2 + 2M2
2 − 2M2].

This follows as the only ways to make the number of triples sharing a box go up
by exactly one are either to choose a ball from a box with only one ball and move
it to any of the boxes with two balls, or to choose a ball from a box with two balls
and put it into one of the other boxes with two balls. No further possibilities
exist, as removing a ball from a box with m balls and putting it into a box with
l balls will increase W by exactly one if and only if

(
m
3

)
−
(
m−1

3

)
=
(
l
2

)
− 1, and

there are no solutions of this if m > 3. Similarly:

Q(W ′ = W − 1|ω) =
1
kn

[3M3M0 + 3M3M1].

Using lemma (1) and proposition (3) together with the triangle inequality,
we will need to estimate:

E

∣∣∣∣k(k − 1)(k − 2)
6n2

− c

kn
[M1M2 + 2M2

2 − 2M2]
∣∣∣∣ (14)

E

∣∣∣ c
kn

[3M0M3 + 3M1M3]−W
∣∣∣ (15)

for some choice of the parameter c.
Consider (14) first. Define new random variables M̃i = Mi − µi where µi =

EMi and write everything in terms of these M̃i. We have:

M1M2 + 2M2
2 − 2M2 = M̃1M̃2 + 2M̃2

2 + (µ1 + 4µ2 − 2)M̃2 + µ2M̃1 + µ1µ2 − 2µ2 + 2µ2
2.

The deterministic part of this is

µ1µ2 − 2µ2 + 2µ2
2 =

k(k − 1)(n− 1)k−2[k(n− 1)k−1 − 2nk−1 + k(k − 1)(n− 1)k−2]
2n2k−2
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and if k = o(n), then the top order term of the numerator is k(k−1)(k−2)n2k−3.
We thus choose the parameter c to be c = k

3 . Then in expression (14), use the
triangle inequality to estimate the deterministic part of the sum separately. It
is asymptotic to k4

3n3 , thus if k = o(n3/4), this part of (14) goes to 0. Recall that
EW = k(k−1)(k−2)

6n2 , so to get a nontrivial limiting distribution, the case we are
interested in is k = θn2/3 for some fixed θ, so limiting our considerations in a
way that still allows for this case is no loss. We will now estimate each term
of the non-deterministic part of (14) separately. Using the method of indicators
gives

E(M̃2
1 ) = E(M2

1 )− µ2
1

=
k(n− 1)nk−1[(n− 1)k−2 + (k − 1)(n− 2)k−2]− k2(n− 1)2k−2

n2k−2

= O (k) .

E(M̃2
2 ) = E(M2

2 )− µ2
2

=
k(k − 1)(n− 1)nk−1[2(n− 1)k−3 + (k − 2)(k − 3)(n− 2)k−4]− k2(k − 1)2(n− 1)2k−4

4n2k−2

= O

(
k2

n

)
.

Now to estimate (14), use Cauchy-Schwartz:

E

∣∣∣∣k(k − 1)(k − 2)
6n2

− 1
3n

[M1M2 + 2M2
2 − 2M2]

∣∣∣∣
≤ O

(
k4

n3

)
+

1
3n
E|M̃1M̃2|+

2
3n
EM̃2

2 +
µ1 + 4µ2 − 2

3n
E|M̃2|+

µ2

3n
E|M̃1|

≤ O

(
k4

n3

)
+

1
3n

√
EM̃2

1EM̃
2
2 +

2
3n
EM̃2

2 +
µ1 + 4µ2 − 2

3n

√
EM̃2

2 +
µ2

3n

√
EM̃2

1

≤ O

(
k4

n3

)
+O

(
k3/2

n3/2

)
+O

(
k2

n2

)
+O

(
k2

n3/2

)
+O

(
k3/2

n2

)
.

In particular, if k = θn2/3, this expression goes to 0 as n→∞.
The same kind of analysis is used to bound (15). Again, recentering all the

random variables about their means and using our choice of c, the expression
(15) turns into:

1
n

[M̃0M̃3+µ3M̃0+µ0M̃3+M̃1M̃3+µ3M̃1+µ1M̃3]−
k∑
`=3

(
`

3

)
M̃`+

µ0µ3 + µ1µ3

n
−k(k − 1)(k − 2)

6n2
.

(16)
The deterministic part approaches 0:

µ0µ3 + µ1µ3

n
− k(k − 1)(k − 2)

6n2
=

(n− 1)2k−4k(k − 1)(k − 2)(n− 1 + k)
6n2k−1

− k(k − 1)(k − 2)
6n2

= O

(
k4

n3

)
.
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In order to estimate the rest, the following moments are needed:

E(M̃2
0 ) = E(M2

0 )− µ2
0

=
(n− 1)knk−1 + (n− 2)k(n− 1)nk−1 − (n− 1)2k

n2k−2

= O(n).

E(M̃2
1 ) = E(M2

1 )− µ2
1

=
nk−1[k(n− 1)k−1 + k(k − 1)(n− 1)(n− 2)k−2]− k2(n− 1)2k−2

n2k−2

= O(k).

E(M̃2
2 ) = E(M2

2 )− µ2
2

=
k(k − 1)(n− 1)nk−1[2(n− 1)k−3 + (k − 2)(k − 3)(n− 2)k−4]− k2(k − 1)2(n− 1)2k−4

4n2k−2

= O

(
k2

n

)
.

E(M̃2
3 ) = E(M2

3 )− µ2
3

= nk−1k(k−1)(k−2)[6(n−1)k−3+(k−3)(k−4)(k−5)(n−1)(n−2)k−6]−k2(k−1)2(k−2)2(n−1)2k−6

36n2k−2

= O

(
k3

n2

)
.

E(M̃2
` ) = E(M2

` )− µ2
`

=
nk−1[(n− 1)k−`

(
k
`

)
+
(
k
`

)(
k−`
`

)
(n− 1)(n− 2)k−2`]−

(
k
`

)2
(n− 1)2k−2`

n2k−2

= O

(
k`

n`−1

)
(for 4 ≤ ` ≤ k

2 ).

E(M̃2
` ) = E(M2

` )− µ2
`

=
(n− 1)k−`nk−1

(
k
`

)
−
(
k
`

)2
(n− 1)2k−2`

n2k−2

= O

(
k`

n`−1

)
(for k

2 < ` ≤ k).

Looking back at (16) and using the triangle inequality and Cauchy-Schwarz
on most of the terms, the following go to zero: E| 1nM̃3M̃0|, E| 1nµ3M̃0|, E| 1nM̃1M̃3|,
E| 1nµ3M̃1|, and E| 1nµ1M̃3|. We have already dealt with the deterministic part.
Next, consider the term

E

∣∣∣∣ 1nµ0M̃3 − M̃3

∣∣∣∣ (17)
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which is the remaining µ0M̃3 term of (16) and the first summand of
k∑
`=3

(
`

3

)
M̃`.

E

∣∣∣∣ 1nµ0M̃3 − M̃3

∣∣∣∣ = E

∣∣∣∣( (n− 1)k

nk
− 1
)
M̃3

∣∣∣∣
≤ O

(
k3/2

n2

)
.

Finally, we have to deal with E
k∑
`=4

(
`

3

)
|M̃`|. Treat this expression in two parts.

No matter what n is, estimate the first 24 summands by
(

27
3

)
·O
(
k2

n3/2

)
. The

rest is bounded as follows:

k∑
`=28

(
`

3

)
E|M̃`| ≤ k · k3 ·O

(
k14

n27/2

)
= O

(
k18

n27/2

)
so if k = o

(
n3/4

)
as above, then this goes to 0. This proves:

Theorem 8. Let k balls be dropped independently and uniformly into n boxes,
where W is the number of triples of balls sharing a box. Then,∥∥∥L(W )− Poi((k3) 1

n2 )

∥∥∥
TV

= O

(
k4

n3

)
.

In particular, if k = θn2/3, then W has a non-trivial limiting Poisson distribu-
tion.

Remark: It is instructive to compare the bound in theorem 8 to the more
general bound for multiple matches in the birthday problem that appears in
theorem 6B of the book of Barbour, Holst, and Janson. First, their bound gives

an explicit inequality instead of the O
(
k4

n3

)
of theorem 8. More importantly, in

the critical case where k = θn2/3, theorem 8 gives a bound of order n−1/3 for the
error. Theorem 6B gives a bound of order n−2/3. This suggests a more careful
look at the analysis above and a healthy respect for the coupling approach.

6. The Coupon-Collector’s Problem

In its simplest version, the coupon-collector’s problem is as follows: drop k balls
independently and uniformly into n boxes. How large should k be so that there
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is a prescribed chance (e.g. 95%) that every box contains at least one ball? This
is also an old problem: Laplace (1780) gave an effective solution. Feller [26] and
David-Barton [17] present substantial developments.

Write W for the number of empty boxes, and use θ to write k = n log n+ θn.
We introduce the new notation ki for the number of balls in box i, and use Ni to
denote the number of boxes with i balls. Note that E(W ) = n(1−n−1)k ∼ e−θ.
Hence we take λ = e−θ. Make an exchangeable pair by choosing a ball at
random, choosing a box at random, and putting the chosen ball into the chosen
box. As before, compute:

P(W ′ = W − 1|ω) =
(k −N1)W

kn

and

P(W ′ = W + 1|ω) =
N1(n−W − 1)

kn

Taking c = n gives the error for Poisson approximation as

sup{E(Af(W + 1)−Bf(W )) : 0 ≤ f ≤ 1}

where

A = e−θ − N1(n−W − 1)
k

and

B = W − (k −N1)W
k

=
N1W

k
.

By the method of indicators one can compute EN1W =
∑
i 6=j P(ki = 1∧kj = 0),

where ki is the number of balls in box i. Hence,

E|B| =
1
k
n(n− 1)

(
k

1

)
1
n

(
1− 2

n

)k−1

≤ n(1− 2n−1)k−1

≤ e−2θ

n− 2
.

Now E|A| ≤ E|C|+ E|D|, where

C = e−θ − (e−θ log n)(n−W − 1)
k

and

D =
(e−θ log n)(n−W − 1)

k
− N1(n−W − 1)

k
.

We have

C =
e−θ(n log n+ θn− n log n+ (W + 1) log n)

k
=
e−θ(θn+ (W + 1) log n)

k
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and E(W ) ≤ e−θ. Hence

E|C| ≤ e−θ(θn+ (e−θ + 1) logn)
n log n+ θn

∼ θe−θ

log n
.

So what remains is to bound E|D|. Observe that E|D| ≤ n log n
k

E

∣∣∣∣e−θ − N1

log n

∣∣∣∣.
∣∣∣∣E( N1

log n

)
− e−θ

∣∣∣∣ =

∣∣∣∣∣
(
n+

θn

log n

)(
1− 1

n

)k−1

− e−θ
∣∣∣∣∣

≤ nθe−θ

(n− 1) logn
+

∣∣∣∣∣n
(

1− 1
n

)k−1

− e−θ
∣∣∣∣∣

≤ nθe−θ

(n− 1) logn
+

e−θ

n− 1
+ |eα − e−θ|

where α = log n+ k log(1− n−1). Now

α = logn+ (n log n+ θn) log
(

1− 1
n

)
= logn+ (n log n+ θn)

[
− 1
n
− 1

2n2
− 1

3n3
− · · ·

]
= −θ + (n log n+ θn)

[
− 1

2n2
− 1

3n3
− · · ·

]
In particular, α ≤ −θ. Hence

|eα − e−θ| ≤ emax{α,−θ}|α− (−θ)|

≤ e−θ(n log n+ θn)
[

1
2n2

+
1

3n3
+ · · ·

]
≤ e−θ(log n+ θ)

2(n− 1)
.

So if
N1

log n
concentrates at its expectation, there is a bound on the error term.

This is seen as follows:

E

∣∣∣∣ N1

log n
− E

(
N1

log n

)∣∣∣∣ ≤
√

Var(N1)
log n

.

Now N1 =
∑n
i=1 ξi, where ξi = I{ki = 1}, ki being the number of balls in box

i. So
Var(N1) = nVar(ξ1) + n(n− 1)Cov(ξ1, ξ2).

Let

p = P(ξ1 = 1) =
(
k

1

)
1
n

(
1− 1

n

)k−1

∼ e−θ log n
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and

ρ = P(ξ1 = 1 ∧ ξ2 = 1) = k(k − 1)
1
n2

(
1− 2

n

)k−2

.

Then Var(ξ1) = np(1− p) ≤ np and Cov(ξ1, ξ2) = n(n− 1)(ρ− p2). Now

ρ− p2 =
k(k − 1)
n2

(
1− 2

n

)k−2

− k2

n2

(
1− 2

n
+

1
n2

)k−1

≤ k(k − 1)
n2

(
1− 2

n

)k−2

− k2

n2

(
1− 2

n

)k−1

=
(

1− 2
n

)k−2 [
k2 − k
n2

− k2

n2

(
1− 2

n

)]
≤

(
1− 2

n

)k−2 2k2

n3

Hence

Var(N1) ≤ k

(
1− 1

n

)k−1

+
2k2

n

(
1− 2

n

)k−2

≤ n(log n+ θ)e−θ

n− 1
+

2(log n+ θ)2e−2θ

n− 2
∼ e−θ log n.

Putting everything together shows

Theorem 9. Drop k balls independently and uniformly into n boxes. If k =
n log n+ θn, and W denotes the number of empty boxes, then

‖L(W )− Poie−θ‖TV ≤ O
(

e−θ√
log n

)
.

Remark: The analysis above can be sharpened to give an error of order logn
n

in theorem 9. See the remarks to example 2 in section 9.2. It is instructive to
compare this bound with the results of theorem 6D in the book by Barbour,
Holst, and Janson. In the critical case where k = n log n+ θn, theorem 6D gives
an explicit inequality which leads to an error of order logn

n as well.

7. Multivariate Poisson Approximation

This section gives useful bounds on the approximation of a vector of integer-
valued random variables by a vector with independent Poisson coordinates. As
an example, we treat the joint distribution of the number of fixed points and
the number of times i goes to i+ 1 in a random permutation.
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Proposition 10. Let W = (W1, . . . ,Wd) be a random vector with values in Nd

and E(Wi) = λi < ∞. Let Z = (Z1, . . . , Zd) have independent coordinates with
Zi ∼ Poiλi . Let W ′ = (W ′1, . . . ,W

′
d) be defined on the same probability space as

W with (W,W ′) an exchangeable pair. Then for all h : Nd → [0, 1],

|Eh(W )− Eh(Z)| ≤
d∑
k=1

αk

[
E |λk − ckPW (Ak)|+ E |Wk − ckPW (Bk)|

]
(18)

with αk = min(1, 1.4λ−1/2
k ), any choice of the {ck}, and

Ak = {W ′k = Wk + 1,Wj = W ′j for k + 1 ≤ j ≤ d}
Bk = {W ′k = Wk − 1,Wj = W ′j for k + 1 ≤ j ≤ d}.

Proof. Without loss of generality, assume that the Z’s and the W ’s are defined
on the same space and are independent. For h : Nd → [0, 1], define f1, f2, . . . , fd
on Nd as follows. Fix k ∈ {1, . . . , d} and fix w1, . . . , wk−1, wk+1, . . . , wd ∈ N.
Define fk(w1, . . . , wk−1, 0, wk+1, . . . , wd) = 0 and

λkfk(w1, . . . , wk−1, n, wk+1, . . . , wd) = (n− 1)fk(w1, . . . , wk−1, n− 1, wk+1, . . . , wd)
+h(w1, . . . , wk−1, n− 1, wk+1, . . . , wd)(19)
−Eh(w1, . . . , wk−1, Zk, wk+1, . . . , wd).

Lemma (1) shows that ‖fk‖∞ ≤ min(1, 1.4λ1/2
k ).

Now express the difference Eh(W )− Eh(Z) as a telescoping sum:

Eh(W )−Eh(Z) =
d∑
k=1

[Eh(Z1, . . . , Zk−1,Wk, . . . ,Wd)−Eh(Z1, . . . , Zk,Wk+1, . . . ,Wd)].

(20)
From the definition of fk given in (19),
Eh(Z1, . . . , Zk−1,Wk, . . . ,Wd)− Eh(Z1, . . . , Zk,Wk+1, . . . ,Wd)

= E[λkfk(Z1, . . . , Zk−1,Wk + 1, . . . ,Wd)−Wkfk(Z1, . . . , Zk−1,Wk, . . . ,Wd)].

Now, for Ak and Bk as defined above, define

Tk = ck[fk(Z1, . . . , Zk−1,W
′
k, . . . ,W

′
d)δAk − fk(Z1, . . . , Zk−1,Wk, . . . ,Wd)δBk ]

for some ck, and note that by antisymmetry, E(Tk) = 0. If F denotes the σ-field
generated by Z1, . . . , Zd,W1, . . . ,Wd, then

E(Tk|F) = ck[fk(Z1, . . . , Zk−1,Wk + 1,Wk+1, . . . ,Wd)PW (Ak) (21)
−fk(Z1, . . . , Zk−1,Wk, . . . ,Wd)PW (Bk)].

As E(Tk) = 0, the expression (21) can be inserted into the summand in (20),
yielding
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Eh(W )− Eh(Z) =
d∑
k=1

E[(λk − ckP(Ak))fk(Z1, . . . , Zk−1,Wk + 1,Wk+1, . . . ,Wd)(22)

−(Wk − ckP(Bk))fk(Z1, . . . , Zk−1,Wk, . . . ,Wd)].

From (22), the claim (18) follows from lemma (1).

Example (d=2): Choose σ uniformly in Sn; let W1 = |{i : σ(i) = i}| and
W2 = |{i : σ(i) = i+ 1}|. For W2, count cyclically, thus σ(n) = 1 contributes to
W2. It is intuitively clear that W1 and W2 have the same marginal distributions
and that they are asymptotically independent. Proposition (10) allows a proof
with error terms. Note that E(W1) = E(W2) = 1.

Create an exchangeable pair (W ′1,W
′
2) and (W1,W2) by following σ with a

randomly chosen transposition. The sets Ak, Bk are

A1 = {W ′1 = W1 + 1,W ′2 = W2}
B1 = {W ′1 = W1 − 1,W ′2 = W2}
A2 = {W ′2 = W2 + 1}
B2 = {W ′2 = W2 − 1}.

Then

P(A1|σ) =
2(n−W1 −W2 −W3)

n(n− 1)
,

where

W3 = |{i : σ2(i) = i, σ(i) 6= i}∪{i : σ(i) = i+1, σ(i+1) 6= i}∪{i : σ(i) = σ−1(i)+1}|,

and

P(B1|σ) =
2W1(n− 1−W1 −W2)

n(n− 1)
+

2W4

n(n− 1)
,

where
W4 = |{i : σ(i) = i, σ(i− 1) = i− 1}|.

The calculations for P(A2|σ) and P(B2|σ) are analogous to those carried out in
section 4. Choosing ck = n−1

2 for k = 1, 2 in proposition (10) then yields the
estimate

‖L(W1,W2)− L(Z1, Z2)‖TV ≤
13
n
,

where (Z1, Z2) are independent Poisson random variables, each with mean 1.
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8. Stein’s Method for Poisson Process Approximation

8.1. Introduction

We begin with an example: consider, as in section (4), a random permutation σ

on n letters. For 1 ≤ i ≤ n, let Xi =

{
1 if σ(i) = i,
0 otherwise,

and let Wj =
j∑
i=1

Xi; i.e.,

W is the number of matches up to time j. In the same way as in section (4),
one can show that Wj has an approximate Poisson distribution with parameter
j
n . In this section we show that the point process Yt = Wb tnc for 0 ≤ t ≤ 1
converges to a Poisson process of rate 1. Similar results can be derived for the
birthday problem: the number of birthday matches with bt

√
nc people converges

to a Poisson process of rate 1. For the coupon-collector’s problem, the number
of new coupons collected from time n log n to time n log n + tn converges to a
Poisson process of rate e−t.

Recall that if Y is a complete separable metric space and µ is a measure on Y

which is finite on bounded sets, a Poisson process of rate µ is a random discrete
measure on Y with the following properties:

• The number of points N(A) in a bounded set A has a Poisson distribution
with parameter µ(A).
• If A1, . . . , Ak are disjoint bounded sets, then {N(Ai)}ki=1 are independent.

Useful introductions to Poisson processes are found in Kingman [36] and
Resnick [44]. The first use of Stein’s method in Poisson process approximation
was in 1988 in the paper [5] by Barbour, and the last chapter of Barbour,
Holst, and Janson [8] has a wonderful development of Stein’s method for Poisson
process approximation, using dependency graphs and the coupling approach. We
show here how the method of exchangeable pairs can be used. Again, there are
other approaches to proving Poisson process approximation. We find the papers
[39] and [40] by Kurtz particularly helpful. For a connection with Palm theory,
see [15].

Returning to our example, once we have the Poisson process approximation
in place, one has various ‘off the shelf’ results, e.g.

• If there are k matches, their location is distributed as k random points in
[0, 1].
• One has the limiting distribution of the minimum (or maximum) distance

between two matching times (see Gilbert and Pollak [29], Feller [26]).

Furthermore, one can harness some standard machinery for transformations
of Poisson processes. Perhaps the three most important such results are the
following: Let a Poisson process of rate µ be given on Y.

• (Mapping) If T : Y → X is a proper map then the image process is
Poisson on X with rate µT

−1
.
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• (Spraying) Let K(y, dx) be a stochastic kernel on Y× FX. Replace each
point y in the Y process by a point chosen from K(y, dx). The new process

is Poisson with rate
∫
K(y, dx)µ(dy).

• (Thinning) Delete points in the Y process with probability P (y). The

new process is Poisson with rate
∫
A

P (y)µ(dy).

With these examples as our motivation, we turn to a rigorous account. Let
I be a finite index set, and let {Xi}i∈I be binary indicators with some joint
distribution and with P(Xi = 1) = pi. Let {Wi}i∈I be independent Poisson
random variables with parameters pi. We give a development which allows us
to bound the distance

‖L(Xi : i ∈ I)− L(Wi : i ∈ I)‖TV

between the processes. This depends on the construction of an exchangeable pair
(X,X ′). In the matching problem, X is constructed from a random permutation
σ and X ′ is constructed by making a random transposition in σ.

8.2. The basic set-up

Let I be a finite set, and let ξ =
∑
i∈I

xiδi be a configuration on I. Thus ξ is a

measure on I putting mass xi at i, with xi ∈ N. In fact, in our applications we
will typically consider the case xi ∈ {0, 1}. Let Xo be the bounded measurable
functions on configurations. Thus if f : N → R is given, then ξ 7→

∑
f(i)xi =∫

fdξ is in Xo, as are max{i : xi > 0} and
∫
f(i, j)dξdξ for f : N× N→ R.

Let Eo be the Poisson expectation operator on Xo. In other words, consider a
probability space (Ω,A,P) and an induced probability on the space of configura-
tions on I given by writing ξ =

∑
xi(ω)δi where the xi ∼ Poi(pi). Let X be the

space of bounded measurable functions on Ω with corresponding expectation
operator E. As in section 2, there will be a map β : Xo → X assigning a random
variable to a function on configurations:

Xo
Eo

  @@@@@@@@

β

��

R

X

E

>>}}}}}}}}

In the matching example, the probability space is Sn with the uniform dis-
tribution, and the association σ ←→ ξσ =

∑
xi(σ)δi gives rise to the map

βT (σ) = T (ξσ) for T ∈ Xo. The aim is to show that Eβ .= Eo. To do this we
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introduce

Fo
To //

α

��

Xo

β

��

Eo

  @@@@@@@@
Uo

oo

R

i

``@@@@@@@@

F
T

// X

E

>>}}}}}}}}

with To the Stein operator

Toh(ξ) =
∑
i∈I

pi[h(ξ + δi)− h(ξ)] +
∑
i∈I

xi[h(ξ − δi)− h(ξ)] (23)

and Fo the subset of elements h ∈ Xo with Toh bounded. As explained in
Barbour, Holst, and Janson, this To is the generator of an immigration and
death process Z(t) on I where particles are born at site i at exponential rate
pi and die at rate one. This process has the Poisson process of rate {pi} as
a stationary distribution. This fact (or a straight-forward direct computation)
shows that EoTo = 0.

Note that for |I| = 1 the operator is slightly different from the usual Stein
operator for a Poisson process. This To is a “second difference” operator. We use
it because of already available bounds on its inverse, but also as an introduction
to this line of development. The inverse can be given a stochastic representation

Uof(ξ) = −
∫ ∞

0

[E(f(Z(t))| ξ)− Eof ]dt

where Z(t) is the immigration and death process started at ξ. Barbour, Holst,
and Janson (pg. 209) show that

ToUof(ξ) = f(ξ)− Eof.

They also show that if f(ξ) = δA(ξ) for some set of configurations A, then

sup{|Uof(ξ + δi)− Uof(ξ)| : i ∈ I, ξ a configuration} ≤ 1.

As before, let F be the bounded anti-symmetric functions on Ω × Ω, and
construct T via a symmetric probability Q with margins P:

Tf(ω) = EQ(f(ω, ω′)|ω).

We may choose α to be any linear map α : Fo → F. Stein’s identity is

E(h(ξ)) = Eo(h(ξ)) + E[Tα− βTo]Uoh.

To proceed, we need to make an intelligent choice of α, make explicit the
difference Tα − βTo, and use this expression to bound the remainder term.
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Because of the different form of the Stein operator, the choice of α which seems
most useful is:

αf(ω, ω′) = c[βf(ξω)− βf(ξω′)]δ(ω, ω′)− c[βf(ξω′)− βf(ξω)]δ(ω′, ω)

where

δ(ω, ω′) =

{
1 if ξω′ = ξω + δi for some i,
0 otherwise.

Thus,

βToh(ω) =
∑
i∈I

pi[h(ξω + δi)− h(ξω)]−
∑
i∈I

xi[h(ξω − δi)− h(ξω)]

Tαh(ω) = c
∑
i∈I

[h(ξω + δi)− h(ξω)]Q(ξω′ = ξω + δi|ω)

−c
∑
i∈I

[h(ξω)− h(ξω − δi)]Q(ξω′ = ξω − δi|ω).

In our application, h = Uof , thus h has bounded differences. It then follows
that if c and the probability Q can be chosen so that

|cQ(ξω′ = ξω + δi|ω)− pi| < εi and
|cQ(ξω′ = ξω − δi|ω)− xi| < ε′i

then the error in the Poisson approximation is bounded by
∑
i∈I

(εi + ε′i).

Of course, in any application, some work is required. Here is a full version of
the matching problem.

Theorem 11. Let Xi(σ), 1 ≤ i ≤ n indicate whether or not i is a fixed point
of the random permutation σ. Let Yi be independent Poisson random variables,
each with mean

(
1
n

)
. Then

‖L(Xi : 1 ≤ i ≤ n)− L(Yi : 1 ≤ i ≤ n)‖TV ≤
4
n
.

Proof. It is easy to see that

Q(ξω′ = ξω + δi|σ) =
2(1− Zi(σ))
n(n− 1)

and that

Q(ξω′ = ξω − δi|σ) =
2Xi(σ)(n−W (σ))

n(n− 1)

with Zi(σ) indicates whether σ(σ(i)) is i or not, and W =
∑
Xi. Choose c =

n−1
2 , and note that pi = 1 for each i. We thus have that∣∣∣∣cQ(ξω′ = ξω + δi|σ)− 1

n

∣∣∣∣ =
Zi(σ)
n
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and that

|cQ(ξω′ = ξω − δi|σ)−Xi(σ)| = Xi(σ)W (σ)
n

.

It follows that if A is any set of configurations,

|P(ξ(σ) ∈ A)− Eo(δA)| ≤ 1
n
E(W + 2a2(σ)) +

1
n
E(W 2)

=
4
n
.

Remark: We have not treated the closely related area of compound Poisson
approximation; see Erhardsson [25] and the references therein.

9. The coupling approach to Poisson approximation

Stein’s method for Poisson approximation has been very actively developed
along two lines, both quite different from the present account. The connections
between the various approaches are not clear. In this section we give a brief
development of the coupling method. In section 10 we give a brief development
of the dependency graph method. The book-length account of Barbour, Holst,
and Janson treats both coupling and dependency graphs in detail. The main
reasons for including brief descriptions here are twofold: (a) as illustrated above,
the many analytic tools developed by previous workers can easily be adapted
for use with the present method of exchangeable pairs; (b) while the three
approaches are similar, there are also real differences. Sometimes one or another
approach is easier to apply or yields better bounds.

The basics of the coupling method are laid out in section 9.1. Section 9.2
treats our familiar examples: Poisson-binomial trials, the birthday problem, the
coupon-collector’s problem, and the matching problem. Section 9.3 illustrates
one of the triumphs of the coupling approach: effortless bounds for negatively
dependent summands. Our development leans heavily on lectures of Charles
Stein.

9.1. The basics

From section 2, we know that a random variable W has a Poisson distribution
with parameter λ if and only if, for each bounded measureable function f ,

E(Wf(W )) = λE(f(W + 1)).

This suggests that one approach to the question of whether W is approximately
Poisson-distributed is to compare E(Wf(W )) and λE(f(W + 1)). The following
simple lemma motivates a slightly mysterious construction to come. It appears
in Stein [51].
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Lemma 12. Let X = {Xi}i∈ I be {0, 1}-valued random variables indexed by
a finite set I. Let λ =

∑
i∈ I

E(Xi) and let I be uniformly distributed on I and

independent of X. Then, for any bounded f ,

E(Wf(W )) = λE(f(W )|XI = 1).

Proof.

E(Wf(W )) = |I| · E{E(XI |X)f(W )}
= |I| · E{XIf(W )}
= |I| · E{XIE(f(W )|XI = 1)}
= λE(f(W )|XI = 1).

The lemma suggests comparing W + 1 and a random variable W ∗ having the
distribution of W , given that the randomly chosen coordinate XI is one. Many
examples in which W ∗ is constructed explicitly appear below. The following
result gives a concrete bound on the total variation distance between the law of
W and Poiλ in terms of the difference between W + 1 and W ∗.

Proposition 13. Let X, I, and W be defined as in lemma (12). Let W ∗ be
defined on the same probability space with

P(W ∗ = w) = P(W = w|XI = 1).

Then
‖L(W )− Poiλ‖TV ≤ (1− e−λ)E|W + 1−W ∗|.

Proof. Given A ⊆ N ∪ {0}, let g(j) = δA(j)− Poiλ(A) and set f = Uog, for Uo
as defined in (5). Then, from lemma (12) and equation (6),

0 = E(Wf(W )− λf(W ∗))
= E(Wf(W )− λf(W + 1) + λf(W + 1)− λf(W ∗))
= P(W ∈ A)− Poiλ(A) + λE(f(W + 1)− f(W ∗)).

Now, for any integers x < y,

|f(x)− f(y)| ≤ |f(x)− f(x+ 1)|+ |f(x+ 1)− f(x+ 2)|+ . . .+ |f(y− 1)− f(y)|,

and from lemma (1), |f(i+ 1)− f(i)| ≤ (1− e−λ)
λ

, thus

|P(W ∈ A)− Poiλ(A)| ≤ (1− e−λ)E|W + 1−W ∗|.

From these pieces, we get a bound for Poisson approximation by constructing
a coupling (W,W ∗) with W ∗ close to W + 1. Stein [51] and Barbour, Holst, and
Janson [8] give many examples leading to good bounds in a host of problems.

We next give a brief treatment of the basic probability problems treated in
previous sections.
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9.2. Examples

Example 0 (Poisson-binomial trials): Let Xi, 1 ≤ i ≤ n be independent

with P(Xi = 1) = pi = 1− P(Xi = 0). Let λ =
∑
pi and let W =

n∑
i=1

Xi. Then

‖L(W )− Poiλ‖TV ≤
(1− e−λ)

λ

n∑
i=1

p2
i .

Proof. We construct W ∗ ‘backwards’. Pick X from the product measure, and
independently pick I∗ with P(I∗ = i) = pi

λ . Set X∗I∗ = 1 and X∗i = Xi for
i 6= I∗. We claim that

P(I∗ = i,X∗ = x) = P(I = i,X = x|XI = 1).

Indeed, if xi = 0, then both sides are 0. If xi = 1, then

P(I∗ = i,X∗ = x) =
pi
λ

∏
j 6=i

p
xj
j (1− pj)1−xj

and

P(I = i,X = x|XI = 1) =
P(I = i,X = x)
P(XI = 1)

=
1
npi

∏
j 6=i p

xj
j (1− pj)1−xj

λ
n

.

Note that the claim shows P(W ∗ = j) = P(W = j|XI = 1). To complete the

proof, observe that W + 1−W ∗ = XI∗ , and that P(XI∗ = 1) =
∑
i

p2
i

λ
.

Remarks:

1. Observe that the bound of this example is exactly the same as the bound
given by the method of exchangeable pairs.

2. The backwards construction of this example seems magical when you first
encounter it. The method of exhangeable pairs seems much more straight-
forward (at least to us). One benefit of the coupling approach is the clean
bound of proposition (13).

Example 1 (The matching problem): Here, let Xi = δiπ(i) with π a

randomly chosen permutation in Sn. Then W =
n∑
i=1

Xi is the number of fixed

points in π. Construct W ∗ by picking I uniformly in {1, . . . , n} and then setting

π∗ =

{
π if π(I) = I,
(IJ)π if π(I) = J 6= I.
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Then if a2 is the number of transpositions in π,

W + 1−W ∗ =


1 with probability W

n ,
−1 with probability 2a2

n ,
0 otherwise.

Then

E|W + 1−W ∗| = EEπ|W + 1−W ∗|

= E

[
W

n
+

2a2

n

]
=

2
n
,

thus

‖L(W )− Poi1‖TV ≤
(1− e−1)2

n
.

Example 2 (The coupon-collector’s problem): Here k balls are dropped
into n boxes and Xi is one or zero as box i is empty or not. Then W =

∑
i

Xi is

zero if all of the boxes are covered. To construct a coupling, pick a box uniformly
and simply distribute each ball in it at random into one of the other boxes. We
claim that

E(|W + 1−W ∗|) ≤
(

1− 1
n

)k (
1 +

k

n

)
.

To prove this, let A be the number of balls in the box selected. Observe that
W + 1−W ∗ ≥ 0 and that

• If A = 0, then W + 1−W ∗ = 1.
• If A > 0, then W + 1 −W ∗ is the number of the A balls that fall into

empty boxes.

From this,

E(|W + 1−W ∗|) ≤ E(W )
n

+
E(AW )

n
.

Now, E(W ) = n
(
1− 1

n

)k. To compute E(AW ), observe that by symmetry this
is E(A1W ), with A1 the number of balls in box 1. Let Xi indicate whether box

i is empty, thus
n∑
i=1

Xi = W , and let Yj indicate whether ball j falls into the
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first box, thus
k∑
j=1

Yj = A1. Then

E(A1W ) = E(A1X1) + (n− 1)E(A1X2)
= (n− 1)kE(Y1X2)

= k

(
1− 1

n

)k
.

Combining these bounds proves the claim.

Remark: If k = n log n + cn for c fixed and n large, then proposition (13)
shows that the number of empty boxes is well approximated by a Poisson dis-
tribution with error of order logn

n . This is better than the bound we obtained
in section 6 using exchangeable pairs. In preliminary work we have shown that
if the proof of section 6 is carried through by conditioning only on W , we get
an error term of order logn

n as well.

Example 3 (The birthday problem): Here k balls are dropped uniformly
into n boxes. Let Xij indicate whether balls i and j fall into the same box. Let
W =

∑
i<j

Xij . To form W ∗, pick a random pair of indices I < J and move ball

J into the same box as ball I.

• If balls I and J are in the same box already (call this event S), then
|W + 1−W ∗| = 1.
• If ball I is in a box containing a balls and ball J is in a (different) box

containing b balls, then |W + 1−W ∗| = |a− b|.

Thus
E(|W + 1−W ∗|) = P(S) + E

(
|W + 1−W ∗|

∣∣∣Sc) · P(Sc).

Now P(S) =
∑
w

P(S
∣∣W = w)P(W = w) =

∑ w(
k
2

)P(W = w) =
1(
k
2

)E(W ) =
1
n

.

For E
(
|W + 1−W ∗|

∣∣∣Sc) we may, by symmetry, consider the absolute difference
between the number of balls in the first two boxes, given that each contains at
least one ball. This is just the absolute difference between the number of balls
in the first and second boxes when k − 2 balls are dropped into n boxes. By
bounding this by twice the expected number of balls in the first box, namely
2k
n , and bounding P(Sc) by 1, we get

E(|W + 1−W ∗|) ≤ 1 + 2k
n

.
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Remark: If k = θ
√
n with θ fixed and n large, then proposition (13) shows

that the number of matching pairs has a Poisson distribution of mean θ2

2 with
error of order 1√

n
.

9.3. Automatic coupling

One of the many contributions of the book-length treatment on Poisson approx-
imation by Barbour, Holst, and Janson (1992) is a soft theory which leads to
very neat result. Recall that a collection {Xi}i∈ I of random variables is called
negatively associated if for all disjoint A,B ⊆ I and monotone functions f, g,

E(f(Xi; i ∈ A)g(Xj ; j ∈ B)) ≤ E(f(Xi; i ∈ A))E(g(Xj ; j ∈ B)).

Here, f : Rm → R is monotone if x � y implies f(x) ≤ f(y) where x � y is the
coordinate order.

Two leading tools are: (a)If {Yi} are independent with log-concave densities,
and Zi are distributed as Yi given

∑
Yi = k, then {Zi} are negatively associat-

ed. (b)Increasing functions of disjoint subsets of negatively associated variables
are negatively associated.

By way of example, if Yi are independent, with Yi ∼ Poipiλ, where
∑
i

pi = 1

and Ni have the law of Yi given
∑
i

Yi = k, then Ni have the law of k balls

dropped into boxes via a multinomial allocation. They are negatively associated.
If Xi is one or zero as Ni is bounded above by m or not (for fixed m ≥ 0), then
Xi are negatively associated.

In Bose-Einstein allocation, k balls are dropped into n boxes so that all con-
figurations are equally likely. If Yi are independent geometric random variables
with P(Yi = j) = qpj for 0 ≤ j <∞, then the distribution of Yi given

∑
i

Yi = k

has a Bose-Einstein distribution. These variables are thus negatively associated.
Many further examples and tools are given in [8].

The motivation for this set-up is the following elegant theorem of Barbour,
Holst, and Janson.

Theorem 14. Let {Xi}i∈ I be binary, negatively associated random variables.
Let W =

∑
i∈ I

Xi have mean λ and variance σ2. Then

‖L(W )− Poiλ‖TV ≤ (1− e−λ)
(

1− σ2

λ

)
.

Remarks:

1. Of course, the mean equals the variance for a Poisson random variable.
The theorem shows that if the mean is close to the variance, then the law
is close to Poisson.
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2. Mixtures of negatively associated variables are negatively associated. Dia-
conis and Holmes [22] apply these ideas to study the birthday and coupon-
collector’s problems when balls are dropped into boxes with probabilities
{pi} and a prior is put on pi.

3. For variables presented as conditional given a sum, a host of analytic
techniques are available for higher order expansions and large deviations
[20].

10. The dependency graph approach

In this section we give a brief description of the dependency graph approach to
Stein’s method. This method is often useful when a natural local dependence
structure exists; in these cases, this approach may be easier to apply than con-
structing an exchangeable pair or a coupling. Following a description of the
approach, an example of using a dependency graph to solve a variation of the
birthday problem is given.

Let {Xi}ni=1 be a set of binary random variables, with P(Xi = 1) = pi. A
dependency graph for {Xi} is a graph with vertex set I = {1, . . . , n} and edge
set E, such that if I1, I2 are disjoint subsets of I with no edges connecting them,
then {Xi}i∈ I1 and {Xi}i∈ I2 are independent. Let Ni denote the neighborhood
of i in the graph; that is,

Ni = {j ∈ I : (i, j) ∈ E} ∪ {i}.

This framework yields the following bound, first proved in [4]:

Theorem 15. Let {Xi}i∈ I be a finite collection of binary random variables with
dependency graph (I, E); suppose P(Xi = 1) = pi and P(Xi = 1, Xj = 1) = pij.
Let λ =

∑
pi and W =

∑
Xi. Then

‖L(W )− Poiλ‖TV ≤ min(1, λ−1)

∑
i∈I

∑
j∈Ni\{i}

pij +
∑
i∈I

∑
j∈Ni

pipj

 .
Proof. Let A ⊆ N, and let f = UoδA for Uo as in section 2. Let Z ∼ Poiλ. Then

P(Z ∈ A)− P(W ∈ A) = E[Wf(W )− λf(W + 1)] (24)

=
∑
i∈I
E[Xif(W )− pif(W + 1)].

Let Wi = W −Xi, and Vi =
∑
j 6∈Ni

Xj . Note that Xi and Vi are independent and

that
Xif(W ) = Xif(Wi + 1).
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So from (24),

P(Z ∈ A)− P(W ∈ A) =
∑
i∈I
E[(Xi − pi)f(Wi + 1)] + piE[f(Wi + 1)− f(W + 1)]

=
∑
i∈I

[
E

[(
Xi − pi

)(
f(Wi + 1)− f(Vi + 1)

)]
+ piE[f(Wi + 1)− f(W + 1)]

]
.

By lemma (1), |f(Wi + 1)− f(W + 1)| ≤ min(1, λ−1), thus

|piE[f(Wi + 1)− f(W + 1)]| ≤ min(1, λ−1)p2
i .

(The second factor of pi occurs as P(Wi 6= W ) = pi.) Further, writing f(Wi +
1)− f(Vi + 1) as a sum of telescoping terms yields:

f(Wi + 1)− f(Vi + 1) ≤ min(1, λ−1)(Wi − Vi) = min(1, λ−1)

 ∑
j∈Ni\i

Xi

 ,

which gives

|E[(Xi − pi)(f(Wi + 1)− f(Vi + 1))]| ≤ min(1, λ−1)
∑

j∈Ni\i

(pij + pipj).

This proves the theorem.

Remark: Here we have insisted that Xi be independent with {Xj}j 6∈Ni . The
following theorem, stated and proved in Barbour, Holst, and Janson (1992), is
a more general result in which it is only required that Xi must not depend too
strongly on {Xj}j 6∈Ni . The proof is very similar to that of theorem (15).

Theorem 16. Let {Xi}i∈I be a finite set of binary random variables with
P(Xi = 1) = pi, and let λ =

∑
pi and W =

∑
Xi. For each i ∈ I, let Iwi

and Isi be disjoint subsets of I so that (Iwi , I
s
i , {i}) partitions the set I. Define

the random variables

Yi =
∑
j∈Iwi

Xj

Zi =
∑
j∈Isi

Xj .

Then

‖L(W )−Poiλ‖TV ≤ min(1, λ−1)
∑
i∈I

[p2
i +piEZi+E(XiZi)]+min(1, λ−1)

∑
i∈I

ηi,

(25)
where ηi is any quantity satisfying

|E(Xig(Yi + 1))− piEg(Yi + 1)| ≤ ηi

for every g : N ∪ {0} → [0, 1].
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Remarks:

1. The idea is to choose the sets Iwi and Isi to be the indexes of those Xj

on which Xi depends ‘weakly’ and ‘strongly’, respectively. If the Xi are
equipped with a dependency graph (I, E) as is theorem (15), then using
Iwi = I \Ni and Isi = Ni \ i recovers theorem (15) from theorem (16).

2. If Iwi is well-chosen as those Xj on which Xi only depends weakly, then
one potentially good choice of ηi is

ηi = E|E(Xi|{Xj , j ∈ Iwi })− pi|.

Example (A generalized birthday problem): Let [n] = {1, . . . , n}, fix
k ≥ 2, and let I = {α ⊆ [n] : |α| = k}. Color the points of [n] independently,
choosing the color of each uniformly from a set of c colors. Let

Xα =

{
1 if all points of α have the same color,
0 otherwise,

and let W =
∑
α∈I

Xα. Thus W > 0 means that at least one group of k entries

in [n] all have the same color. We show that W is approximately Poisson with
parameter λ =

(
n
k

)
c1−k.

To get the problem into the present framework, we need a dependency graph
for the Xα. The simplest choice is to observe that if α ∩ β = ∅, then Xα and
Xβ are independent, thus one dependency graph is the one in which Nα = {β :
α ∩ β 6= ∅}. To apply theorem (15), note that for α ⊆ [n],

pα = P(Xα = 1) = c1−k, (26)

and if |α ∩ β| = ` 6= 0, then

pαβ = P(Xα = 1, Xβ = 1) = c1−(2k−`). (27)

Given α, a set β such that |α ∩ β| = ` can be chosen in
(
k
`

)(
n−k
k−`
)

ways. Putting
these observations into theorem (15) yields the following:

Proposition 17. For positive integers c, k, and n, let W be the number of
monochromatic k-tuples if an n-element set is colored with c colors, indepen-
dently and uniformly. Let λ =

(
n
k

)
c1−k. Then

‖L(W )−Poiλ‖TV ≤ min(1, λ−1)

[(
n

k

) k−1∑
`=1

(
k

`

)(
n− k
k − `

)
c1−(2k−`) +

(
n

k

)
c2−2k

k∑
`=1

(
k

`

)(
n− k
k − `

)]
.

Remarks:

1. Restricting to the cases k = 2, 3, the bound of proposition (17) is of the
same order as the bounds obtained in section 5.
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2. The dependency graph approach seems quite well suited to this problem;
theorem (17) was obtained very easily and is rather more general than the
results in section 5, while those arguments were rather technical. On the
other hand, the generalized matching problem presented in section 4 was
not so difficult via the method of exchangeable pairs, and the dependence
structure is much less clear in that problem. Although there are problems
for which both approaches work well (Poisson-binomial trials are an easy
example; see Barbour, Holst, and Janson for more involved examples), it
seems that these two methods mostly are useful in different contexts.

11. Some open problems

Our treatment above has been expository and the classical problems studied
were meant to help illuminate the basics of Stein’s method of exchangeable
pairs. A point is, this method may be used for more complex problems than the
ones treated here. The following examples are all open as far as we know.

11.1. Variants of the matching problem

1. Permutations with restricted positions. Let A be a fixed n×n matrix with

zero-one entries. A permutation σ ∈ Sn is compatible with A if
n∏
i=1

ai σ(i) =

1. If, for example, A is zero on the diagonal and one elsewhere, then those
σ which are compatible with A are the ones with no fixed points. The
matching problem asks for the number of permutations with k violations.
One also may investigate this problem for more general A. This is a rich
subject; for pointers, one may look at the classical treatment in Riordan
[46] or the section on Rook polynomials in Stanley [48]. Diaconis-Graham-
Holmes [21] give a survey and applications in statistics. In addition to
studying classical patterns such as the menage problem, one may ask for
necessary and/or sufficient conditions on A to guarantee a Poisson limit.

2. Other actions. Let G be a finite group and X a finite set with G acting on
X. One may mimic the development in the example above by considering
a matrix A indexed by X (i.e., with entries ax y) with zero-one entries.
Say g ∈ G agrees with A if

∏
x

ax gx = 1. One could choose g uniformly

in G and ask for the distribution of violations. An example of statistical
interest (Daniels’s test – see [34]) has G the symmetric group Sn and X
is the set of ordered pairs {(i, j) : i 6= j} with g(i, j) = (g(i), g(j)).

3. Non-uniform permutations. All of the development above has been for u-
niformly chosen permutations (or group elements). A nice problem is to
develop Poisson approximation for natural families of non-uniform distri-
butions. Here is a specific example: Diaconis [19] and Critchlow [16] discuss
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a variety of metrics on the permutation group. For example, one may take
Spearman’s ρ, which boils down to the squared differences

∑
(σ(i)−σ′(i))2.

Fixing a metric d, one can define a probability distribution on permuta-
tions by

Pθ(σ) = z−1θd(σ,σo), 0 < θ < 1,

where z is a normalizing constant and σo is the center of the distribution.
These Mallows models have been widely applied; for extensive references,
see Fligner and Verducci [27] or Diaconis and Ram [24].
The problem is this: for θ, σo, and d fixed, pick σ from Pθ and look at the
distribution of the number of fixed points. We conjecture that this will be
Poisson under very mild conditions. To use Stein’s method, an exchange-
able pair must be formed. One simple way to do this is to pick σ from Pθ

and then make a random transposition τ . Use the Metropolis algorithm
to get the second coordinate distribution to be Pθ as well. Alternatively,
the Gibbs sampler may be used. Of course, the problems outlined in the
first two items above may be studied under these non-uniform models.
Diaconis and Holmes [22] give some examples and further motivation.

11.2. Variants of the coupon-collector’s problem

1. Non-uniform allocations. One can drop k balls into n boxes with the prob-
ability of dropping a ball into box i equal to pi. This is studied by classical
arguments (and without error terms) in Rosén [47]. Diaconis and Holmes
[22] study Bose-Einstein allocation. They also mention the problem of
putting a prior on (p1, . . . , pn) and studying the Bayes distribution.

2. Complexes. The balls may be dropped in j at a time such that within
each group of balls, all must land in different boxes. This actually arises
in collecting baseball cards. Kolchin et al. [37] give some classical results.

3. Coverage problems. A sweeping generalization occurs in the world of cov-
erage processes. Let X be a compact metric space. Pick points x1, . . . , xk
from a probability measure µ on X. For a fixed ε > 0, what is the chance
that the union of the ε-balls about the xi cover X? Classical examples are
dropping arcs on a circle (see Feller [26]) or caps on a sphere. Hall [31]
and Janson [32] give many results. Aldous [1] has further literature. The
widely studied k-SAT problem of computer science theory can be seen as a
special case. Here, X is the hyper-cube Zd2, k points are chosen randomly,
and one wants to understand the chance that Hamming balls of a given
radius cover the cube.

11.3. The birthday problem

Many natural variations have been studied: one may fix a graph, color the
vertices with k colors chosen with probabilities pi for 1 ≤ i ≤ k, and ask how
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many edges have the same color. The same kind of question may be asked
for hyper-graphs. Some of these problems are treated by Aldous [1], Arratia-
Gordon-Goldstein [4], or Barbour-Holst-Janson [8]. We mention here a lesser-
known development. Camarri and Pitman [12] have shown that limits other
than the Poisson can arise if non-uniform probabilities are used. The limiting
measures that arise there are natural (related to the Mittag-Leffler function) and
well worth further development. It is also natural to study how these limiting
regimes occur in the graph variants discussed above. Developing Stein’s method
for these cases seems like a natural project.

We close this brief section with a pointer to infinitely many other open prob-
lems. David Aldous has written a remarkable book called Probability Approx-
imations via the Poisson Clumping Heuristic. This is really a collection of in-
sights and conjectures, almost all related to Poisson approximation. Almost all
of hundreds of problems are open.
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