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many standard distributions. General results are given on existence, series
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1. Introduction

We say that a positive random variable X has moments of Gamma type if, for
s in some interval,

EXs = CDs

∏J
j=1 Γ(ajs+ bj)

∏K
k=1 Γ(a

′
ks+ b′k)

(1.1)

for some integers J,K ≥ 0 and some real constants C, D > 0, aj , bj , a
′
k, b

′
k. We

may and will assume that aj 6= 0 and a′k 6= 0 for all j and k. We often denote
the right hand side of (1.1) by F (s); this is a meromorphic function defined for
all complex s (except at its poles).

Similarly we say that a real random variable Y has moment generating func-
tion of Gamma type if, for s in some interval,

E esY = Ceds
∏J

j=1 Γ(ajs+ bj)
∏K

k=1 Γ(a
′
ks+ b′k)

(1.2)

for some integers J,K ≥ 0 and some real constants C, d, aj 6= 0, bj, a
′
k 6= 0, b′k,

and that Y has characteristic function of Gamma type if, for all real t,

E eitY = Ceitd
∏J

j=1 Γ(bj + iajt)
∏K

k=1 Γ(b
′
k + ia′kt)

(1.3)

for some such constants.
∗This is an original survey paper.
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Of course, (1.1) and (1.2) are the same if X = eY and D = ed; further,
it will be shown that (1.2) and (1.3) are equivalent by analytic continuation.
Moreover, we shall see that the range of validity of (1.1), or (1.2) is always the
largest possible. We amplify these simple but useful observations in Theorem 2.1
below.

Remark 1.1. The representations in (1.1)–(1.3) are far from unique. Using the
duplication formula (A.3), or more generally the multiplication formula (A.5),
and other relations such as the functional equation Γ(z+1) = zΓ(z), a function
F (s) of this form may be rewritten in many different ways. (The rewriting can
be more or less transparent; some equivalent versions may look quite different
to the unaided eye.) See for example Theorems 1.6 and 1.12.

Remark 1.2. The constant C is determined by the relation F (0) = EX0 = 1,
which shows that

C =

∏K
k=1 Γ(b

′
k)∏J

j=1 Γ(bj)
(1.4)

provided no bj or b′k is a non-positive integer. In general, C can be found by
taking limits as s→ 0.

Remark 1.3. The constant D is just a scale factor: X satisfies (1.1) if and
only if X/D satisfies the same equation with D replaced by 1 (i.e., without the
factor Ds). Similarly, Y satisfies (1.2) or (1.3) if and only if Y − d satisfies the
same equation with d replaced by 0. Hence we might assume D = 1 or d = 0 if
convenient (but we will not do so in general).

Remark 1.4. If r ∈ R, then x− r = Γ(x− r+1)/Γ(x− r). Hence, any rational
function Q(x) with all poles and zeros real can be written as a finite product∏

ℓ Γ(x + cℓ)/Γ(x + c′ℓ) with cℓ, c
′
ℓ ∈ R. Consequently we may allow such a

rational factor Q(s) in (1.1) and (1.2), or Q(it) in (1.3), without changing the
class of distributions.

Remark 1.5. If X has moments of Gamma type and α is a real number, then
Xα has moments of Gamma type. (Just substitute αs for s in (1.1).) Similarly,
if X1 and X2 are independent and both have moments of of Gamma type, then
X1X2 has too. (Just use E(X1X2)

s = EXs
1 EX

s
2 .)

Several well-known distributions have moments or moment generating func-
tions of Gamma type. We give a number of examples in Section 3.

The main motivation for the present paper is that also several less well-known
distributions have moments of Gamma type. It is then straightforward to use
Mellin transform techniques to obtain expansions or asymptotics of the density
function, and it seems advantageous to do so, and to study other properties, in
general for this class of distributions. We give some basic results in Section 2,
and further results on poles and zeros in Section 4. Asymptotics of the moments
are studied in Section 5, and asymptotics and series expansions of the density
function are given in Section 6.
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This paper thus was inspired by the realization that some recently studied
random variables have moments of Gamma type; we treat these in Sections
7–9. The first example is the integral of the supremum process of a Brownian
motion, i.e., the area under the supremum process (up to some fixed time T ). Let
B(t), t ≥ 0, be a standard Brownian motion. Consider the supremum process
S(t) := max0≤s≤t B(t), and its integral

A(T ) :=

∫ T

0

S(t) dt. (1.5)

We further let A := A(1). For any given T > 0, the usual Brownian scaling

{B(T t)}t≥0
d
= {T 1/2B(t)}t≥0 implies the corresponding scaling for the supre-

mum process {S(T t)}t≥0
d
= {T 1/2S(t)}t≥0, and thus

A(T ) = T

∫ 1

0

S(T t) dt
d
= T 3/2A. (1.6)

In particular, EA(T )s = T 3s/2 EAs and it is enough to study A.
The random area A was studied by Janson and Petersson [19], and using

their results we will in Section 7 prove the following formula, showing that A
has moments of Gamma type. (The result for the integer moments EAn, n ∈ N,
was given in [19].) We give several different, but equivalent, formulas of the
type (1.1) for EAs, which exemplifies Remark 1.1. The third version, with only
two non-constant Gamma factors is perhaps the simplest. The last, where all
Gamma factors are of the type Γ(s/2 + b) with 0 < b ≤ 1 is of a canonical type
where there are no cancellations of poles, and it is thus easy to see the poles
and zeros, cf. Remark 4.5.

Theorem 1.6. The moments of A are given by, for Re s > −1,

EAs =
Γ(s+ 1)Γ(s+ 2/3)

Γ(2/3) Γ(3s/2 + 1)
·
( 3√

8

)s

=
Γ(s+ 1)Γ(s+ 5/3)

Γ(5/3) Γ(3s/2 + 2)
·
( 3√

8

)s

=
2Γ(1/3)

3
√
π

· Γ(3s/2 + 3/2)

Γ(s+ 4/3)
·
(√8

9

)s

=
Γ(1/3)

21/3π
· Γ(s/2 + 1/2) Γ(s/2 + 5/6)

Γ(s/2 + 2/3)
·
(2
3

)s/2

.

Further, EAs = ∞ for real s ≤ −1.

Remark 1.7. Several related Brownian areas are studied in Janson [17], for
example the integral of |B(t)| or the integral of a normalized Brownian excursion.
These areas do not have moments of Gamma type. In fact, most of the Brownian
areas studied there have entire functions EXs [17, §29], which is impossible for
moments of Gamma type, see Theorem 4.1(iv). (For the remaining two areas in
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[17], we have no formal proof that they do not have moments of Gamma type,
but it seems very unlikely since the integer moments satisfy more complicated
recursion formulas [17].)

As a consequence of Theorem 1.6 and our general results in Section 6, we can
express the density function of A using the confluent hypergeometric function

1F1 (denoted M in [1] and Φ in [20]) or the confluent hypergeometric function
of the second kind U [1] (also denoted Ψ [20]). (Also the proofs of the next two
theorems are given in Section 7.)

Theorem 1.8. A has a density function fA(x) given by, for x > 0,

fA(x) =
22/3Γ(1/3)

31/2π

∞∑

n=0

(−1)n
Γ(n+ 5/6)

n! Γ(n+ 2/3)
·
(3
2

)n+1/2

x2n

+
22/3Γ(1/3)

31/2π

∞∑

n=0

(−1)n
Γ(n+ 7/6)

n! Γ(n+ 4/3)
·
(3
2

)n+5/6

x2n+2/3

=
21/2

π1/2 1F1

(
5

6
;
2

3
;−3

2
x2

)
+

2−1/631/3

Γ(5/6)
x2/3 1F1

(
7

6
;
4

3
;−3

2
x2

)

= e−
3
2x

2

(
21/2

π1/2 1F1

(
−1

6
;
2

3
;
3

2
x2

)
+

2−1/631/3

Γ(5/6)
x2/3 1F1

(
1

6
;
4

3
;
3

2
x2

))

=
27/6

Γ(2/3)
e−

3
2x

2

U

(
−1

6
;
2

3
;
3

2
x2

)

=
25/631/3

Γ(2/3)
x2/3e−

3
2x

2

U

(
1

6
;
4

3
;
3

2
x2

)
.

It follows (most easily from the second formula above) that fA has a finite,
positive limit fA(0+) =

√
2/π as x ց 0. More precisely, fA(x) =

√
2/π +

O(x2/3).
As x→ ∞, we obtain from Theorem 1.6 and our general theorems in Section 6

the following asymptotic result. Note that the two terms in the first or second
formula for fA in Theorem 1.8 are each much larger, of the order x−5/3 by the
asymptotics of 1F1 in [1, (13.5.1)], but they cancel each other almost completely
for large x.

Theorem 1.9.

fA(x) ∼
32/3Γ(1/3)

π
x1/3e−3x2/2 =

2 · 31/6
Γ(2/3)

x1/3e−3x2/2, x→ ∞.

This result was conjectured in [19], where the weaker result P(A > x) =
exp

{
−3x2/2 + o(x2)

}
was shown from the moment asymptotic

EAs ∼ Γ(1/3)

π1/2
s1/6

( s

3e

)s/2

, s→ ∞, (1.7)

for integer s and a Tauberian theorem. (Only integer moments were considered
in [19]. Note that (1.7) for arbitrary real s→ ∞ follows easily from Theorem 1.6
and Stirling’s formula; see Theorem 5.7 and (7.8).)
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Remark 1.10. Theorem 1.9 also follows from any of the last two formulas in
Theorem 1.8 and the asymptotic formula for U in [1, (13.5.2)]. Indeed, this gives
an asymptotic expansion with further terms, cf. Remark 6.3; in this case, by [1,
(13.5.2)], the complete asymptotic expansion can be written

fA(x) ∼
2 · 31/6
Γ(2/3)

x1/3e−3x2/2
2F0

(
1

6
,−1

6
; ;−2

3
x−2

)
, x→ ∞,

where the hypergeometric series 2F0 is divergent and the asymptotic expansion
is interpreted in the usual way: if we truncate the series after any fixed number
of terms, the error is of the order of the first omitted term. (For the general
definition of the (generalized) hypergeometric series pFq, see e.g. [13, Section
5.5].)

Theorem 1.9 may be compared with similar results for several other Brownian
areas in Janson and Louchard [18], see also Janson [17] and Remark 1.7. In these
results for other Brownian areas, the exponent of x is always an integer (0, 1 or
2), while here the exponent is 1/3, which is related to the power s1/6 in (1.7).

Another example with moments of Gamma type comes from Petersson [24].
He studied the maximum displacement in hashing with linear probing, and found
for dense tables, after suitable normalization, convergence to a limit distribution
given by a random variable M with the distribution [24, Theorem 5.1]

P(M ≤ x) = 1− ψ(x3/2), x > 0, (1.8)

where ψ(s) := E e−sA is the Laplace transform of A. Equivalently,

P(M > x) = ψ(x3/2) = E e−x3/2A, x > 0. (1.9)

This type of relation preserves moments of Gamma type; we give a general
result.

Lemma 1.11. Suppose that V and Z are two positive random variables and
α > 0. Then

P(V > x) = E e−xαZ , x > 0, (1.10)

if and only if

V
d
= T 1/α/Z1/α, (1.11)

where T ∼ Exp(1) is independent of Z.
If (1.10) or (1.11) holds, then

EV s = Γ(s/α+ 1)EZ−s/α, s > −α. (1.12)

In particular, if one of Z and V has moments of Gamma type, then so has the
other.

We postpone the simple proof until Section 8. By (1.9), Lemma 1.11 ap-
plies to M and A, and thus M has moments of Gamma type. More precisely,
Theorem 1.6 implies the following, see Section 8 for details.
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Theorem 1.12. For −3/2 < Re s < 3/2,

EMs =
Γ(1 + 2s/3) Γ(2/3− 2s/3) Γ(1− 2s/3)

Γ(2/3) Γ(1− s)
·
( 2

32/3

)s

=
2Γ(1/3)

3
√
π

· Γ(1 + 2s/3) Γ(3/2− s)

Γ(4/3− 2s/3)
·
(34/3

2

)s

=
Γ(1/3)

21/3π
· Γ(1 + 2s/3) Γ(1/2− s/3) Γ(5/6− s/3)

Γ(2/3− s/3)
·
(3
2

)s/3

=
Γ(1/3)

21/3π3/2
· Γ(1/2 + s/3) Γ(1 + s/3) Γ(1/2− s/3) Γ(5/6− s/3)

Γ(2/3− s/3)
· 6s/3.

Further, EMs = ∞ for real s ≤ −3/2 or s ≥ 3/2.

The special case s = 1 yields EM = 2Γ(1/3)/32/3, as found by Petersson
[24]. Petersson [24] further proved that EMs = ∞ for s ≥ 2; we now see that
the sharp threshold is s = 3/2.

Our general theorems apply again; they show that M has a density, and they
yield a series expansion and asymptotics for the density. (Proofs are given in
Section 8.) Again, the results can be expressed using various hypergeometric
functions and series. (Again, see [13] for definitions.)

Theorem 1.13. M has a continuous density function given by, for x > 0,

fM(x) =
31/2Γ(1/3)

25/6π

∞∑

n=0

(−1)n
Γ(1 + n/2) Γ(4/3 + n/2)

Γ(7/6 + n/2)n!

(2
3

)n/2

x3n/2+1/2

=
21/2

π1/2
x1/2 2F2

(4
3
, 1;

7

6
,
1

2
;
x3

6

)
− 5

8
x2 1F1

(11
6
;
5

3
;
x3

6

)
.

In particular, for small x we have the asymptotic formula

fM(x) =
21/2

π1/2
x1/2 +O(x2), xց 0. (1.13)

For large x, there is a similar formula, which is the beginning of a divergent
asymptotic expansion (interpreted as in Remark 1.10):

Theorem 1.14. As x→ ∞,

fM(x) =
3√
2π
x−5/2 +O(x−7/2). (1.14)

More precisely, fM(x) has as x→ ∞ an asymptotic expansion

fM(x) ∼ 3√
2π
x−5/2

3F1

(3
2
,
5

6
, 1;

2

3
;− 6

x3

)

+
5Γ(1/3)

21/232/3π1/2
x−7/2

2F0

(11
6
,
7

6
; ;− 6

x3

)
.

(1.15)
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Yet other recent examples of moments of Gamma type come from the study
of generalized Pólya urns [10], [16]; see Section 9 for definitions and results.

As said above, we give some basic results in Section 2, many examples with
standard distributions in Section 3, further results on poles and zeros in Sec-
tion 4, asymptotics of the moments in Section 5, and asymptotics and series
expansions of the density function in Section 6. We give proofs of the results
above for A and M in Sections 7 and 8, and we give some results for general-
ized Pólya urns in Section 9. We end with a couple of more technical examples
(counter examples) in Section 10 and some further remarks in Section 11. Some
standard formulas for the Gamma function are for convenience collected in Ap-
pendix A.

2. The basic theorem and some notation

Let F (s) denote the right hand side of (1.1) or (1.2). (Thus, the right hand side
of (1.3) is F (it).) Evidently, F is a meromorphic function in the complex plane,
and all poles are on the real axis. Let ρ+ and ρ− be the poles closest to 0:

ρ+ := min {x > 0 : x is a pole of F},
ρ− := max{x < 0 : x is a pole of F}, (2.1)

with the interpretation that ρ+ = ∞ [ρ− = −∞] if there is no pole on (0,∞)
[(−∞, 0)]. Thus −∞ ≤ ρ− < 0 < ρ+ ≤ ∞. Note that we ignore any pole at 0
in the definitions (2.1); however, it follows from Theorem 2.1 that such a pole
cannot exist; F (s) is always analytic at s = 0.

Theorem 2.1. Let X > 0 and Y be random variables connected by X = eY

and thus Y = logX, and let C, D > 0, d = logD, aj 6= 0, bj, a
′
k 6= 0, b′k

be real constants, for j = 1, . . . , J ≥ 0 and k = 1, . . . ,K ≥ 0. Let F (s) be the
meromorphic function in (1.1) and (1.2) and let ρ+ ∈ (0,∞) and ρ− ∈ (−∞, 0)
be defined by (2.1). Then the following are equivalent:

(i) (1.1) holds for all real s in some non-empty interval.
(ii) (1.1) holds for all complex s in the strip ρ− < Re s < ρ+.
(iii) (1.2) holds for all real s in some non-empty interval.
(iv) (1.2) holds for all complex s in the strip ρ− < Re s < ρ+.
(v) (1.3) holds for all real t 6= 0 in some interval |t| < t0 with t0 > 0.
(vi) (1.3) holds for all real t.

In this case, further EXs = E esY = ∞ if s ≤ ρ− or s ≥ ρ+; thus

{s ∈ R : EXs <∞} = {s ∈ R : E esY <∞} = (ρ−, ρ+).

Equivalently,

ρ+ = sup{s ≥ 0 : EXs <∞},
ρ− = inf{s ≤ 0 : EXs <∞}.

Furthermore, F (s) = EXs = E esY 6= 0 when ρ− < Re s < ρ+.
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Proof. (i) ⇐⇒ (iii) and (ii) ⇐⇒ (iv) are trivial, since EXs = E esY . Further,
trivially (iv) =⇒ (iii), (vi) =⇒ (v) and (iv) =⇒ (vi). Hence, to show the equiv-
alences it suffices to show that (iii) =⇒ (v) and (v) =⇒ (iv).

(v) =⇒ (iv). Note first that ϕ(t) := E eitY → 1 as t → 0. Hence, F (it) → 1
as tց 0, and thus F does not have a pole at 0.

This shows that F (z) is analytic in the strip ρ− < Re z < ρ+, and thus F (iz)
is analytic in the strip −ρ+ < Im z < −ρ−. By continuity, ϕ(t) = F (it) also
for t = 0 and thus for the entire interval (−t0, t0). Hence, on this interval at
least, ϕ(t) equals the boundary values of the function F (it) which is analytic
for 0 ≤ Im z < −ρ− and by a theorem of Marcinkiewicz [22], E e−rY < ∞ for
every r ∈ (0,−ρ−); equivalently, E erY <∞ if ρ− < r < 0. By considering −Y ,
we find similarly that E erY <∞ if 0 < r < ρ+. Consequently,

E erY <∞ if ρ− < r < ρ+. (2.2)

It is well-known that (2.2) implies that ψ(z) := E ezY is defined and finite for
ρ− < Re z < ρ+ and that ψ(z) is an analytic function of z in this strip. Since
ψ(it) = ϕ(t) = F (it) for |t| < t0, analytic continuation yields ψ(z) = F (z) in
this strip, i.e. (iv) holds.

(iii) =⇒ (v). Suppose that E esY = F (s) for s ∈ (a, b), with −∞ < a < b <
∞. Let s0 ∈ (a, b) with s0 6= 0 and suppose that s0 > 0. (The case s0 < 0 is
similar, or follows by considering −Y .) Thus E es0Y = F (s0) <∞, and it follows
that z 7→ E ezY is defined and analytic for 0 < Re z < s0. Since E ezY = F (z)
on an interval in this strip, E ezY = F (z) for 0 < Re z < s0.

For any real t, we may take z = it + ε for 0 < ε < s0; letting ε ց 0 we
have E e(it+ε)Y → E eitY by dominated convergence (using E(1 + es0Y ) < ∞).
If further t 6= 0, then also E e(it+ε)Y = F (it + ε) → F (it) since F has only real
poles, and thus E eitY = F (it). Hence (v) holds.

This completes the proof of the equivalences. Suppose E esY < ∞ for some
s ≥ ρ+ (and thus ρ+ < ∞). Letting z ր ρ+, we then have, by dominated
convergence, F (z) = E ezY → E eρ+Y < ∞, while the definition of ρ+ as a
pole yields F (z) = |F (z)| → ∞. This contradiction shows that E esY = ∞ for
s ≥ ρ+. Similarly, or by considering −Y , E esY = ∞ for s ≤ ρ−.

Finally observe that F (s) = 0 only when some a′ks + b′k is a pole of Γ, i.e.,
a non-positive integer, which implies that s is real. However, if ρ− < s < ρ+,
then F (s) = E esY > 0.

Remark 2.2. The equivalence (iii) ⇐⇒ (iv) (or, equivalently, (i) ⇐⇒ (ii))
is an instance of the well-known fact that a (two-sided) Laplace transform of
a positive function or measure has singularities where the real axis intersects
the boundary of the natural strip of definition, see e.g. [6, §3.4]. The result by
Marcinkiewicz [22] used above is a sharper version of this.

We make some simple but useful observations.

Corollary 2.3. The distribution of X is determined by the function F (s) on
the right hand side of (1.1): If EXs

1 = F (s) for s ∈ I1 and EXs
2 = F (s) for

s ∈ I2, for non-empty intervals I1 and I2, then X1
d
= X2.
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Proof. By Theorem 2.1, Y1 := logX1 and Y2 := logX2 have the same charac-

teristic function F (it). Hence, Y1
d
= Y2 and X1

d
= X2.

Remark 2.4. As said above, Theorem 2.1 (e.g., by (vi)) implies that 0 is not
a pole of F ; furthermore, F (0) = EX0 = 1.

Remark 2.5. Every pole or zero of F (s) must be a pole of one of the Γ factors
in (1.1). However, the converse does not hold, since poles in the Γ factors may
cancel; if s0 is a pole of some factors in the numerator, but also a pole of at
least as many factors in the denominator, then s0 is a removable singularity of
F , and F (s0) is well-defined by continuity. Note that such s0 do not count in
the definition (2.1) of ρ±.

In particular, s = 0 may be a pole of some of the Gamma factors in F (s).
(This happens when some bj or b′k is 0 or a negative integer. This is the reason
we exclude t = 0 in Theorem 2.1(v).) However, by Remark 2.4, all such poles
must cancel; i.e., there must be an equal number of such factors in the numerator
and denominator in (1.1).

Remark 2.6. In Theorem 2.1(v), it is important that we consider an interval
about 0 (unlike in (i) and (iii)). In fact, for any ε > 0, there exist a random
variable Y and C, d, aj , bj, a

′
k, b

′
k such that (1.3) holds for |t| ≥ ε but not for

all ε.
For an example, let Y be any random variable with characteristic function

of Gamma type, say E eitY = F (it). Further, let Z be a random variable with
characteristic function (1−|t|)+, see [9, Section XV.2], and letW be the mixture
of Z and the constant 0 obtained as W := V Z with V ∼ Be(1/2), i.e. P(V =
0) = P(V = 1) = 1/2, and V independent of Z; assume further that Y is
independent of Z and V . Then, for |t| ≥ 1, the characteristic functions E eitZ = 0

and E eitW = 1
2 (E e

itZ +1) = 1
2 , and thus Ỹ := Y + ε−1W has the characteristic

function
E eitỸ = E eitY E eiε

−1tW = 1
2F (it), when |t| ≥ ε. (2.3)

Here F̃ (it) := 1
2F (it) is another function of the type in (1.3); however (2.3) does

not hold for all t since F̃ (0) = 1/2 6= 1.
We do not know whether (1.3) for some interval, together with F (0) = 1,

implies that (1.3) holds for all t.

For future use, in particular for the asymptotic results in Sections 5 and 6, we
define the following parameters, given a random variable X or Y or a function
F (s) as in (1.1) or (1.2):

γ :=
J∑

j=1

|aj | −
K∑

k=1

|a′k|, (2.4)

γ′ :=
J∑

j=1

aj −
K∑

k=1

a′k, (2.5)
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δ :=
J∑

j=1

bj −
K∑

k=1

b′k −
J −K

2
, (2.6)

κ :=

J∑

j=1

aj log |aj | −
K∑

k=1

a′k log |a′k|+ d, (2.7)

C1 := |C|(2π)(J−K)/2

∏J
j=1 |aj |bj−1/2

∏K
k=1 |a′k|b

′

k−1/2
. (2.8)

Proposition 2.7. The parameters γ, γ′, δ,κ, C1 depend on F only and not on
the particular representation in (1.1) or (1.2).

The proof is given in Section 5.

Remark 2.8. To replace X by X−1, or equivalently Y by −Y , means that
F (s) is replaced by F (−s), which has the same form but with d replaced by −d
(D by D−1) and similarly the sign of each aj and a′k is changed. This does not
affect γ, δ, and C1, but γ

′ and κ change signs. (This also follows from (5.2) and
(5.3) below.)

Remark 2.9. More generally, Xα, with α real and non-zero, has parameters
|α|γ, αγ′, δ, ακ + γ′α log |α|, C1|α|δ.
Remark 2.10. If X = X1X2 with X1, X2 independent and both having mo-
ments of Gamma type, cf. Remark 1.5, then the parameters γ, γ′, δ,κ for X
are the sums of the corresponding parameters for X1 and X2, while C1 is the
corresponding product.

Remark 2.11. If X has moments of Gamma type, then so has a suitably
conjugated (a.k.a. tilted) distribution: If, for simplicity, X has a density function

f(x), x > 0, let X̃ have the density function xrf(x)/EXr for a real r such that

EXr < ∞. Then E X̃s = EXs+r/EXr and thus X̃ has moments of Gamma
type, obtained by a simple substitution in (1.1). It follows that γ, γ′ and κ are

the same for X̃ as for X , while δ is increased by rγ′ and C1 is multiplied by
erκ/EXr. (Cf. (5.3) below.) Clearly, ρ+ and ρ− are both decreased by r.

For a random variable Y with moment generating function of Gamma type,
the same applies to Ỹ with density function eryf(y)/E erY , if Y has density
function f .

We note also the following relations, for a function F (s) as above:

Lemma 2.12. We have

∑

j:aj>0

aj −
∑

k:a′

k>0

a′k = 1
2 (γ + γ′),

∑

j:aj<0

|aj | −
∑

k:a′

k<0

|a′k| = 1
2 (γ − γ′).
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Proof.

γ + γ′ =
∑

j

(|aj |+ aj)−
∑

k

(|a′k|+ a′k) = 2
( ∑

j:aj>0

aj −
∑

k:a′

k>0

a′k

)
.

γ − γ′ =
∑

j

(|aj | − aj)−
∑

k

(|a′k| − a′k) = 2
( ∑

j:aj<0

|aj | −
∑

k:a′

k<0

|a′k|
)
.

3. Some examples

There are several well-known examples of distributions with moments of Gamma
type. We collect some of them here. The results below are all well-known. We
usually omit scale parameters that may be added to the definitions of the dis-
tributions.

Example 3.1 (Gamma distribution). Let Γα have the Gamma distribu-
tion Γ(α) = Γ(α, 1) with density function f(x) = xα−1e−x/Γ(α), x > 0, for a
parameter α > 0. Then, for Re s > −α,

EΓs
α =

∫ ∞

0

xsf(x) dx =
1

Γ(α)

∫ ∞

0

xs+α−1e−x dx =
Γ(s+ α)

Γ(α)
, (3.1)

a simple example of moments of Gamma type. The right hand side of (3.1) is
an analytic function in Re s > −α, with a pole at −α; thus ρ+ = ∞, ρ− = −α,
and EΓs

α = ∞ when s ≤ −α.
We have γ = γ′ = 1, δ = α− 1/2, κ = 0, C1 =

√
2π/Γ(α).

Note that the different Gamma distributions can be obtained by conjugation
from each other, cf. Remark 2.11.

Example 3.2 (Exponential distribution). The exponential distribution
Exp(1) with density function e−x, x > 0, is the special case α = 1 of the
Gamma distribution in Example 3.1. We thus obtain from (3.1) (or directly
from (A.1)), for T ∼ Exp(1),

ET s = Γ(s+ 1), Re s > −1, (3.2)

while ET s = ∞ when s ≤ −1.
More generally, if Tµ has an exponential distribution Exp(µ) = Γ(1, µ) with

mean µ, which has the density function is µ−1e−x/µ, x > 0, then Tµ
d
= µT and

E T s
µ = Γ(s+ 1)µs, Re s > −1. (3.3)

Thus Tµ has moments of Gamma type, with ρ+ = ∞, ρ− = −1, γ = γ′ = 1,
δ = 1/2, κ = logµ, C1 =

√
2π.

Example 3.3 (Uniform distribution). Let U have a uniform distribution
U(0, 1) on [0, 1]. Then, obviously, for Re s > −1,

EUs =

∫ 1

0

xs dx =
1

s+ 1
. (3.4)
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This can be rewritten as a Gamma type formula by the functional equation
(A.2), which yields

EUs =
Γ(s+ 1)

Γ(s+ 2)
, Re s > −1, (3.5)

while EUs = ∞ when s ≤ −1.
Of course, it would be silly to claim that (3.5) is a simplification of (3.4), but

it shows that the uniform distribution has moments of Gamma type and thus
belongs to the class studied here.

We have ρ+ = ∞, ρ− = −1, γ = γ′ = 0, δ = −1, κ = 0, C1 = 1.

Example 3.4 (Beta distribution). LetBα,β have the Beta distribution B(α, β),
where α, β > 0; then Bα,β has a density function f(x) = cxα−1(1 − x)β−1,
0 < x < 1, where c = Γ(α)−1Γ(β)−1Γ(α + β), cf. (A.8). (Note that α = β = 1
yields the uniform distribution in Example 3.3 as a special case.) Consequently,
by (A.8), for Re s > −α,

EBs
α,β =

∫ 1

0

xsf(x) dx =
(Γ(α)Γ(β)
Γ(α+ β)

)−1Γ(s+ α)Γ(β)

Γ(s+ α+ β)
=

Γ(α+ β)Γ(s+ α)

Γ(α)Γ(s+ α+ β)
,

(3.6)
while EBs

α,β = ∞ if s ≤ −α. We have ρ+ = ∞, ρ− = −α, γ = γ′ = 0, δ = −β,
κ = 0, C1 = Γ(α+ β)/Γ(α).

Example 3.5 (Chi-square distribution). The chi-square distribution χ2(n)
is the distribution of Qn :=

∑n
i=1N

2
i , where N1, N2, . . . are i.i.d. standard

normal variables. It is well-known, see e.g. [9, Section II.3], that the chi-square
distribution is a Gamma distribution, differing from the normalized version in

Example 3.1 by a scale factor; more precisely, Qn
d
= 2Γn/2. Consequently, the

chi-square distribution has moments of Gamma type, with, by (3.1),

EQs
n = 2s

Γ(s+ n/2)

Γ(n/2)
, Re s > −n/2, (3.7)

while EQs
n = ∞ for s ≤ −n/2. We have ρ+ = ∞, ρ− = −n/2, γ = γ′ = 1,

δ = (n− 1)/2, κ = log 2, C1 =
√
2π/Γ(n/2).

If n = 2, then Q2
d
= 2Γ1

d
= 2T

d
= T2, which also follows from (3.7) and (3.3).

Example 3.6 (Chi distribution). The chi distribution χ(n) is the distribution

of Rn :=
(∑n

i=1N
2
i

)1/2
= Q

1/2
n , with notations as in Example 3.5. Hence, using

(3.7), the chi distribution has moments of Gamma type, with

ERs
n = EQs/2

n = 2s/2
Γ(s/2 + n/2)

Γ(n/2)
, Re s > −n, (3.8)

while ERs
n = ∞ for s ≤ −n. We have ρ+ = ∞, ρ− = −n, γ = γ′ = 1/2,

δ = (n− 1)/2, κ = 0, C1 = 21−n/2π1/2/Γ(n/2), cf. Remark 2.9.
In particular, the special case n = 1 shows that if N ∼ N(0, 1), then |N | ∼

χ(1) has moments of Gamma type with

E |N |s = π−1/22s/2Γ(s/2 + 1/2). (3.9)
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Example 3.7 (F -distribution). The F -distribution is the distribution of

Fm,n :=
Qm/m

Q′
n/n

=
n

m

Qm

Q′
n

, (3.10)

where Qm ∼ χ2(m) and Q′
n ∼ χ2(n) are independent. By (3.7), this has mo-

ments of Gamma type with

EF s
m,n =

( n
m

)s

EQs
m E(Q′

n)
−s =

( n
m

)sΓ(s+m/2)Γ(n/2− s)

Γ(m/2)Γ(n/2)
, (3.11)

for −m/2 < Re s < n/2, while EF s
m,n = ∞ for s ≤ −m/2 and s ≥ n/2. We

have ρ+ = n/2, ρ− = −m/2, γ = 2, γ′ = 0, δ = (n+m− 2)/2, κ = log(n/m),
C1 = 2π(Γ(m/2)Γ(n/2))−1. (Cf. Remarks 2.8 and 2.10.)

Example 3.8 (t-distribution). The t-distribution is the distribution of

Tn :=
N

Rn/
√
n
, (3.12)

where N ∼ N(0, 1) and Rn ∼ χ(n) are independent. This random variable is not
positive; in fact the distribution is symmetric. However, by (3.10) and (3.12),

T 2
n

d
= F1,n, so if we consider |Tn| d

= F
1/2
1,n , we see from Example 3.7 that |Tn| has

moments of Gamma type, with

E |Tn|s = EF
s/2
1,n = ns/2Γ(s/2 + 1/2)Γ(n/2− s/2)√

πΓ(n/2)
, (3.13)

for −1 < Re s < n, while E |Tn|s = ∞ for s ≤ −1 and s ≥ n. We have ρ+ = n,
ρ− = −1, γ = 1, γ′ = 0, δ = (n− 1)/2, κ = 1

2 logn, C1 = 23/2−n/2π1/2/Γ(n/2).
(Cf. Remark 2.9.)

Example 3.9 (Weibull distribution). The standard Weibull distribution has
the distribution function

P(Wα ≤ x) = 1− e−xα

, x > 0, (3.14)

for a parameter α > 0, and thus density function αxα−1e−xα

, x > 0.
Note that α = 1 yields the exponential distribution in Example 3.2. Moreover,

for any α and y > 0,

P(Wα
α ≤ y) = P(Wα ≤ y1/α) = 1− e−y = P(T ≤ y),

where T ∼ Exp(1); hence Wα
α

d
= T and Wα

d
= T 1/α. It follows from (3.2) that

Wα too has moments of Gamma type, see Remark 1.5, with

EW s
α = ET s/α = Γ(s/α+ 1), Re s > −α, (3.15)

while EW s
α = ∞ if s ≤ −α. We have ρ+ = ∞, ρ− = −α, γ = γ′ = 1/α, δ = 1/2,

κ = α−1 logα−1, C1 =
√
2π/α, cf. Remark 2.9.

If α = 1, then obviously W1
d
= T ∼ Exp(1). If α = 2, then W2

d
= T 1/2 d

=

2−1/2Q
1/2
2

d
= 2−1/2R2, which also follows by comparing (3.15) and (3.8).
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Example 3.10 (Stable distribution). Let Sα be a positive stable random
variable with the Laplace transform E e−tSα = e−tα , with 0 < α < 1. Recall
that any positive stable distribution is of this type, for some α ∈ (0, 1), up to a
scale factor, see Feller [9, Section XIII.6]. (We may also allow α = 1, but in this
exceptional case Sα is degenerate with S1 = 1 a.s.)

For any s > 0, by (A.10),

Γ(s)ES−s
α =

∫ ∞

0

ts−1 E e−tSα dt =

∫ ∞

0

ts−1e−tα dt,

while the change of variables u = tα yields
∫ ∞

0

ts−1e−tα dt =
1

α

∫ ∞

0

us/αe−u du

u
= α−1Γ(s/α).

Hence,

ES−s
α =

Γ(s/α)

αΓ(s)
=

Γ(1 + s/α)

Γ(1 + s)
, s > 0.

(In particular, this moment is finite.) Thus, for s < 0,

ESs
α =

Γ(1− s/α)

Γ(1− s)
. (3.16)

We have shown (3.16) for s < 0, but Theorem 2.1 (with ρ+ = α and ρ− = −∞)
shows that (3.16) holds whenever Re s < α, while ESs

α = ∞ for s ≥ α. (The
case α = 1 is exceptional; ESs

1 = 1 for every real s, so (3.16) holds but ρ+ = ∞.)
Thus Sα has moments of Gamma type.

We have γ = α−1 − 1, γ′ = −(α−1 − 1), δ = 0, κ = α−1 logα, C1 = α−1/2.

Example 3.11 (Mittag-Leffler distribution). The Mittag-Leffler distribu-
tion with parameter α ∈ (0, 1) can be defined as the distribution of the ran-
dom variable Mα := S−α

α , where Sα is a positive stable random variable with
E e−tSα = e−tα as in Example 3.4. Since Sα has the moments given by (3.16),
the Mittag-Leffler distribution too has moments of Gamma type given by, cf.
Remark 1.5,

EM s
α = ES−αs

α =
Γ(s)

αΓ(αs)
=

Γ(s+ 1)

Γ(αs+ 1)
, Re s > −1, (3.17)

while EM s
α = ∞ for s ≤ −1. In particular, the integer moments are given by

EMn
α =

n!

Γ(nα+ 1)
, n = 0, 1, 2, . . . (3.18)

We have ρ+ = ∞, ρ− = −1, γ = γ′ = 1 − α, δ = 0, κ = −α logα, C1 = α−1/2,
in accordance with Remark 2.9.

The reason for the name “Mittag-Leffler distribution” is that its moment
generating function is, by (3.18),

E esMα =

∞∑

n=0

EMn
α

sn

n!
=

∞∑

n=0

sn

Γ(nα+ 1)
, (3.19)
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which converges for any complex s and is known as the Mittag-Leffler function
Eα(s) since it was studied by Mittag-Leffler [23]. The formula (3.19), or equiv-
alently (3.18), is often taken as the definition of the Mittag-Leffler distribution.

We may also allow α = 0 and α = 1, with M0 ∼ Exp(1) (see Example 3.2)
and M1 ≡ 1; in both cases (3.17) and (3.19) hold, although for α = 0, (3.19)
converges only for |s| < 1, and δ = 1/2, C1 =

√
2π, while for α = 1, (3.17)

trivially holds for all s with EM s
α = 1 <∞ and ρ− = −∞.

The Mittag-Leffler distribution was introduced by Feller [8], see also [9, Sec-
tions XI.5 and XIII.8(b)] and Pollard [26]. Blumenfeld and Mandelbrot [4] con-
sidered also logMα, which by (3.17) has moment generating function Γ(s +
1)/Γ(αs+1) of Gamma type, and called its distribution the “logarithmic Mittag-
Leffler distribution”. Feller [8; 9] showed that the Mittag-Leffler distribution is
the limit distribution as t → ∞ of the number of renewals up to time t, prop-
erly normalized, of an i.i.d. sequence of positive random variables belonging to
the domain of attraction of a stable law. It emerges also, for example, as the
limit distribution of occupancy times in the Darling–Kac theorem, see Bingham,
Goldie, Teugels [3, Section 8.11].

In the special case α = 1/2, the duplication formula (A.3) yields

EM s
1/2 =

Γ(s+ 1)

Γ(s/2 + 1)
= π−1/22sΓ(s/2 + 1/2), (3.20)

which by comparison with (3.9) shows that M1/2
d
=

√
2|N | with N ∼ N(0, 1),

which is equivalent to the well-known relation S1/2
d
= 1

2N
−2.

Example 3.12 (A different Mittag-Leffler distribution). Another distri-
bution related to the Mittag-Leffler function Eα(s) in (3.19), and, rather unfor-
tunately, therefore also called “Mittag-Leffler distribution” was introduced by
Pillai [25] as the distribution of a random variable Lα with distribution function
1− Eα(−xα), where 0 < α ≤ 1; equivalently, by (3.19),

P(Lα > x) = Eα(−xα) = E e−xαMα . (3.21)

This is another instance of the relation (1.10), and Lemma 1.11 shows that Lα

has moments of Gamma type with, using (3.17),

ELs
α = Γ(s/α+1)EM−s/α

α =
Γ(1 + s/α)Γ(1− s/α)

Γ(1− s)
, −α < s < α, (3.22)

while ELs
α = ∞ if s ≤ −α or (provided α < 1) s ≥ α. Note also that Lemma 1.11

yields the representation [25]

Lα
d
= T 1/αM−1/α

α = T 1/αSα, (3.23)

with T ∼ Exp(1) and the stable variable Sα independent. Equivalently, see

Example 3.9, Lα
d
= WαSα, with the Weibull variable Wα and Sα independent.

It follows easily from (3.23) that Lα has the Laplace transform E e−tLα = (1 +
tα)−1, t > 0 [25].
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For α = 1, we have L1 ∼ Exp(1). For 0 < α < 1, ρ+ = α, ρ− = −α, γ =
2/α− 1, γ′ = 1, δ = 1/2, κ = 0, C1 =

√
2π/α. (For example by Remark 2.10.)

Example 3.13 (Pareto distribution). The Pareto(α) distribution, where
α > 0, is the distribution of a random variable Pα with P(Pα > x) = x−α,
x ≥ 1. Hence Pα has density function αx−α−1, x > 1. Direct integration shows
that the moments are of Gamma type and given by

EP s
α =

∫ ∞

1

αxs−α−1 dx =
α

α− s
=

αΓ(α− s)

Γ(α− s+ 1)
, Re s < α. (3.24)

Hence ρ+ = α, ρ− = −∞, γ = γ′ = 0, δ = −1, κ = 0, C1 = α.

We have Pα
d
= U−1/α with U ∼ U(0, 1), so alternatively these result follow

from Example 3.3 and Remarks 1.5 and 2.9.

Example 3.14 (Shifted Pareto distribution). The shifted Pareto variable

P̃α := Pα − 1, where α > 0, has support (0,∞) and density function α(x +
1)−α−1, x > 0. The moments are given by, using (A.9),

E P̃ s
α =

∫ ∞

0

αxs(x+ 1)−α−1 dx = α
Γ(s+ 1)Γ(α− s)

Γ(α+ 1)
=

Γ(s+ 1)Γ(α− s)

Γ(α)
,

(3.25)

for −1 < Re s < α, while E P̃ s
α = ∞ if s ≤ −1 or s ≥ α. Hence also the shifted

Pareto distribution has moments of Gamma type, with ρ+ = α, ρ− = −1, γ = 2,
γ′ = 0, δ = α, κ = 0, C1 = 2π/Γ(α).

For α = 1, (3.25) yields E P̃ s
1 = Γ(1 + s)Γ(1 − s) = E P̃−s

1 ; hence P̃1
d
= P̃−1

1

(so log P̃1 has a symmetric distribution). Using (A.6), we have

E P̃ s
1 = Γ(1 + s)Γ(1− s) = sΓ(s)Γ(1 − s) =

πs

sin(πs)
, −1 < Re s < 1.

Further, comparing (3.25) and (3.11) we see that P̃1
d
= F2,2.

More generally, (3.25) and (3.1) imply that if Γ1 ∼ Γ(1) = Exp(1) and Γ′
α ∼

Γ(α) are independent, then E(Γ1/Γ
′
α)

s = EΓs
1 E(Γ

′
α)

−s = E P̃ s
α (for suitable s);

thus P̃α
d
= Γ1/Γ

′
α by Corollary 2.3. This is also an instance of Lemma 1.11 (with

α = 1 in (1.10) and (1.11)).

Example 3.15 (Extreme value distributions). There are three types of ex-
treme value distributions, see e.g. Leadbetter, Lindgren and Rootzén [21, Chap-
ter I]. We let XI , XII,α, XIII,α denote corresponding random variables; they
have the distribution functions

P(XI ≤ x) = e−e−x

, −∞ < x <∞, (3.26)

P(XII,α ≤ x) = e−x−α

, 0 < x <∞, (3.27)

P(XIII,α ≤ x) = e−(−x)α , −∞ < x < 0, (3.28)
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where (for types II and III) α > 0 is a real parameter.
The distribution (3.26) (the Gumbel distribution) has the entire real line as

support, and is therefore not qualified to have moments of Gamma type. It has,
however, moment generating function of Gamma type, see Example 3.19

The distribution (3.27) (the Fréchet distribution) satisfies, with T ∼ Exp(1),

P(XII,α ≤ x) = P(T ≥ x−α) = P(T−1/α ≤ x), x > 0,

and thus XII,α
d
= T−1/α d

= 1/Wα, see Example 3.9. Hence it has moments of
Gamma type with, see (3.2) and (3.15),

EXs
II,α = Γ(1 − s/α), Re s < α. (3.29)

We have ρ+ = α, ρ− = −∞, γ = 1/α, γ′ = −1/α, δ = 1/2, κ = α−1 logα,
C1 =

√
2π/α, cf. Remarks 2.8 and 2.9 and Examples 3.2 and 3.9.

The distribution (3.28) satisfies P(−XIII,α ≥ x) = e−xα

, x > 0, so−XIII,α
d
=

Wα and XIII,α
d
= −Wα, see Example 3.9. By (3.15), |XIII,α| = −XIII,α has

moments of Gamma type with

E |XIII,α|s = Γ(1 + s/α), Re s > −α. (3.30)

We have ρ+ = ∞, ρ− = −α, γ = γ′ = 1/α, δ = 1/2, κ = α−1 logα−1,
C1 =

√
2π/α.

Example 3.16 (Fejér distribution). The distribution with density function

1− cosx

πx2
=

1

2π

(
sin(x/2)

x/2

)2

, −∞ < x <∞, (3.31)

has characteristic function (1−|t|)+, which vanishes outside the interval [−1, 1],
see [9, Section XV.2]. The density function (3.31) is in harmonic analysis known
as the Fejér kernel on the real line, so we call this distribution the Fejér distri-
bution.

If X has this distribution, then, for −1 < s < 0, using integration by parts,
dominated convergence, (A.7) and (A.6),

E |X |s = 2

π

∫ ∞

0

(1− cosx)xs−2 dx =
−2

π(s− 1)

∫ ∞

0

sinx · xs−1 dx

=
−2

π(s− 1)
lim
εց0

Im

∫ ∞

0

e(i−ε)xxs−1 dx

=
2

π(s− 1)
lim
εց0

Im

(
i− ε

s

∫ ∞

0

e(i−ε)xxs dx

)

=
2Γ(s+ 1)

πs(s− 1)
lim
εց0

Im
(
−(ε− i)−s

)
= −2Γ(s− 1)

π
Im

(
eπsi/2

)

= −2Γ(s− 1)

π
sin

(πs
2

)
=

−2Γ(s− 1)

Γ(s/2)Γ(1− s/2)
.
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The right-hand side has poles at ρ± = ±1 (and a removable singularity at 0),
and Theorem 2.1 shows that the formula extends to all s with −1 < Re s < 1.
In other words, |X | has moments of Gamma type with, using (A.6) again and
(A.3) to obtain several versions, for −1 < Re s < 1,

E |X |s = −2Γ(s− 1)

π
sin

(πs
2

)
=

−2Γ(s− 1)

Γ(s/2)Γ(1− s/2)

= − 2s

2
√
π

Γ(s/2− 1/2)

Γ(1− s/2)

= − 1

π

Γ(s/2− 1/2)Γ(3/2− s/2)

Γ(2− s)

=
1

cos(πs/2)Γ(2− s)
=

Γ(1/2− s/2)Γ(1/2 + s/2)

πΓ(2− s)
.

(3.32)

We have γ = 0, γ′ = 1, δ = −3/2, κ = 0, C1 = (2/π)1/2.

We have so far considered distributions with moments of Gamma type; we
now turn to a few examples with moment generating function of Gamma type.
Of course, if X is any of the examples above, logX yields such an example.
(One such example was mentioned in Example 3.11.)

Example 3.17 (Exponential distribution again). We noted in Example 3.2
that T ∼ Exp(1) has moments of Gamma type. It has moment generating
function of Gamma type too, since

E esT =

∫ ∞

0

esx−x dx =
1

1− s
=

Γ(1− s)

Γ(2− s)
, Re s < 1. (3.33)

In fact, T
d
= − logU

d
= logP1, and equivalently U

d
= e−T and P1

d
= eT ; compare

(3.33) to (3.5) and (3.24). We have ρ+ = 1, ρ− = −∞, γ = γ′ = 0, δ = −1,
κ = 0, C1 = 1.

Example 3.18 (Gamma distribution again). A Gamma distributed random
variable Γn ∼ Γ(n) with integer n ≥ 1 can be obtained by taking the sum of n
independent copies of T ∼ Exp(1), and thus (3.33) implies that Γn has moment
generating function of Gamma type with

E esΓn =
(
E esT

)n
=

1

(1− s)n
=

Γ(1− s)n

Γ(2− s)n
, Re s < 1. (3.34)

We have ρ+ = 1, ρ− = −∞, γ = γ′ = 0, δ = −n, κ = 0, C1 = 1.
More generally, for any real α > 0, Γα has moment generating function

E esΓα = (1 − s)−α. If α is not an integer, then this function has a singularity
as sր 1 that is not a pole; hence E esΓα cannot be extended to a meromorphic
function in the complex plane, and Γα does not have moment generating func-
tion of Gamma type. Consequently, the Gamma distribution Γ(α) has moment
generating function of Gamma type if and only if α is an integer.
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Example 3.19 (Gumbel distribution). If XI has the Gumbel distribution
(3.26), and T ∼ Exp(1), then

P
(
e−XI ≥ x

)
= P(XI ≤ − log x) = e−x = P(T ≥ x), x > 0,

so e−XI
d
= T and XI

d
= − logT . Consequently, the Gumbel distribution has

moment generating function of Gamma type with, see (3.2),

E esXI = E T−s = Γ(1− s), Re s < 1. (3.35)

We have ρ+ = 1, ρ− = −∞, γ = 1, γ′ = −1, δ = 1/2, κ = 0, C1 =
√
2π.

Example 3.20 (Lévy area). The Lévy stochastic area is defined by the

stochastic integral At :=
∫ t

0
Xu dYu −

∫ t

0
Yu dXu, where (Xu, Yu), u ≥ 0, is a

two-dimensional Brownian motion starting at 0 (i.e., Xu and Yu, u ≥ 0, are two

independent standard Brownian motions). By Brownian scaling, At
d
= tA1, so

we consider only A := A1. Then, for real t, see e.g. Protter [28, Theorem II.43],
using (A.6),

E eitA =
1

cosh(t)
=

1

cos(it)
=

1

sin(π2 + it)
=

Γ(12 + it
π )Γ(

1
2 − it

π )

π
. (3.36)

Consequently, by Theorem 2.1, A has moment generating function of Gamma
type, with ρ± = ±π/2 and

E esA =
1

cos s
=

Γ(12 + s
π )Γ(

1
2 − s

π )

π
, |Re s| < π/2. (3.37)

We have γ = 2/π, γ′ = 0, δ = 0, κ = 0, C1 = 2.
It is known that A has the density function 1/2 cosh(πx/2), −∞ < x < ∞,

see e.g. Protter [28, Corollary to Theorem II.43] and Example 6.18 below.
Of course, eA has moments of Gamma type, and so has ecA for every real c.

A comparison with (3.11) shows that eπA
d
= F1,1. Hence, A

d
= π−1 logF1,1.

Remark 3.21. We have shown that a large number of classical continuous
distributions have moments of Gamma type, but there are exceptions. For ex-
ample, if X ∼ U(1, 2), then EXs = (2s+1 − 1)/(s + 1) has complex zeros at
−1 + 2πik/ log 2, k = ±1,±2, . . . , which is impossible when (1.1) holds. More
generally, if X is non-degenerate and is supported in a finite interval [a, b] with
0 < a < b < ∞, then EXs is an entire function of s, which by Theorem 4.1
below shows that X does not have moments of Gamma type.

4. Poles and zeros

In this section it will be convenient to consider the class F of all functions of
the type in (1.1) and (1.2), regardless of whether they equal EXs [E esY ] for
some random variable X [Y ] or not. Thus, F is the set of functions

F (s) = CDs

∏J
j=1 Γ(ajs+ bj)

∏K
k=1 Γ(a

′
ks+ b′k)

, (4.1)
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where J,K ≥ 0 and C, D, aj , bj , a
′
k, b

′
k are real with D > 0 and aj 6= 0, a′k 6= 0

for all j and k. We let Fm ⊂ F be the set of such functions that appear in (1.1)
and (1.2), i.e., the set of F (s) ∈ F such that F (s) = EXs for some positive
random variable X and s in some interval.

A function F (s) ∈ F is a meromorphic function of s in the complex plane
C. We can easily locate its poles (and zeros) precisely as follows. Define ν(s) =
νF (s) for all s ∈ C by

νF (s) =






m if F has a pole of order m at s,

−m if F has a zero of order m at s,

0 otherwise (i.e., F is regular at s with F (s) 6= 0).

(4.2)

(For F ∈ Fm with F (s) an extension of EXs, we also write νX .)
Since Ds has neither poles nor zeros, while Γ(z) has a simple pole at each

z ∈ Z≤0 := {0,−1,−2, . . .} but no zeros,

νF (s) =

J∑

j=1

1[ajs+ bj ∈ Z≤0]−
K∑

k=1

1[a′ks+ b′k ∈ Z≤0]

=

J∑

j=1

1
[
s ∈

{
−n+ bj

aj
: n ∈ Z≥0

}]
−

K∑

k=1

1
[
s ∈

{
−n+ b′k

a′k
: n ∈ Z≥0

}]
.

(4.3)

Note that all poles and zeros of F lie on the real axis.
We further define F0 := {F ∈ F : νF (0) = 0}, i.e., the set of functions F ∈ F

that have neither a pole nor a zero at 0. By Remark 2.4, Fm ⊂ F0 ⊂ F . Note
that F is a group under multiplication and that F0 is a subgroup.

For F ∈ Fm we defined ρ± in Section 2; the definition (2.1) can be written

ρ+ := min{x > 0 : νF (x) > 0},
ρ− := max{x < 0 : νF (x) > 0}. (4.4)

For general F ∈ F we define

ρ+ := min{x ≥ 0 : νF (x) 6= 0},
ρ− := max{x ≤ 0 : νF (x) 6= 0}, (4.5)

and note that this is consistent with (4.4) for F ∈ Fm by the fact (Theorem 2.1)
that such F has no zeros in (ρ−, ρ+) and no pole at 0.

If all aj , a
′
k, bj, b

′
k > 0, then F (s) has no poles or zeros in the right halfplane

Re s ≥ 0, since none of the factors in (4.1) has; thus ρ+ = ∞. Similarly, if all
aj , a

′
k < 0 and bj, b

′
k > 0, then F (s) has no poles or zeros in the left halfplane

Re s ≤ 0 and ρ− = −∞. The converses do not hold, because the representation
(4.1) is not unique and we may, e.g., add cancelling factors that separately have
poles at other places. However, we may always choose a representation of the
desired type; this is part of the following theorem.
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Theorem 4.1. Let F ∈ F0 and let ρ± be as in (4.5).

(i) It is always possible to find a representation (4.1) of F (s) with all bj , b
′
k >

0.
(ii) If ρ− = −∞, then F (s) has a representation (4.1) with all aj , a

′
k < 0 and

bj , b
′
k > 0.

(iii) If ρ+ = ∞, then F (s) has a representation (4.1) with all aj , a
′
k, bj , b

′
k > 0.

(iv) If ρ+ = ∞ and ρ− = −∞ (i.e., F (s) is entire and without zeros), then
F (s) = CDs for some real constants C and D > 0.

In particular, if X is a random variable with moments of Gamma type, this
applies to the meromorphic extension F (s) of EXs. In this case, it is not possible
that both ρ+ = ∞ and ρ− = −∞ (i.e., that EXs is entire), except in the trivial
case X = D a.s. for some D > 0 (and thus EXs = Ds).

We begin by proving a lemma.

Lemma 4.2. Suppose that aj, a
′
j , bk, b

′
k are real with aj , a

′
k > 0 and that F (s) :=

∏J
j=1 Γ(ajs + bj)/

∏K
k=1 Γ(a

′
ks + b′k) is analytic and non-zero in a half-plane

Re s < B for some B ∈ (−∞,∞). Then F (s) = eαsQ(s) for some rational
function Q with real poles and zeros and some α ∈ R.

Proof. Say that two non-zero real numbers a and a′ are commensurable if a/a′ ∈
Q; this is an equivalence relation on R∗ := R \ {0}. (In algebraic language, the
equivalence classes are the cosets of Q∗ in R∗.) The poles of Γ(as + b) are
regularly spaced with distances 1/|a|. Thus, if a and a′ are incommensurable,
and b, b′ are any real numbers, then Γ(as+ b) and Γ(a′s+ b′) have at most one
common pole.

We divide the set {aj}Jj=1∪{a′k}Kk=1 into equivalence classes of commensurable

numbers. This gives a corresponding factorization F (s) =
∏L

ℓ=1 Fℓ(s) where L
is the number of equivalence classes and each Fℓ is of the same form as F but
with all aj and a′k commensurable. It follows that two different factors Fℓ1(s)
and Fℓ2(s) have at most a finite number of common zeros or poles; hence, by
decreasing B, we may assume that there are no such common poles or zeros with
Re s < B. Hence, a pole or zero of a factor Fℓ(s) in Re s < B cannot be cancelled
by another factor, and thus such poles or zeros do not exist. Consequently,
each factor Fℓ(s) satisfies the assumption of the lemma, and we may thus treat
each Fℓ(s) separately. This means that we may assume that all aj and a′k are
commensurable.

In this case, there is a positive real number r such that all aj and a′k are
(positive) integer multiples of r. Using Gauss’s multiplication formula (A.5), we
may convert each factor Γ(ajs+ bj) or Γ(a

′
ks+ b′k) into a product of a constant,

an exponential factor eβs, and a number of Gamma factors Γ(rs + ui) with
ui ∈ R. Using the functional relation (A.2), we may further assume that each
ui ∈ (0, 1], provided we also allow factors (rs+ u)±1 with u ∈ R. Collecting the
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factors, we see that

F (s) = eαsQ(s)

∏J′

j=1 Γ(rs+ uj)
∏K′

k=1 Γ(rs+ u′k)
(4.6)

for a constant α, a rational function Q(s) with real zeros and poles, and some
uj, u

′
k ∈ (0, 1]. We may assume that Q has no poles or zeros with Re s < B

(by again decreasing B if necessary). The factors Γ(rs + uj) and Γ(rs + u′k)
have no zeros but each has an infinite number of poles with Re s < B, and two
factors Γ(rs + uj) and Γ(rs + u′k) have disjoint sets of poles unless uj = u′k.
Since the poles with Re s < B must cancel in (4.6), this shows that the Gamma
factors must cancel each other completely, and thus (4.6) reduces to F (s) =
eαsQ(s).

Proof of Theorem 4.1. (i): Using Γ(z) = Γ(z+1)/z repeatedly on any term with
bj ≤ 0 or b′k ≤ 0, we may write F (s) as

CDsQ(s)

∏J
j=1 Γ(ajs+ b̃j)

∏K
k=1 Γ(a

′
ks+ b̃′k)

, (4.7)

with b̃j , b̃
′
k > 0, where Q(s) is a rational function with only real poles and

zeros; Q(s) = c
∏

i(s− ri)/
∏

ℓ(s − r′ℓ) for some real ri and r
′
ℓ, i = 1, . . . , I and

ℓ = 1, . . . , L, say; we may further assume that ri 6= r′ℓ for all i and ℓ. Since 0
is not a pole or zero of F , it is by (4.7) not a zero or pole of Q, and thus all
ri, r

′
ℓ 6= 0.
If r < 0, then

s− r = s+ |r| = Γ(s+ |r|+ 1)

Γ(s+ |r|) , (4.8)

and if r > 0, then

s− r = −(r − s) = −Γ(−s+ r + 1)

Γ(−s+ r)
, (4.9)

so Q(s) may be written as product of quotients of Gamma factors of the desired
type (and a constant), and thus the result follows from (4.7).

(ii): We use (i) and may thus assume that (4.1) holds with bj , b
′
k > 0. We

factorize F (s) as, with d = logD,

F (s) = CedsF+(s)F−(s), (4.10)

where F+(s) contains all factors Γ(ajs + bj) and Γ(a′ks + b′k) with aj , a
′
k > 0,

and F−(s) contains the factors with aj , a
′
k < 0, so F− is of the desired form.

Since bj, b
′
k > 0, F−(s) has no poles or zeros with Re s ≤ 0. By assump-

tion, ρ− = −∞, and thus F (s) is analytic and non-zero in the half-plane
Re s ≤ 0. Consequently, by (4.10), F+(s) also has no poles or zeros in Re s ≤ 0.
By Lemma 4.2, F+(s) = Q(s)eαs for a rational function Q(s) = C1

∏
j(s −
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uj)/
∏

k(s− vk) where uj and vk are real. We may assume that uj 6= vk for all
j, k, and then each uj or vk is a zero or pole of F+(s), and thus all uj, vk > 0.
Using (4.9), we thus can write Q(s) in the desired form; hence F+(s) and F (s)
can be so written.

(iii): Follows from (ii) by replacing F (s) by F (−s).
(iv): In this case, F (s) is an entire function without zeros. We use again

the factorization (4.10). By the proof of (ii), F+(s) = eαsQ(s) for a rational
function Q. By symmetry, as in the proof of (iii), similarly F−(s) = eα−sQ−(s)
for another rational function Q−. Thus,

F (s) = Ce(d+α+α−)sQ(s)Q−(s). (4.11)

Hence, the rational function Q(s)Q−(s) is entire and has neither poles nor zeros;
consequently, it is constant. Thus F (s) = C1e

d1s for some C1 and d1.

As a consequence we show that the function νF (s) describing the poles and
zeros of F (s) essentially determines F , and thus the distribution of X and Y
satisfying (1.1) or (1.2).

Theorem 4.3. If F1, F2 ∈ F and νF1 = νF2 , then F2(s) = cDsF1(s) for some
real constants C 6= 0 and D > 0.

Proof. F := F2/F1 ∈ F and νF (s) = νF1(s)−νF2(s) = 0 for every s. Hence, F ∈
F0 and ρ− = −∞, ρ+ = ∞; thus Theorem 4.1(iv) shows that F (s) = CDs.

Corollary 4.4. If X1 and X2 are positive random variables with moments of

Gamma type and νX1 = νX2 , then X2
d
= DX1 for some constant D > 0. In other

words, a distribution with moments of Gamma type is uniquely determined up
to a scaling factor by the function νX(s).

Similarly, if Y1 and Y2 have moment generating functions of Gamma type

with the same ν, then Y2
d
= Y1 + d for some real constant d.

Proof. Let Fj(s) be the meromorphic extension of EXs
j , j = 0, 1. Then F2(s) =

CDsF1(s) by Theorem 4.3. Setting s = 0 we find C = 1, and thus, for s in

some interval, EXs
2 = F2(s) = DsF1(s) = E(DX1)

s, whence X2
d
= DX1 by

Corollary 2.3.
The final statement follows by considering Xj := eYj .

Remark 4.5. The proofs of Theorem 4.1 and Lemma 4.2 yield an almost canon-
ical way of expressing F (s) ∈ F0 in the form (4.1). We start by making all
bj, b

′
k > 0 by Theorem 4.1(i). We then treat positive and negative aj and a′k

separately; furthermore, if these coefficients are not all commensurable (which
they are in most natural examples), we separate them into different equivalence
classes of commensurable coefficients. For each class we then rewrite the prod-
uct of the corresponding factors in the form (4.6) for some real r (different for
different classes, and chosen with |r| as large as possible). Note that different
factors in (4.6) have no common poles, so it is easy to locate all poles and ze-
ros. It only remains to take care of the rational part in (4.6); in the examples
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we know, this is not a problem but we have not studied this in general, and
we do not know whether it is possible to use this approach to define a unique
canonical representation (4.1) for each F ; we leave this as an open problem. (Al-
ternatively, it might be possible to define a canonical representation including
a rational factor.)

See Theorems 1.6 and 1.12 for examples of such ’canonical’ versions, but note
that they not necessarily are the simplest by other criteria.

Let N+(x) :=
∑

0<s≤x νF (s), x > 0, and N−(x) :=
∑

x≤s<0 νF (s), x < 0.
Thus N+(x) is the total number of poles minus the total number of zeros (with
multiplicities) in the interval (0, x], and similarly for N−(x) and the interval
[x, 0) on the negative half-axis. The following proposition can be interpreted as
giving the density of poles minus zeros on the positive or negative half-axis.

Proposition 4.6. Let N+(x) :=
∑

0<s≤x νF (s) for x > 0, and N−(x) :=∑
x≤s<0 νF (s) for x < 0. Then N+(x)/x → 1

2 (γ − γ′) as x → +∞ and

N−(x)/|x| → 1
2 (γ + γ′) as x→ −∞.

Proof. Use, for simplicity, a representation as in Theorem 4.1(i). Then, using
(4.3), the terms with aj > 0 and a′k > 0 give no contributions to νF (s) and
N+(x) for s > 0 and x > 0, while each aj < 0 gives a contribution |aj |x+O(1)
to N+(x) (poles regularly spaced at distances 1/|aj|), and similarly each a′k < 0
gives a contribution −|a′k|x + O(1) to N+(x). Consequently, for x > 0, using
Lemma 2.12,

N+(x) = x
( ∑

j:aj<0

|aj | −
∑

k:a′

k<0

|a′k|
)
+O(1) = x1

2 (γ − γ′) +O(1),

and the result as x→ ∞ follows. The result as x→ −∞ follows similarly, or by
replacing F (s) by F (−s).

5. Asymptotics of moments or moment generating function

In this section we assume that X > 0 and Y = logX are random variables such
that (1.1)–(1.3) hold (for ρ− < Re s < ρ+ and t ∈ R), i.e.

EXs = E esY = F (s) = CDs

∏J
j=1 Γ(ajs+ bj)

∏K
k=1 Γ(a

′
ks+ b′k)

, (5.1)

and we write as above D = ed. Recall the definitions (2.4)–(2.8).
We begin with asymptotics of F along the imaginary axis and close to it.

Theorem 5.1. As t→ ±∞,

|E eitY | = |F (it)| ∼ C1|t|δe−
π
2 γ|t|. (5.2)

Moreover, for any fixed real σ, and uniformly for σ in any bounded set,

|F (σ + it)| ∼ eκσ|t|γ′σ|F (it)| ∼ C1e
κσ|t|δ+γ′σe−

π
2 γ|t|. (5.3)
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Proof. It is an easy, and well-known, consequence of Stirling’s formula, see e.g.
(A.13), that for any complex constant c and all complex z in a sector | arg z| <
π − ε (where ε > 0) with |z| large enough, for example |z| ≥ 2|c|/ sin ε,

log Γ(z + c)− log Γ(z) = c log z +O
(
|z|−1

)
, (5.4)

uniformly for c in any bounded set and such |z|.
If a > 0 and b ∈ R, we thus have for real t → +∞, taking z = iat in (5.4)

and in Stirling’s formula (A.12),

log Γ(ait+ b) = log Γ(iat) + b log(iat) +O
(
t−1

)

= (iat+ b− 1
2 ) log(iat)− iat+ log

√
2π +O

(
t−1

)

=
(
iat+ b− 1

2

)(
log(at) + iπ/2

)
− iat+ log

√
2π +O

(
t−1

)
.

Taking the real part, we find

log |Γ(ait+ b)| = Re(log Γ(ait+ b))

= −π
2
at+ (b− 1

2 ) log(at) + log
√
2π +O

(
t−1

)
.

Consequently, for a > 0,

|Γ(ait+ b)| ∼
√
2π ab−1/2tb−1/2e−

π
2 at, t→ +∞. (5.5)

For general real a and t we thus have (by Γ(z̄) = Γ(z))

|Γ(ait+ b)| =
∣∣Γ(|a|i|t|+ b)

∣∣ ∼
√
2π |a|b−1/2|t|b−1/2e−

π
2 |a||t|, t→ ±∞.

The result (5.2) follows by multiplying the various factors in F (it) in (5.1),
noting that |Dit| = 1.

For (5.3) we note that (5.4) implies

log |Γ(a(σ + it) + b)| − log |Γ(ait+ b)| = Re
(
aσ log(ait+ b) +O

(
t−1

))

= σ
(
a log |a|+ a log |t|+O

(
t−1

))
,

and the result follows by multiplying the various factors in F (σ + it)/F (it).
(Alternatively, at least for fixed σ, we may apply (5.2) with bj replaced by
bj + σaj , b

′
k replaced by b′k + σa′k and C replaced by CDσ = Cedσ; note that

the proof holds for any function F of this type, without assuming the existence
of random variables X and Y .)

Proof of Proposition 2.7. By (5.2), the values of F (it) determine γ, δ and C1.
Further, choosing any fixed σ > 0 in (5.3), we see that F determines γ′ and κ

too.

Corollary 5.2. We have γ ≥ 0. Further, if γ = 0, then δ ≤ 0.

Proof. By letting t→ ∞ in (5.2), since |E eitY | ≤ 1.
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Remark 5.3. If γ = 0 and γ′ 6= 0, then (5.3) implies a better bound for δ, viz.
δ ≤ −max(γ′ρ+, γ′ρ−). (Example 3.16 is one such example, with γ = 0, γ′ = 1
and strict inequality δ = −3/2 < −γ′ρ+ = −1.)

Theorem 5.4. If γ > 0, then X and Y are absolutely continuous, with contin-
uous and infinitely differentiable density functions fX(x) on (0,∞) and fY (y)
on (−∞,∞) given by

fX(x) =
1

2πi

∫ σ+i∞

σ−i∞
x−s−1F (s) ds, (5.6)

fY (y) =
1

2πi

∫ σ+i∞

σ−i∞
e−ysF (s) ds, (5.7)

for any σ ∈ (ρ−, ρ+).

Proof. By Theorem 5.1, the characteristic function E eitY = F (it) is integrable,
and thus Y has a continuous density fY obtained by Fourier inversion:

fY (y) =
1

2π

∫ ∞

−∞
e−ityF (it) dt =

1

2πi

∫ i∞

−i∞
e−syF (s) ds. (5.8)

Since Y = logX , X also is absolutely continuous, with the density function

fX(x) =
1

x
fY (log x) =

1

2πi

∫ i∞

−i∞
x−s−1F (s) ds. (5.9)

(Alternatively and equivalently, F (s) is the Mellin transform of fX , and this is
the Mellin inversion formula.)

Since Theorem 5.1 further implies that |t|NF (it) is integrable for everyN ≥ 0,
fY and fX are infinitely differentiable and we may differentiate (5.9) and (5.8)
under the integral sign an arbitrary number of times.

The integrands in (5.9) and (5.8) are analytic in s for ρ− < Re s < ρ+, and
thus the estimate (5.3) implies that we can move the line of integration to any
line Re s = σ with ρ− < σ < ρ+.

Remark 5.5. For X , we consider the density only for x > 0, and ‘infinitely
differentiable’ here means on (0,∞). Continuity and differentiability of fX at 0
will be considered in Theorem 6.11.

Remark 5.6. In the case γ = 0, the same argument shows that if δ < −1,
then X and Y have continuous density functions, which have at least ⌈|δ|⌉ − 2
continuous derivatives. However, Example 3.4, where δ = −β, shows that we in
general do not have more derivatives. Similarly, Examples 3.3 and 3.4 show that
we do not necessarily have continuous density functions for γ = 0 and −1 ≤
δ ≤ 0. Example 10.1 gives an example with γ = δ = 0 where the distribution is
mixed with a point mass besides the absolutely continuous part.

Note that, by (5.2), γ = δ = 0 if and only if |EX it| = |E eitY | has a non-zero
limit as t→ ±∞; by the Riemann–Lebesgue lemma, this implies that Y and X
do not have absolutely continuous distributions.
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We next consider asymptotics of F along the real axis, when possible.

Theorem 5.7. (i) If ρ+ = ∞, then for real s→ +∞,

EXs = E esY = F (s) ∼ C1s
δeγs log s+(κ−γ)s. (5.10)

(ii) If ρ− = ∞, then for real s→ −∞,

EXs = E esY = F (s) ∼ C1|s|δeγ|s| log |s|+(κ+γ)s. (5.11)

Proof. (i): By Theorem 4.1 and Proposition 2.7, we may assume that all aj , a
′
k >

0. We then argue as for Theorem 5.1. If a > 0 and b ∈ R, then for real s→ +∞,

log Γ(as+ b) = log Γ(as) + b log(as) +O
(
s−1

)

= (as+ b− 1
2 ) log(as)− as+ log

√
2π +O

(
s−1

)

= as log s+ (a log a− a)s+ (b− 1
2 ) log s

+ (b− 1
2 ) log a+ log

√
2π +O

(
s−1

)
,

(5.12)

and the result follows again by multiplying the factors.
(ii): This follows from (i) by replacing Y by −Y , see Remark 2.8:

E esY = E e|s|(−Y ) ∼ C1|s|δeγ|s| log |s|+(−κ−γ)|s|.

If ρ+ < ∞, then F has poles, and possibly zeros, on the positive real axis.
Typically, there is an infinite number of such poles (but see Example 3.3 for a
counter example), and then we cannot consider asymptotics for all s → +∞.
However, we can restrict s to a subset of R and obtain asymptotic results similar
to Theorem 5.7 in this case too.

Lemma 5.8. Given real aj , bj , a
′
k, b

′
k for 1 ≤ j ≤ J and 1 ≤ k ≤ K, with

aj , a
′
k 6= 0, there exists a closed set E ⊂ R and a constant ξ > 0 such that E ∩ I

has measure greater than 1/2 for every interval I of length 1, and | sin(π(ajs+
bj))| ≥ ξ and | sin(π(a′ks+ b′k))| ≥ ξ for every j and k and all s ∈ E.

Proof. Let N be the set of all (real) s such that ajs + bj ∈ Z for some j or
a′ks+b

′
k ∈ Z for some k. There exists a constantM such that no interval of length

1 contains more than M points of N . (For example, M = J +K +
∑

j |aj|−1 +∑
k |a′k|−1.) It follows that E := {x : |x−s| ≥ 1/(2M+3) for all s ∈ N} satisfies

the properties, for some ξ > 0.

In the sequel we let E denote this set, defined for a given representation (5.1)
of F (s). By considering only s ∈ E, we can extend Theorem 5.7 to arbitrary F .

Theorem 5.9. For real s→ ±∞ with s ∈ E,

|F (s)| = |s|δeγ′s log |s|+(κ−γ′)s+O(1). (5.13)
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Proof. If a < 0 and b ∈ R, then for real s→ +∞, by (A.6) and (5.12),

log |Γ(as+ b)| = − log |Γ(|a|s− b+ 1)|+ log π − log | sin(π(as+ b))|
= −|a|s log s− (|a| log |a| − |a|)s− (12 − b) log s− (12 − b) log |a|

+ log
√
π/2− log | sin(π(as+ b))|+O

(
s−1

)
,

= as log s+ (a log |a| − a)s+ (b− 1
2 ) log s− log | sin(π(as+ b))|+O(1).

(5.14)

If (a, b) is some (aj , bj) or (a
′
k, b

′
k) with a < 0, we thus have by Lemma 5.8, for

s ∈ E with s→ +∞,

log |Γ(as+ b)| = as log s+ (a log |a| − a)s+ (b− 1
2 ) log s+O(1). (5.15)

By (5.12), (5.15) holds also for a > 0 (and all s→ +∞).
Further, replacing s by −s and a by −a in (5.15), we see that if (a, b) is some

(aj , bj) or (a
′
k, b

′
k), then for s ∈ E with s→ −∞,

log |Γ(as+ b)| = as log |s|+ (a log |a| − a)s+ (b− 1
2 ) log |s|+O(1). (5.16)

Thus (5.16) holds for all such (a, b) and s → ±∞ with s ∈ E, and the result
follows from (5.1).

Note that if ρ+ = ∞, then γ′ = γ, while if ρ− = ∞, then γ′ = −γ by (2.4)–
(2.5) together with Theorem 4.1 and Proposition 2.7; hence the exponents in
Theorems 5.7 and 5.9 agree (as they must).

For complex arguments, we will use the following estimate.

Lemma 5.10. Let Ψ(σ, t) :=
∫ t

0
arctan(u/σ) du for t ≥ 0. Then, for σ > 0 with

σ ∈ E and all real t,

|F (σ + it)|
|F (σ)| = exp

(
−π
2
(γ − γ′)|t| − γ′Ψ(σ, |t|) +O(1 + |t|σ−1)

)
.

Proof. We may assume t > 0. Consider first a factor Γ(as+ b) with a > 0 and
s = σ + it, σ > 0. (We may assume that σ is large so that aσ + b > 0, e.g. by
using (5.3) for small σ.) By (A.13),

d

dt
log |Γ(a(σ + it) + b)| = Re

d

dt
log Γ(a(σ + it) + b)

= Re
(
ia log(a(σ + it) + b)

)
+O

(
|σ|−1

)

= Re
(
ia log(a(σ + it))

)
+O

(
|σ|−1

)

= −a Im
(
log(σ + it)

)
+O

(
|σ|−1

)

= −a arctan(t/σ) +O
(
|σ|−1

)
.

(5.17)

Consequently, integrating from 0 to t,

log |Γ(a(σ + it) + b)| − log |Γ(aσ + b)| = −aΨ(σ, t) +O(tσ−1). (5.18)



S. Janson/Moments of Gamma type 29

If a < 0, we argue as in the proof of Theorem 5.9 and have by (A.6)

log |Γ(a(σ + it) + b)|
= − log |Γ(|a|(σ + it) + 1− b)| − log | sin(π(a(σ + it) + b))|+ log π.

If further (a, b) = (aj , bj) or (a′k, b
′
k) for some j or k, and σ ∈ E, then

log | sin(π(a(σ + it) + b))| = π|a|t + O(1), and it follows, using (5.18) with |a|
instead of a, that

log |Γ(a(σ + it) + b)| − log |Γ(aσ + b)| = |a|Ψ(σ, t)− π|a|t+O(1 + tσ−1)

= −aΨ(σ, t) + πat+O(1 + tσ−1).

The result follows by multiplying the factors in F , using Lemma 2.12.

6. Asymptotics of density function

We continue to assume that X and Y = logX are random variables such that
(1.1)–(1.3) hold; as above we write EXs = esY = F (s). We assume γ > 0, so
that density functions of X and Y exist by Theorem 5.4, and consider asymp-
totics of the density function fX(x) as x → 0 or x → ∞, or equivalently of
fY (y) as y → −∞ or y → ∞. By symmetry it suffices to consider one side, and
we concentrate on x → ∞, but for convenience in applications we write most
results for both sides and for both X and Y .

We consider first x→ ∞ (y → ∞) and begin with the case ρ+ = ∞, when X
has moments of all (positive) orders and fX decreases rapidly (as we will see in
detail soon). We use the saddle point method, see e.g. Flajolet and Sedgewick
[12, Chapter VIII], in a standard way.

Theorem 6.1. Suppose that ρ+ = ∞ and γ > 0. Then

fX(x) ∼ C2x
c1−1e−c2x

1/γ

, x→ ∞,

fY (y) ∼
C1√
2πγ

ec1(y−κ)−γe(y−κ)/γ

, y → ∞,

where

c1 := (δ + 1/2)/γ,

c2 := γe−κ/γ,

C2 :=
C1√
2πγ

e−c1κ .

Proof. By Theorem 4.1 and Proposition 2.7, we may assume that all aj, a
′
k, bj , b

′
k >

0. We will use (5.6), which now is valid for all x > 0 and σ > 0.
By (A.13) and (A.14), for a, b > 0 and Re s > 0,

(
log Γ(as+ b)

)′
= a log(as+ b) +O

(
|s|−1

)
= a log(as) +O

(
|s|−1

)
,
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(
log Γ(as+ b)

)′′
=
a

s
+O

(
|s|−2

)
.

Consequently, writing

f(s) := logF (s) = logC + ds+

J∑

j=1

log Γ(ajs+ bj)−
K∑

k=1

log Γ(a′ks+ b′k),

we have for Re s > 0,

f ′(s) = d+

J∑

j=1

(aj log aj + aj log s)−
K∑

k=1

(a′k log a
′
k + a′k log s) +O

(
|s|−1

)

= κ + γ log s+O
(
|s|−1

)
,

f ′′(s) =
γ

s
+O

(
|s|−2

)
.

Fix x > 0 and letG(s) := x−s−1F (s) and g(s) := logG(s) = −(s−1) logx+f(s).
Then

g′(s) = f ′(s)− log x = γ log s+ κ − log x+O
(
|s|−1

)
. (6.1)

We choose (for x large) σ = e(log x−κ)/γ, so γ log σ = log x − κ and g′(σ) =
O(σ−1); thus σ is an approximate saddle point of G(s). Note that σ → ∞ as
x→ ∞, so σ−1 → 0. Since g′′(s) = f ′′(s), we further have, as x→ ∞,

g′′(σ) = γσ−1 +O
(
σ−2

)
∼ γσ−1. (6.2)

Further, on the line Re s = σ,

g′′(σ + it) = f ′′(σ + it) =
γ

σ + it
+ O

(
σ−2

)
=
γ

σ
+O

(
(1 + |t|)σ−2

)
. (6.3)

Consequently, Taylor’s formula yields

g(σ + it) = g(σ) +O
(
|t|σ−1

)
− γ

2σ
t2 +O

(
(|t|2 + |t|3)σ−2

)
(6.4)

and, uniformly for |t| ≤ σ0.6,

G(σ + it) = G(σ)e−γt2/2σ+o(1). (6.5)

For larger |t|, we have a rapid decay, for example by Lemma 5.10 which yields,
for large σ and |t| ≥ σ0.6, recalling that now γ′ = γ,

|G(σ + it)|
|G(σ)| =

|F (σ + it)|
|F (σ)| = exp

(
−γΨ(σ, |t|) +O(1 + |t|σ−1)

)

≤ exp
(
−cmin(|t|, |t|2/σ)

)
.

(6.6)
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for some c > 0. It follows from (6.5) and (6.6) that (5.6) yields, using Theo-
rem 5.7 and the choice of σ = e(logx−κ)/γ = e−κ/γx1/γ ,

fX(x) =
1

2π

∫ ∞

−∞
G(σ + it) dt ∼ G(σ)

2π

∫ ∞

−∞
e−γt2/2σ dt =

G(σ)
√
σ√

2πγ

=
x−σ−1F (σ)σ1/2

√
2πγ

∼ C1√
2πγ

σδ+1/2x−1eγσ log σ+(κ−γ)σ−σ log x

=
C1√
2πγ

e(δ+1/2)(log x−κ)/γx−1e−γσ = C2x
c1−1e−c2x

1/γ

.

The result for fY follows similarly from (5.7), or simpler by fY (y) = eyfX(ey).

Remark 6.2. The derivative f ′
X(x) and higher derivatives f

(n)
X (x) can be ob-

tained by repeated differentiation of (5.6) under the integral sign, which multi-
plies the integrand by a factor (−s− 1) · · · (−s− n)x−n. The argument above,
including the estimates (6.5) and (6.6), applies to this integral as well and shows
that, for any n ≥ 0,

f
(n)
X (x) ∼ σnx−nG(σ)

√
σ/

√
2πγ ∼ σnx−nfX(x) = (c2/γ)

nxn(1/γ−1)fX(x).

In particular, every derivative of fX tends to 0 rapidly (faster than any power
of x) as x→ ∞.

Remark 6.3. The saddle-point method yields also more precise asymptotics
including higher-order terms by refining the estimates around s = σ in the proof
above, see e.g. Flajolet and Sedgewick [12, Section VIII.3]; we leave the details
to the reader. This yields an asymptotic expansion in powers of σ−1, with σ as in
the proof above, i.e., in powers of x−1/γ . See Remark 1.10 for an example of such
an expansion (there obtained from a known result rather than by performing
the calculations).

We continue with the case ρ+ < ∞, when F (s) has a pole at ρ+ of order
νF (ρ+) ≥ 1. (Recall the notion νF from (4.2).) We denote the coefficients of the
singular part of the Laurent expansion of F at a point s0 by cℓ(s0):

F (s) =

νF (s0)∑

ℓ=1

cℓ(s0)(s− s0)
−ℓ +O(1) as s→ s0. (6.7)

In particular, c1(s0) is the residue Ress0 F .
We have the following standard result by Mellin inversion, see [11].

Theorem 6.4. Suppose that ρ+ <∞ and γ > 0.

(i) As x→ ∞, for some η > 0,

fX(x) = x−ρ+−1

νF (ρ+)−1∑

ℓ=0

(−1)ℓ+1cℓ+1(ρ+)

ℓ!
logℓ x+O

(
x−ρ+−1−η

)
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In particular, with ν := νF (ρ+) ≥ 1,

fX(x) ∼ (−1)νcν(ρ+)

(ν − 1)!
x−ρ+−1 logν−1 x.

If ρ+ is a simple pole of F , i.e. ν = 1, this can be written

fX(x) ∼ −Resρ+(F )x
−ρ+−1.

(ii) More precisely, there is an asymptotic expansion, for any fixed σ > 0,

fX(x) =
∑

0<ρ≤σ

νF (ρ)−1∑

ℓ=0

(−1)ℓ+1cℓ+1(ρ)

ℓ!
x−ρ−1 logℓ x+O

(
x−σ−1

)
,

summing over all poles ρ of F in (0, σ]. (The inner sum vanishes unless
ρ is a pole, so formally we may sum over all ρ.)

Corresponding asymptotics for fY (y) = eyfX(ey) are obtained by replacing each
x−r−1 by e−ry and logℓ x by yℓ.

Proof. As said above, this is a standard result, and we refer to [11] for details,
but for completeness and later use we give the simple proof.

It suffices to prove (ii), since (i) follows by taking σ = ρ++η. We may assume
that σ is not a pole of F (otherwise we increase σ a little). We start with (5.6),
where we integrate over a line with Re s ∈ (ρ−, ρ+). We may, using Theorem 5.1,
shift the line to Re s = σ > ρ+ too, but then we have to subtract the residues
of the traversed poles. Thus

fX(x) =
1

2πi

∫ σ+i∞

σ−i∞
x−s−1F (s) ds−

∑

0<ρ≤σ

Ress=ρ(x
−s−1F (s)), (6.8)

and the result follows by computing the residues, using (6.7) and x−s−1 =
x−ρ−1

∑∞
ℓ=0(− log x)ℓ(s− ρ)ℓ/ℓ!, and noting that, by Theorem 5.1 again,
∣∣∣∣∣

∫ σ+i∞

σ−i∞
x−s−1F (s) ds

∣∣∣∣∣ ≤ x−σ−1

∫ σ+i∞

σ−i∞
|F (s)| ds = O

(
x−σ−1

)
.

In Theorem 6.4(ii) we have an asymptotic expansion, valid for fixed σ as
x → ∞. It is natural to ask whether this asymptotic expansion actually yields
a series representation for fX(x), i.e., whether we can let σ → ∞ for fixed x
(with the error term tending to 0) so that fX(x) is represented as a convergent
series. This is possible sometimes, but not always. In fact, the following theorem
shows that this is possible exactly when γ′ < 0, at least provided that there is
an infinite number of poles ρ > 0 and that these are simple.

Theorem 6.5. Suppose that γ > 0.
(i) If γ′ < 0, then, for all x > 0,

fX(x) =
∑

ρ>0

νF (ρ)−1∑

ℓ=0

(−1)ℓ+1cℓ+1(ρ)

ℓ!
x−ρ−1 logℓ x, (6.9)
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summing over all poles ρ > 0 of F . In particular, if F has only simple poles,

fX(x) =
∑

ρ>0

−Resρ(F )x
−ρ−1. (6.10)

(ii) If γ′ > 0 and there is an infinite number of poles ρ > 0 of F , all simple,
then the sum (6.10) diverges for all x > 0.

(iii) If γ′ = 0, then (6.9) holds for x > eκ; hence (6.10) holds for x > eκ

provided all poles are simple. However, at least provided that there is an infinite
number of poles ρ > 0 of F and all such poles are simple, the sum (6.10) diverges
for 0 < x < eκ.

Corresponding results for fY (y) are obtained by replacing x−ρ−1 by e−ρy and
logℓ x by yℓ. The cut-offs in (iii) become y > κ and y < κ.

Proof. (i) and (iii) (convergence): We use again (6.8), and have to show that
the integral tends to 0 as σ → ∞ for every fixed x > 0. We use Lemma 5.10,
and note that 0 ≤ Ψ(σ, t) ≤ π

2 t for t ≥ 0, and thus, because γ′ ≤ 0, for σ > 0
with σ ∈ E,

|F (σ + it)|
|F (σ)| ≤ exp

(
−π
2
(γ − γ′)|t| − γ′

π

2
|t|+O(1 + |t|σ−1)

)

= exp
(
−π
2
γ|t|+O(1 + |t|σ−1)

)
.

If σ ∈ E is large enough we thus have |F (σ + it)| = O
(
e−γ|t||F (σ)|

)
for all real

t, and hence, because γ > 0,

∫ σ+i∞

σ−i∞

∣∣x−s−1F (s)
∣∣ | ds| = O

(
x−σ−1|F (σ)|

) ∫ ∞

−∞
e−γ|t| dt = O

(
x−σ−1|F (σ)|

)
.

If γ′ < 0, then this is by Theorem 5.9 o(1) as σ → ∞ for any fixed x > 0, which
shows (i).

If γ′ =0, then Theorem 5.9 yields, for a fixed x> 0, x−σF (σ)=O(σδe(κ−log x)σ),
which is o(1) for x > eκ, showing the positive part of (iii).

(ii) and (iii) (divergence): Let ρ > 0 be a pole of F that is not too close to
a zero or another pole, meaning that the distance to every zero or other pole
is at least some small constant ξ > 0. (This is true for all poles if all aj , a

′
k are

commensurable and ξ is small enough; in general it is true for a large fraction
of the poles, and certainly an infinite number of them.) A simple modification
of the proof of of Theorem 5.9 then yields the same estimate as there for the
residue at ρ:

|Resρ(F )| = ρδeγ
′ρ log ρ+(κ−γ′)ρ+O(1).

and thus, for every fixed x,

|x−ρ−1 Resρ(F )| = ρδeγ
′ρ log ρ+(κ−γ′−log x)ρ+O(1).

Letting ρ → ∞, we see that the terms of (6.10) are unbounded if γ′ > 0 or
γ′ = 0 and κ > log x; hence the sum diverges.



S. Janson/Moments of Gamma type 34

Remark 6.6. To show divergence in (ii) and (iii), we assumed for simplicity
that F has only simple poles on the positive axis; we conjecture that, more
generally, (6.9) diverges also without this restriction.

To show divergence we also assumed that F has an infinite number of positive
poles; this is, on the contrary, obviously necessary for divergence, since otherwise
the sums (6.9) and (6.10) are finite. However, if F has only a finite number
of positive poles, then the sum in (6.9) or (6.10) is not integrable, since it is
∼ cx−ρ−1 logℓ x as x → 0, where ρ > 0 is the largest pole of F and c 6= 0,
ℓ = νF (ρ) − 1; hence the sum cannot equal fX(x) for all x > 0. Example 10.2
yields an example where the sum does not equal fX(x) for any x > 0 (although
the difference tends to 0 rapidly as x→ ∞ by Theorem 6.4).

In this connection, note that if γ > γ′, then there is an infinite number of
poles in (0,∞) by Proposition 4.6.

We now consider x → 0 and y → −∞. We obtain the following by the same
methods as above (now moving the line of integration towards −∞), or more
simply by applying the results above to X−1 and −Y ; this replaces F (s) by
F (−s) and the Laurent coefficients cℓ(s0) by (−1)ℓcℓ(−s0).
Theorem 6.7. Suppose that ρ− = −∞ and γ > 0. Then

fX(x) ∼ C3x
−c1−1e−c3x

−1/γ

, x→ 0,

fY (y) ∼
C1√
2πγ

e−c1(y−κ)−γe−(y−κ)/γ

, y → −∞,

where

c1 := (δ + 1/2)/γ,

c3 := γeκ/γ ,

C3 :=
C1√
2πγ

ec1κ.

Theorem 6.8. Suppose that ρ− > −∞ and γ > 0.

(i) As xց 0, for some η > 0,

fX(x) = x|ρ−|−1

νF (ρ−)−1∑

ℓ=0

cℓ+1(ρ−)

ℓ!
logℓ(1/x) +O

(
x|ρ−|−1+η

)

In particular, with ν := νF (ρ−) ≥ 1,

fX(x) ∼ cν(ρ−)

(ν − 1)!
x|ρ−|−1 logν−1(1/x).

If ρ− is a simple pole of F , i.e. ν = 1, this can be written

fX(x) ∼ Resρ−
(F )x|ρ−|−1.
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(ii) More precisely, there is an asymptotic expansion, for any fixed σ > 0,

fX(x) =
∑

0>ρ≥−σ

νF (ρ)−1∑

ℓ=0

cℓ+1(ρ)

ℓ!
x|ρ|−1 logℓ(1/x) +O

(
xσ−1

)
,

summing over all poles ρ of F in [−σ, 0).
Corresponding asymptotics for fY (y) = eyfX(ey) are obtained by replacing each
xr−1 by ery and logℓ(1/x) by (−y)ℓ.
Theorem 6.9. Suppose that γ > 0.

(i) If γ′ > 0, then, for all x > 0,

fX(x) =
∑

ρ<0

νF (ρ)−1∑

ℓ=0

cℓ+1(ρ)

ℓ!
x|ρ|−1 logℓ(1/x), (6.11)

summing over all poles ρ < 0 of F . In particular, if F has only simple poles,

fX(x) =
∑

ρ<0

Resρ(F )x
|ρ|−1. (6.12)

(ii) If γ′ < 0 and there is an infinite number of poles ρ < 0 of F , all simple,
then the sum (6.10) diverges for all x > 0.

(iii) If γ′ = 0, then (6.11) holds for 0 < x < eκ; hence (6.12) holds for
0 < x < eκ provided all poles are simple. However, at least provided that there
is an infinite number of poles ρ < 0 of F and all such poles are simple, the sum
(6.12) diverges for x > eκ.

Corresponding results for fY (y) are obtained by replacing x|ρ|−1 by e|ρ|y and
logℓ(1/x) by (−y)ℓ. The cut-offs in (iii) become y < κ and y > κ.

Theorems 6.5 and 6.9 say that (at least if γ > 0), fX(x) has a series expansion
in positive (but not necessarily integer) powers of x if γ′ > 0, and a series
expansion in negative (but not necessarily integer) powers of x if γ′ < 0, in both
cases allowing for terms with logarithmic factors too; if γ′ = 0 one expansion
holds for 0 < x < eκ and the other for x > eκ.

Remark 6.10. Suppose that all aj , a
′
k are commensurable; then F (s) may as

in Section 4 (see the proof of Lemma 4.2) be rewritten with all aj , a
′
k = ±r, for

some real r > 0. The poles of F in (−∞, 0) then form one or several arithmetic
series {sj−n/r} with gap 1/r, possibly apart from a finite number of other poles.
If further all poles are simple, then the residue at such a pole sl − n/r is of the
form (C/r)(−D)n(n!)−1

∏
j 6=l Γ(n+ cj)/

∏
k(Γ(n+ c′k), and the contribution to

(6.12) from this series of poles is a (generalized) hypergeometric series with
argument −Dx1/r, times a constant and a power of x. Consequently, if further
γ, γ′ > 0, then the density function may be expressed using one or several
hypergeometric functions. Typical examples are given in Theorems 1.8 and 1.13.

As a corollary, we get results on continuity and differentiability at 0.
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Theorem 6.11. Suppose that γ > 0.
(i) The density fX is continuous at 0, and thus everywhere on R, if and only

if ρ− < −1.
(ii) The density fX has a finite jump at 0 if and only if ρ− = −1 and this is

a simple pole of F . In this case fX(0+) = Resρ−
(F ).

(iii) The density fX is infinitely differentiable on R if and only if ρ− = −∞.

Proof. Note that fX is infinitely differentiable on (0,∞) by Theorem 5.4, as
well as, trivially, on (−∞, 0) where it vanishes.

Parts (i) and (ii) follow immediately from Theorems 6.7 and 6.8.

If fX is infinitely differentiable at 0, then every derivative f
(n)
X (0) = 0 because

fX vanishes on (−∞, 0). Hence a Taylor expansion shows that fX(x) = O(xN ) as
x→ 0 for every integer N . If ρ− were finite, this would contradict Theorem 6.8;
hence ρ− = −∞.

Conversely, if ρ− = −∞, then Theorem 6.7 shows that fX(x) tends to 0
rapidly as x ց 0. Moreover, by Remark 6.2 and the usual change of variables

x 7→ 1/x, the same holds for each derivative f
(n)
X (x). It follows, by induction,

that each derivative f
(n)
X (x) exists also at x = 0 with f

(n)
X (0) = 0. Hence fX is

infinitely differentiable.

Remark 6.12. More generally, fX has n continuous derivatives (at 0) if and
only if ρ− < −n− 1; we omit the details.

Remark 6.13. We have in this section assumed γ > 0 in order to have good
estimates of F (s) as | Im s| → ∞ in the proofs. It seems likely that the results
can be extended to the case γ = 0 too, under suitable conditions, but we have
not pursued this beyond noting that the results above hold also for the examples
in Section 3 with γ = 0, with one interesting exception for Example 3.16.

For example, the uniform distribution in Example 3.3 has ρ+ = ∞, ρ− = −1,
γ = γ′ = 0, κ = 0 and a single, simple pole at −1; the series in (6.10) is thus 0
and the series in (6.12) is 1, so (6.10) holds for x > eκ = 1 and (6.12) holds for
x < eκ = 1. The asymptotic result in Theorem 6.1 is not directly applicable,
since the exponent 1/γ = ∞, but it can be interpreted as fX(x) = 0 for large
x, which is correct.

The same holds, mutatis mutandis, for the Pareto distribution in Exam-
ple 3.13, where now there is a single pole at α > 0 and the density vanishes
on (0, 1).

Similarly, for the Beta distribution B(α, β) in Example 3.4, the series in (6.12)
is

∞∑

n=0

(−1)n

n!

Γ(α+ β)

Γ(α)Γ(β − n)
xn+α−1 =

Γ(α+ β)

Γ(α)Γ(β)
xα−1

∞∑

n=0

(
β − 1

n

)
(−x)n,

which for x < 1 = eκ converges to the density f(x) =
(
Γ(α + β)/Γ(α)Γ(β)

)
·

xα−1(1 − x)β−1; for x > 1 this series diverges unless β is an integer (when the
series is finite but does not yield f(x) = 0 for x > 1), while (6.10) holds trivially.



S. Janson/Moments of Gamma type 37

The Γ(n) distribution in Example 3.18 is an example with a multiple pole.
There is a single pole at 1, with cn(1) = (−1)n and cℓ(1) = 0, ℓ 6= n. Hence the
sum in (6.9) is, rewritten for fY as stated in Theorem 6.5, (1/(n− 1)!)yn−1e−y,
which is the correct density for y > κ = 0.

The Fejér distribution in Example 3.16 has γ = 0 and ρ+ = 1; further, 1 is
a simple pole of F (s) = E |X |s, with residue −2/π. Hence, Theorem 6.4, if it
applied, would give f|X|(x) ∼ 2

πx
−2 as x→ ∞, which is false since f|X|(x) =

2
πx

−2(1−cosx), see (3.31); it gives the correct average behaviour but misses the
oscillations. The reason for this interesting failure of Theorem 6.4 and its proof
is the slow decay of F (σ + it) as t→ ∞, especially when σ is close to ρ+ = 1
or larger, see Theorem 5.1. On the other side, note that as xց 0, Theorem 6.8
correctly yields f|X|(x) ∼ 1

π . In fact, the proof of Theorem 6.4 and Theorem 6.8
works for x → 0 but not for x → ∞ due to the fact that Theorem 5.1 yields
better estimates for σ < 0 than for σ > 0 because γ′ > 0. It would be interesting
to find a Mellin transform argument yielding the correct oscillatory asymptotics
as x→ ∞.

We give some examples of applying the theorems above to the distributions
in Section 3. This is mainly as an illustration of the theorems; we cannot expect
to obtain any new results for these classical distributions. Other applications of
the theorems are given in Theorems 1.8, 1.9, 1.13, 1.14, 9.1, 9.3, 9.6, 9.7.

Example 6.14. For the exponential distribution in Example 3.2, Theorem 6.1
yields f(x) ∼ e−x as x→ ∞ (this is actually an identity for all x > 0) and
Theorem 6.9 yields, since the poles are at −n − 1, with n = 0, 1, . . . , f(x) =∑∞

n=0(−1)nxn/n!, x > 0, again a trival result.

Example 6.15. Similarly, for the Gumbel distribution in Example 3.19, f(y) =

e−y−e−y

and the asymptotic formula in Theorem 6.7 is actually an equality for
all real y.

Example 6.16. Consider the stable distribution in Example 3.10 with 0 < α <
1. Since γ > 0 > γ′, we can apply Theorem 6.5(i). By (3.16), F (s) := ESs

α has
simple poles at s = nα, n = 1, 2, . . . , and, using (A.6),

Resnα(F ) =
−αRes1−n(Γ)

Γ(1− nα)
=

(−1)nα

(n− 1)! Γ(1− nα)

= (−1)n
αΓ(nα) sin(πnα)

(n− 1)!π
= (−1)n

Γ(nα+ 1) sin(πnα)

πn!
.

(6.13)

(This includes the case when nα is an integer, in which case nα is not a pole
because of cancellation; (6.13) then correctly yields Resnα(F ) = 0.) We thus
obtain by (6.10)

fSα(x) =

∞∑

n=1

(−1)n+1Γ(nα+ 1) sin(πnα)

πn!
x−nα−1. (6.14)

This is the well-known formula for the stable density, see Feller [9, XVII.(6.8)]
(with γ = −α for the positive case studied here).
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In particular, as x→ ∞, (6.14) or Theorem 6.4 (with ρ+ = α) yields

fSα(x) ∼ −Resα(F )x
−α−1 =

α

Γ(1− α)
x−α−1, x→ ∞.

As x→ 0, Theorem 6.7 yields rapid convergence to 0:

fSα(x) ∼ C3x
−(2−α)/(2−2α)e−c3x

−α/(1−α)

, xց 0, (6.15)

with c3 = (1− α)αα/(1−α) and C3 = (2π(1− α))−1/2α1/(2−2α).

Example 6.17. Consider the Mittag-Leffler distribution in Example 3.11 with
0 < α < 1. Since γ, γ′ > 0, we can apply Theorem 6.9(i). By (3.17), F (s) :=
EM s

α has simple poles at s = −n, n = 1, 2, . . . , and, using (A.6), cf. (6.13),

Res−n(F ) =
Res1−n(Γ)

Γ(1 − nα)
=

(−1)n−1

(n− 1)! Γ(1− nα)
= (−1)n−1Γ(nα) sin(πnα)

(n− 1)!π
.

(Again, this includes the case when nα is an integer, in which case −n is not a
pole but the formula correctly yields 0.) We thus obtain by (6.12)

fMα(x) =
∞∑

n=1

(−1)n−1Γ(nα) sin(πnα)

(n− 1)!π
xn−1

=

∞∑

m=0

(−1)m
Γ(mα+ α) sin(πα(m + 1))

m!π
xm.

(6.16)

(This is also easily obtained from the stable density (6.14) since Mα = S−α
α

and thus fMα(x) = α−1x−1/α−1fSα(x
−1/α).) In particular, in accordance with

Theorem 6.11,

fMα(0+) =
Γ(α) sin(πα)

π
=

1

Γ(1− α)
.

As x→ ∞, Theorem 6.1 yields

fMα(x) ∼ C2x
(2α−1)/(2−2α)e−c2x

1/(1−α)

, x→ ∞,

with c2 = (1 − α)αα/(1−α) and C2 = (2π(1 − α))−1/2α(2α−1)/(2−2α). (This also
follows from (6.15).)

Example 6.18. The Lévy area in Example 3.20 has the moment generating
function (3.37) with simple poles at (n + 1

2 )π, n ∈ Z. Theorem 6.5 yields, for
y > κ = 0,

f(y) =
∞∑

n=0

(−1)ne−(n+ 1
2 )πy =

e−πy/2

1 + e−πy
=

1

2 cosh(πy/2)

while Theorem 6.9 yields, for y < 0,

f(y) =

∞∑

n=1

(−1)n−1e(n−
1
2 )πy =

eπy/2

1 + eπy
=

1

2 cosh(πy/2)
.

The two sums thus sum to the same analytic expression; hence A has the density
1/2 cosh(πy/2) for −∞ < y < ∞. (For a more elegant proof of this, see e.g.
Protter [28, p. 91].)
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7. Brownian supremum process area

We consider the integral A = A(1) of the Brownian supremum process defined
in (1.5).

Remark 7.1. Let L(t) denote the local time of B(t) at 0. It is well-known that
the processes S(t) and L(t), have the same distribution [30, Chapter VI.2]:

{
S(t)

}
t≥0

d
=

{
L(t)

}
t≥0

.

Consequently, A(T )
d
=

∫ T

0
L(t) dt, so we obtain the same results for this integral.

Let ψ denote the Laplace transform of A:

ψ(s) := E e−sA. (7.1)

Janson and Petersson [19] proved the following formula for the Laplace trans-
form of a variation of ψ, or in other words, a double Laplace transform of A:
For all α, λ > 0,

∫ ∞

0

ψ
(
αt3/2

)
e−λt dt =

∫ ∞

0

(
1 +

3αt√
8λ

)−2/3

e−λt dt. (7.2)

Janson and Petersson [19] used (7.2) to compute the integer moments EAn,
n ∈ N; Theorem 1.6 extends their formula to all real and complex moments.

Proof of Theorem 1.6. Consider for convenience X :=
√
8
3 A. Taking α =

√
8/3

in (7.2), we find, for λ > 0,

∫ ∞

0

E e−t3/2Xe−λt dt =

∫ ∞

0

(
1 +

t√
λ

)−2/3

e−λt dt. (7.3)

Denote the common value of the integrals in (7.3) by G(λ).
Let −1 < s < 0, and integrate λsG(λ). From the left hand side in (7.3) we

obtain, using Fubini’s theorem a couple of times, the standard Gamma integral
(A.7), and the change of variables t3/2 = u,

∫ ∞

0

G(λ)λs dλ =

∫ ∞

0

∫ ∞

0

E e−t3/2Xe−λtλs dt dλ

= Γ(s+ 1)E

∫ ∞

0

e−t3/2Xt−s−1 dt

= Γ(s+ 1)E
2

3

∫ ∞

0

e−uXu−2s/3−1 du

=
2

3
Γ(s+ 1)Γ(−2s/3)EX2s/3.

(7.4)

Similarly, from the right hand side of (7.3), using the changes of variables
t = λ1/2x and λ = u2/3, and the standard Gamma and Beta integrals (A.7) and
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(A.9), still assuming −1 < s < 0,

∫ ∞

0

G(λ)λs dλ =

∫ ∞

0

∫ ∞

0

(
1 +

t√
λ

)−2/3

e−λtλs dt dλ

=

∫ ∞

0

∫ ∞

0

(1 + x)−2/3 e−λ3/2xλs+1/2 dxdλ

=
2

3

∫ ∞

0

∫ ∞

0

(1 + x)
−2/3

e−uxu2s/3 dxdu

=
2

3
Γ(2s/3 + 1)

∫ ∞

0

(1 + x)
−2/3

x−2s/3−1 dx

=
2

3
Γ(2s/3 + 1)

Γ(−2s/3)Γ(2s/3+ 2/3)

Γ(2/3)
.

(7.5)

Setting the right hand sides of (7.4) and (7.5) equal, we find after some
cancellations,

EX2s/3 =
Γ(2s/3 + 1)Γ(2s/3 + 2/3)

Γ(2/3)Γ(s+ 1)
,

for −1 < s < 0, and thus, replacing s by 3s/2,

EXs =
Γ(s+ 1)Γ(s+ 2/3)

Γ(2/3)Γ(3s/2 + 1)
, (7.6)

for −2/3 < s < 0.
We use Theorem 2.1 to extend the domain of validity of (7.6). Denote, as

usual, the right hand side of (7.6) by F (s), and note that s = −2/3 is not a
pole of F (s); it is a removable singularity since the poles in the numerator and
denominator at −2/3 cancel. The first pole of G(s) on the negative real axis
is s = −1. This can also be seen by the functional equation Γ(z + 1) = zΓ(z),
which enables us to rewrite (7.6) as

(√8

3

)s

EAs = EXs =
Γ(s+ 1)Γ(s+ 5/3)

Γ(5/3)Γ(3s/2 + 2)
, (7.7)

where the right hand side clearly has a pole at −1 but not in (−1,∞). Hence
ρ− = −1 and ρ+ = ∞, so (7.6) and (7.7) hold for Re s > −1 by Theorem 2.1,
while EAs = ∞ for s ≤ −1.

Next, the triplication and duplication formulas (A.4) and (A.3) yield

Γ(s+ 1)Γ(s+ 4/3)Γ(s+ 5/3) = 2π3−3s−3+1/2Γ(3s+ 3)

= π1/223s+33−3s−5/2Γ(3s/2 + 3/2)Γ(3s/2 + 2),

and thus

Γ(s+ 1)Γ(s+ 5/3)

Γ(3s/2 + 2)
= π1/2233−5/2Γ(3s/2 + 3/2)

Γ(s+ 4/3)

(23
33

)s

.



S. Janson/Moments of Gamma type 41

The third formula for EAs follows by substituting this into (7.7), and using
Γ(1/3)Γ(2/3) = π/ sin(π/3) = 2π/

√
3 from (A.6). (The constant factor can

always be found by setting s = 0, see Remark 1.2.)
Similarly, the final formula follows by applying the duplication formula (A.3)

to Γ(s+4/3) and the triplication formula (A.4) to Γ(3s/2+3/2). (Alternatively,
we may use (7.6), applying the duplication formula to Γ(s+ 1) and Γ(s+ 2/3)
and the triplication formula to Γ(3s/2 + 1).)

We have ρ+ = ∞ and ρ− = −1 for A. Further, the parameters in (2.4)–
(2.8) are, from any of the expressions in Theorem 1.6: γ = γ′ = 1/2, δ = 1/6,
κ = − 1

2 log 3, C1 = π−1/2Γ(1/3) = 2
√
π/3/Γ(2/3). Theorem 5.7 thus yields

EAs ∼ Γ(1/3)

π1/2
s1/6e

1
2 s log s−( 1

2 log 3+ 1
2 )s =

Γ(1/3)

π1/2
s1/6

( s

3e

)s/2

(7.8)

as s→ ∞, found for integer s in [19].

Proof of Theorem 1.8. The existence of the density function fA(x) follows from
Theorem 5.4. The explicit formulas are obtained from Theorem 6.9 as follows.
We use the last expression in Theorem 1.6 for F (s) := EAs, where there is no
cancellation of poles. The poles are thus given by, for n ∈ Z≥0, s/2+ 1/2 = −n
and s/2 + 5/6 = −n, i.e. s = −2n− 1 and s = −2n− 5/3; all poles are simple.
The same formula yields the residues, using (A.11) and (A.6),

Res−2n−1(F ) =
Γ(1/3)

21/3π
· 2(−1)n

n!

Γ(1/3− n)

Γ(1/6− n)
·
(2
3

)−n−1/2

= (−1)n
21/631/2Γ(1/3)

π
· Γ(n+ 5/6)

n! Γ(n+ 2/3)
· sin(π/6 − nπ)

sin(π/3 − nπ)
·
(3
2

)n

= (−1)n
21/6Γ(1/3)

π
· Γ(n+ 5/6)

n! Γ(n+ 2/3)
·
(3
2

)n

,

Res−2n−5/3(F ) =
Γ(1/3)

21/3π
· 2(−1)n

n!

Γ(−1/3− n)

Γ(−1/6− n)
·
(2
3

)−n−5/6

= (−1)n
31/3Γ(1/3)

21/6π
· Γ(n+ 7/6)

n! Γ(n+ 4/3)
·
(3
2

)n

.

Consequently, by Theorem 6.9, in particular (6.12),

fA(x) =
21/6Γ(1/3)

π

∞∑

n=0

(−1)n
Γ(n+ 5/6)

n! Γ(n+ 2/3)

(3
2

)n

x2n

+
31/3Γ(1/3)

21/6π

∞∑

n=0

(−1)n
Γ(n+ 7/6)

n! Γ(n+ 4/3)

(3
2

)n

x2n+2/3.

By the definition of 1F1, and simplifying the constants using (A.3) and (A.6),
this can be written as

fA(x) =
21/2

π1/2 1F1

(
5

6
;
2

3
;−3

2
x2

)
+

2−1/631/3

Γ(5/6)
x2/3 1F1

(
7

6
;
4

3
;−3

2
x2

)
.
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By Kummer’s transformation [1, (13.1.27)], this equals

e−
3
2x

2

(
21/2

π1/2 1F1

(
−1

6
;
2

3
;
3

2
x2

)
+

2−1/631/3

Γ(5/6)
x2/3 1F1

(
1

6
;
4

3
;
3

2
x2

))
,

which can be rewritten as the two last formulas in the theorem by the definition
of U [1, (13.1.3)], see also [1, (13.1.29)], again using (A.3) and (A.6) to simplify
constants.

Proof of Theorem 1.9. Immediate by Theorem 6.1.

Remark 7.2. The hypergeometric function 1F1(a; b;x) and U(a; b;x) satisfies
Kummer’s equation xF ′′ +(b−x)F ′ − aF = 0 [1, (13.1.1)], and it follows easily
that fA satisfies the differential equation

xf ′′
A(x) + (3x2 + 1

3 )f
′
A(x) + 5xfA(x) = 0, x > 0. (7.9)

We guess that it also is possible to derive this equation directly from (7.2) by
manipulations of Laplace transforms, but we have not pursued this.

8. A hashing variable

As said in Section 1, when studying the maximum displacement in hashing with
linear probing, Petersson [24, Theorem 5.1] found as a limit a random variable
M with the distribution

P(M > x) = ψ(x3/2) = E e−x3/2A, x > 0, (8.1)

where A is the Brownian supremum area studied in Section 7. Lemma 1.11
shows that this type of relation preserves moments of Gamma type; hence M
has moments of Gamma type, but we have postponed the proof until now.

Proof of Lemma 1.11. For x ≥ 0,

P(T 1/α/Z1/α > x) = P(T > xαZ) = E
(
P(T > xαZ | Z)

)
= E e−xαZ

which shows that (1.10) and (1.11) are equivalent.
If (1.10) or (1.11) holds, and thus both hold, then, for s > −α, using (3.2),

EV s = E T s/α EZ−s/α = Γ(s/α+ 1)EZ−s/α.

Proof of Theorem 1.12. By (8.1) and Lemma 1.11, with α = 3/2,

EMs = Γ(2s/3 + 1)EA−2s/3,

and the result follows from Theorem 1.6; for the last formula we also use (A.3).
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Note also that Lemma 1.11 yields the representation

M d
= T 2/3A−2/3, (8.2)

where T 2/3 has a Weibull distribution with parameter 3/2, cf. Example 3.9, and
is independent of A.

For M, the parameters in (2.4)–(2.8) are, from any of the expressions in
Theorem 1.12: γ = 1, γ′ = 1/3, δ = 2/3, κ = 1

3 log 2, C1 = 27/63−2/3Γ(1/3) =

213/63−7/6π/Γ(2/3). Furthermore, the function F (s) := EMs (extended to all of
the complex plane) has residue −3/

√
2π at ρ+ = 3/2, and

√
2/π at ρ− = −3/2.

(See the proofs below for the other residues.)

Proof of Theorem 1.13. As in the proof of Theorem 1.8, the existence of the
density function fM(x) follows from Theorem 5.4 and the explicit formulas are
obtained from Theorem 6.9. We use the third expression in Theorem 1.6 for
F (s) := EMs. The poles ρ < 0 all come from the factor Γ(1 + 2s/3) and are
thus given by, for n ∈ Z≥0, 1 + 2ρ/3 = −n, i.e. ρ = −3n/2− 3/2. All poles are
simple and we find using (A.11) the residues

Res− 3
2n−

3
2
(F ) =

Γ(1/3)

21/3π
· Γ(1 + n/2) Γ(4/3 + n/2)

Γ(7/6 + n/2)
·
(3
2

)−1/2−n/2

· 3
2

(−1)n

n!
.

Consequently, by Theorem 6.9, in particular (6.12),

fM(x) =
31/2Γ(1/3)

25/6π

∞∑

n=0

(−1)n
Γ(1 + n/2) Γ(4/3 + n/2)

Γ(7/6 + n/2)n!

(2
3

)n/2

x3n/2+1/2.

Splitting the sum into two parts, for n = 2k and n = 2k + 1, and using (2k)! =
π−1/222kΓ(k + 1/2) k! and (2k + 1)! = π−1/222k+1k! Γ(k + 3/2), both instances
of (A.3), we obtain, as usual using (A.3) and (A.6),

fM(x) =
31/2Γ(1/3)

25/6π1/2

∞∑

k=0

Γ(4/3 + k)

Γ(7/6 + k) Γ(1/2 + k)

(1
6

)k

x3k+1/2

− Γ(1/3)

24/3π1/2

∞∑

k=0

Γ(11/6 + k)

Γ(5/3 + k) k!

(1
6

)k

x3k+2

=
31/2Γ(1/3)

25/6π1/2

Γ(4/3)

Γ(7/6) Γ(1/2)
x1/2 2F2

(4
3
, 1;

7

6
,
1

2
;
x3

6

)

− Γ(1/3)

24/3π1/2

Γ(11/6)

Γ(5/3)
x2 1F1

(11
6
;
5

3
;
x3

6

)

=
21/2

π1/2
x1/2 2F2

(4
3
, 1;

7

6
,
1

2
;
x3

6

)
− 5

8
x2 1F1

(11
6
;
5

3
;
x3

6

)
.

Proof of Theorem 1.14. As remarked above, the residue at ρ+ = 3/2 is−3/
√
2π,

and the next pole is at 5/2, which yields (1.14) by Theorem 6.4.



S. Janson/Moments of Gamma type 44

More precisely, by the last expression in Theorem 1.12, there are, on the
positive real axis, poles when 1/2 − s/3 = −n or 5/6 − s/3 = −n for integer
n ≥ 0, i.e., s = 3n+ 3/2 and s = 3n+ 5/2. The residues are, using (A.11) and
(A.6),

Res3n+3/2(F ) = −3
(−1)n

n!

Γ(1/3)

21/3π3/2
· Γ(1 + n)Γ(3/2 + n)Γ(1/3− n)

Γ(1/6− n)
· 6n+1/2

= (−1)n+1 2
1/63 Γ(1/3)

π3/2
· Γ(3/2 + n)Γ(5/6 + n)

Γ(2/3 + n)
· 6n,

Res3n+5/2(F ) = −3
(−1)n

n!

Γ(1/3)

21/3π3/2
· Γ(4/3+n) Γ(11/6+n) Γ(−1/3−n)

Γ(−1/6− n)
· 6n+5/6

= (−1)n+1 2
1/234/3Γ(1/3)

π3/2
· Γ(11/6 + n) Γ(7/6 + n)

n!
· 6n.

By Theorem 6.4, there is an asymptotic expansion−∑
ρ>0 Resρ(F )x

−ρ−1, which
by the definition of the (generalized) hypergeometric series can be written as in
(1.15), yet again using (A.11) and (A.6).

9. Triangular and diagonal Pólya urns

A generalized Pólya urn contains balls of several different colours. At each time
n ≥ 1, one of the balls is drawn at random, and a set of new balls, depending on
the colour of the drawn ball, is added to the urn. We consider for simplicity only
the case of two colours, say black and white; the replacement rule may then be
described by a matrix

(
a b
c d

)
, meaning that if the drawn ball is black [white], it

is replaced together with a black and b white balls [c black and d white balls].
It is here natural to let a, b, c, d be non-negative integers, but in fact, the model
can be defined (and the results below hold) for arbitrary real a, b, c, d ≥ 0, see
[15; 16]. (Further, under certain conditions some of the entries can be negative
too, but that case is not interesting here.) Different values of the parameters
yield a variety of different limit laws for the numbers Bn and Wn of black and
white balls in the urn after n steps, see e.g. [10; 15; 16] and the references given
there. We are here interested in the special case of a triangular urn, meaning
that the replacement matrix is triangular, say b = 0. We start with B0 = b0 ≥ 0
black and W0 = w0 ≥ 0 white balls, and assume w0 > 0 (otherwise, there will
never be any white balls).

9.1. Balanced triangular urns

Assume that the urn is triangular and balanced, meaning that the total number
of added balls does not depend on the drawn ball, i.e., a = c + d; we further
assume that a, c, d > 0; thus a > d > 0 and c = a− d. In this case, it is shown
by Puyhaubert [29], Flajolet, Dumas and Puyhaubert [10, Section 7] and (with

a different proof) Janson [16, Theorems 1.3(v) and 1.7] that Wn/n
d/a d−→ W
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for a random variable W with moments of Gamma type given by

EW s = ds
Γ((b0 + w0)/a)

Γ(w0/d)
· Γ(s+ w0/d)

Γ(ds/a+ (b0 + w0)/a)
, Re s > −w0

d
. (9.1)

In the special case (b0, w0) = (c, d), and thus b0 + w0 = a, this simplifies to
dsΓ(s+1)/Γ(ds/a+1), soW/d has a Mittag-Leffler distribution with parameter
d/a ∈ (0, 1), see (3.17).

All poles of F (s) := EW s are on the negative real axis, so ρ+ = ∞. In general,
(9.1) shows that there is a pole at −w0/d, but if b0 = 0, then this singularity
is removable and the first pole on the negative real axis is −w0/d− 1. We thus
have ρ− = −w0/d when b0 > 0, but ρ− = −w0/d − 1 when b0 = 0. In fact, if
b0 = 0, so we start with only w0 white balls, the first drawn ball is necessarily
white, and thus urn after the first draw contains c black and w0 + d white balls.
Thus the limit random variable W is the same for the initial conditions (0, w0)
and (c, w0 + d), and we may without loss of generality assume that b0 > 0.

By (9.1), we have γ = γ′ = 1 − d/a = c/a, δ = w0/d − (b0 + w0)/a, κ =
− d

a log d
a + log d = (c log d + d log a)/a, and C1 = (a/d)(b0+w0)/a−1/2Γ((b0 +

w0)/a)/Γ(w0/d).
The function F (s) in (9.1) has simple poles at s = −w0/d− n, n = 0, 1, . . . ,

(except that some of these may in fact be removable singularities) and Theorems
5.4 and 6.9 yield by a straightforward calculation of the residues, using (A.11)
and (A.6), the following:

Theorem 9.1. The limit variable W for a balanced triangular urn ( a 0
c d ) with

a = c+ d and a, c, d, w0 > 0 has a density function fW on (0,∞) given by, for
x > 0,

fW (x) =
Γ((b0 + w0)/a)

Γ(w0/d)

∞∑

n=0

(−1)n

n!
· d−n−w0/d

Γ(−dn/a+ b0/a)
xn+w0/d−1

=
Γ((b0 + w0)/a)

πdΓ(w0/d)

∞∑

n=0

(−1)n

n!
Γ
(dn+ a− b0

a

)
sin

π(b0 − dn)

a

(x
d

)n+w0/d−1

.

In fact, [10] even gives a local limit theorem to this density function.

Remark 9.2. It follows from Theorem 9.1 by comparison with Example 6.17, or
more simply directly from (9.1) and (3.17), that in the special case b0 = 0, W/d
has a Mittag-Leffler(d/a) distribution conjugated with xw0/d, see Remark 2.11;
similarly, in the special case b0 = c = a − d, W/d has a Mittag-Leffler(d/a)
distribution conjugated with x(w0−d)/d.

Theorem 9.1 shows immediately that as x ց 0, the density fW (x) satisfies
fW (x) ∼ C′xw0/d−1 where C′ = Γ((b0 +w0)/a)(Γ(w0/d)Γ(b0/a))

−1d−w0/d > 0,
provided b0 > 0. For large x, Theorem 6.1 yields:

Theorem 9.3. As x→ ∞,

fW (x) ∼ C2x
c1−1e−c2x

a/c

,
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with c1 = (δ + 1/2)a/c, c2 = ca−a/cd−1, C2 = C1(2πc/a)
−1/2(dad/c)−(δ+1/2),

where δ and C1 are given above.

Remark 9.4. For non-balanced triangular urns (a 6= c + d), limit results are
given in [16], but the results are more complicated and we do not believe that the
limits have moments of Gamma type. (See for example [16, Theorem 1.6], which
gives a complicated integral formula for the moments in the case a > d > 0,
c > 0. In the balanced case, it simplifies to (9.1), but as far as we know, there
is no similar simplification in general.

Remark 9.5. The case of triangular urns with three or more colours is not yet
fully explored. Limit laws with moments of Gamma type occur in some cases,
but presumably not in all. Some such results are given by Puyhaubert [29], see
also Flajolet, Dumas and Puyhaubert [10].

9.2. Diagonal urns

In the diagonal case b = c = 0 (with a, d, b0, x0 > 0 to avoid trivialities), there
are simple limit results, see [16, Theorem 1.4]. We distinguish between three
cases.
(i) If a = d, the classical Pólya urn [7; 27], Wn/n→ W where W/d ∼ B(w0/a,
b0/a). Hence, by Example 3.4, W has moments of Gamma type

EW s = as
Γ((b0 + w0)/a)

Γ(w0/a)
· Γ(s+ w0/a)

Γ(s+ (b0 + w0)/a)
, s > −w0

a
. (9.2)

Hence, recalling that a = d, (9.1) holds in this case too. We have ρ+ = ∞,
ρ− = −w0/a, γ = γ′ = 0, δ = −b0/a, κ = log a, C1 = Γ((b0 + w0)/a)/Γ(w0/a).

(ii) If a > d, Wn/n
d/a d−→ W := dU−d/aV where U ∼ Γ(b0/a) and V ∼

Γ(w0/d) are independent. Thus, by (3.1),

EW s = ds
Γ(b0/a− ds/a) Γ(w0/d+ s)

Γ(b0/a) Γ(w0/d)
, −w0

d
< Re s <

b0
d
. (9.3)

We have ρ+ = b0/d, ρ− = −w0/d, γ = 1+d/a, γ′ = 1−d/a, δ = b0/a+w0/d−1,
κ = − d

a log d
a + log d, C1 = 2π(Γ(b0/a)Γ(w0/d))

−1(d/a)b0/a−1/2. Theorems 5.4
and 6.9 apply again and yield the following:

Theorem 9.6. The limit variable W for a diagonal urn ( a 0
0 d ) with a > d > 0

and b0, w0 > 0 has a density function fW on (0,∞) given by, for x > 0,

fW (x) =
1

dΓ(b0/a)Γ(w0/d)

∞∑

n=0

(−1)n

n!
Γ
(dn+ b0 + w0

a

)(x
d

)n+w0/d−1

.

Again, the asymptotic fW (x) ∼ C′xw0/d−1 as x ց 0, for some C′ > 0, is
immediate. For large x, we this time use Theorem 6.4, since ρ+ <∞. The poles
of (9.3) on the positive real axis are (an+ b0)/d, n = 0, 1, . . . , and the residues
are easily calculated. This yields a divergent asymptotic expansion, interpreted
as in Remark 1.10.
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Theorem 9.7. As x→ ∞, the density fW (x) has an asymptotic expansion

fW (x) ∼ a

d2Γ(b0/a)Γ(w0/d)

∞∑

n=0

(−1)n

n!
Γ
(an+ b0 + w0

d

)(x
d

)−an/d−b0/d−1

.

(iii) If a < d, we may interchange the two colours and obtain n−a/d(nd −
Wn)

d−→ W := dUV −a/d, with U and V as above, and aW/d has the distribution
in (ii) with the exchanges a↔ d and b0 ↔ w0.

10. Further examples

We give a couple of further examples, or rather counter examples.

Example 10.1. Let X have a distribution that is a mixture of a point mass at
1 and a uniform distribution on [0, 1], with equal weights; thus X = 1−V +V U
where V ∼ Be(1/2) and U ∼ U(0, 1) are independent. Then, for Re s > −1,

EXs =
1

2
· 1s + 1

2
· EUs =

1

2
+

1

2

1

s+ 1
=

s+ 2

2(s+ 1)
=

Γ(s+ 3)Γ(s+ 1)

2 Γ(s+ 2)2
.

(10.1)

Equivalently,

EXs =
s/2 + 1

s+ 1
=

Γ(s/2 + 2) Γ(s+ 1)

Γ(s/2 + 1) Γ(s+ 2)
. (10.2)

Hence X has moments of Gamma type. We have ρ+ = ∞, ρ− = −1, γ =
γ′ = δ = κ = 0 and C1 = 1/2. Note that EX it → 1/2 6= 0 as t → ±∞; cf.
Remark 5.6.

Example 10.2. Consider X := T/U , where T ∼ Exp(1) and U ∼ U(0, 1) are
independent. Then, see Remark 1.5 and Examples 3.2 and 3.3, X has moments
of Gamma type

EXs =
Γ(s+ 1)

1− s
=

Γ(s+ 1)Γ(1− s)

Γ(2 − s)
, −1 < Re s < 1. (10.3)

Consequently, ρ+ = 1 and ρ− = −1. There is an infinite number of poles on the
negative real axis, viz. −1,−2, . . . , but the only pole on the positive real axis is
1. We have γ = γ′ = 1, δ = −1/2, κ = 0, C1 =

√
2π.

It is easy to find the density of X = T/U : for x > 0,

P(T/U > x) = P(T > Ux) =

∫ 1

0

P(T > ux) du =

∫ 1

0

e−ux du =
1− e−x

x

and thus X has the density function

f(x) = − d

dx

1− e−x

x
=

1− (1 + x)e−x

x2
, x > 0. (10.4)
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Since γ, γ′ > 0, Theorem 6.9 applies. The residue at−n−1 is (−1)n/(n! (n+2)
and (6.12) yields

f(x) =

∞∑

n=0

(−1)n

(n+ 2)n!
xn

which, of course, also follows directly from (10.4).
However, in Theorem 6.5, although the sum in (6.10) consists of a single

term x−2 and thus converges, the sum x−2 6= f(x) for all x > 0, as asserted in
Remark 6.6. (But the error is exponentially small, and the estimates in Theo-
rem 6.4 apply.)

11. Further remarks

Remark 11.1. Suppose that X is a positive random variable with finite mo-
ments (of all positive orders): EXn <∞ for n ≥ 0. If X has moments of Gamma
type, then ρ+ = ∞ and (1.1) gives, in particular, a formula for all integer mo-
ments EXn in terms of Gamma functions. However, the converse does not hold;
even if (1.1) holds for every integer s ≥ 0, it does not necessarily hold for other
s. An example is provided by Stieltjes’ original example of indeterminacy in the
moment problem [32, §55]: Let, for λ ∈ [−1, 1], Xλ have the density function
a(1 + λ sin(x1/4)) exp(−x1/4) with the normalizing constant a = 1/24. Then,
using sin(y) = (eiy − e−iy)/2i and (A.7),

EXn
λ = a

∫ ∞

0

xn
(
1 + λ sin(x1/4)

)
e−x1/4

dx

= 4a

∫ ∞

0

y4n+3
(
1 + λ sin(y)

)
e−y dy =

1

6
Γ(4n+ 4),

for any integer n ≥ 0 and any λ ∈ [−1, 1]; thus the variables Xλ have the same
integer moments. For λ = 0, the same calculation applies to non-integer n as
well, and shows that EXs

0 = 1
6Γ(4s + 4), −1 < s < ∞, so X0 has moments of

Gamma type. However, this formula cannot hold for any other λ (and s in an
interval), by the uniqueness Corollary 2.3.

Note that X0
d
= Z4, where Z has the Gamma distribution Γ(4), cf. Exam-

ple 3.1. A similar example is provided by N6 (or |N |α for any real number

α > 4) with N ∼ N(0, 1), see [2]; indeed |N |α d
= 2α/2Zα/2 with Z ∼ Γ(1/2), see

Examples 3.5 and 3.6, and cZβ with c > 0 and Z ∼ Γ(γ) is not determined by
its (integer) moments for any γ > 0 and β > 2, see e.g. [14, Section 4.10], so it
too provides a counter example. See also [31].

Remark 11.2. Many of the examples in Section 3 are infinitely divisible, for
example the Gamma distribution Γ(α), Wα [5, p. 26], P̃α and thus Pα [5, p. 26],
Lα [25]. We do not know whether there are any interesting connections between
moments of Gamma type and infinite divisibility.
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Remark 11.3. It is possible to consider, more generally, moments of the form
(1.1) where aj , bj , a

′
k, b

′
k may be complex (and appearing in conjugate pairs to

make the function real for real s). We have not pursued this extension and do
not know whether there are any interesting results or examples for this class. A
trivial example is the following.

Let X have a two-point distribution with P(X = x1) = P(X = x2) = 1/2,
where 0 < x1 < x2 < ∞. Then Y := logX too has a two-point distribution
with P(Y = y1) = P(Y = y2) = 1/2 where yj = log xj , j = 1, 2. Let d := EY =
(y1 + y2)/2 and β := (y2 − y1)/2π; thus y1, y2 = d± πβ. Then, using (A.6),

EXs = E esY = esd cosh(πβs) = esd sin
(π
2
+ πβsi

)
=

πesd

Γ
(
1
2 + iβs

)
Γ
(
1
2 − iβs

) .

Appendix A: Some standard formulas

For the readers’ (and our own) convenience we here collect some well-known for-
mulas for the Gamma function, see e.g. [1, Chapter 6]. Recall that Γ is a mero-
morphic function in the complex plane, with simple poles at the non-negative
integers 0,−1,−2, . . . and no zeros, so 1/Γ is an entire function.

Γ(s) =

∫ ∞

0

ts−1e−t dt, Re s > 0; (A.1)

Γ(z + 1) = zΓ(z); (A.2)

Γ(2z) = π−1/222z−1Γ(z)Γ(z + 1
2 ); (A.3)

Γ(3z) = (2π)−133z−1/2Γ(z)Γ(z + 1
3 )Γ(z +

2
3 ); (A.4)

Γ(mz) = (2π)−(m−1)/2mmz−1/2
m−1∏

j=0

Γ(z + j
m) (A.5)

Γ(z)Γ(1− z) =
π

sin(πz)
; (A.6)

∫ ∞

0

ts−1e−at dt = a−sΓ(s), Re s > 0, Re a > 0; (A.7)

∫ 1

0

ts−1(1− t)u−1 dt =
Γ(s)Γ(u)

Γ(s+ u)
, Re s, Reu > 0; (A.8)

∫ ∞

0

ts−1(1 + t)−v dt =
Γ(s)Γ(v − s)

Γ(v)
, Re v > Re s > 0; (A.9)

Equation (A.7) yields by Fubini–Tonelli a relation between the Laplace trans-
form and negative moments for any positive random variable X :

∫ ∞

0

ts−1 E e−tX dt = E

∫ ∞

0

ts−1e−tX dt = Γ(s)EX−s, s > 0. (A.10)

The residue Res−n(Γ) = (−1)n/n! (an easy consequence of (A.2)). Thus,
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more generally, for any complex a 6= 0 and b,

Resz=−(n+b)/a

(
Γ(az + b)

)
= a−1 (−1)n

n!
. (A.11)

Stirling’s formula says that for all complex z in a sector | arg z| < π − ε
avoiding the negative real axis

log Γ(z) = (z − 1
2 ) log z − z + log

√
2π +O

(
|z|−1

)
, (A.12)

where the logarithm log z is the principal value with imaginary part in (−π, π).
(Here, ε > 0 is arbitrary, but the implicit constant in the O term depends on ε.)
By differentiating (A.12) twice we find, for | arg z| < π − ε (e.g., for Re z > 0),

d

dz

(
log Γ(z)

)
= log z +O

(
|z|−1

)
, (A.13)

d2

dz2
(
log Γ(z)

)
=

1

z
+O

(
|z|−2

)
. (A.14)

(Note that also the error term may be differentiated since the functions are
analytic in a larger sector and we may use Cauchy’s estimate for the derivative.)
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tics, mass fractal lacunarity, and perceived dimension. Phys. Rev. E (3) 56
(1997), no. 1, part A, 112–118. MR1459089

[5] L. Bondesson, Generalized gamma convolutions and related classes of
distributions and densities. Lecture Notes in Statistics 76, Springer-Verlag,
New York, 1992. MR1224674

[6] G. Doetsch, Handbuch der Laplace-transformation I, Birkhäuser, Basel,
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