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Abstract: We prove the existence for solutions of a third order, nonlinear and de-

generate ODE boundary value problem. The ODE problem has been derived by analysing

a class of quasi-self similar solutions to the weakly shear-thinning equation.

1 – Introduction and results

This paper address the study of the following ODE boundary value problem:

(P )



































y = u2 u′′′
(

1 + |ǫ u u′′′|p−2) , u > 0, y ∈ (0, a)

u′(0) = 0

u(a) = 0 , u′(a) = 0

M =

∫ a

0
u(y) dy

where M is a positive number fixed and the point a is itself an unknown of

the problem. By a solution of (P ) we mean a pair (a, u), with a > 0 and u ∈

C3([0, a))∩C1([0, a]). The ODE problem (P ) was derived in [1] by considering the

spreading of a thin droplet of viscous liquid on a plane surface driven by capillarity

alone in the complete wetting regime. In the lubrication approximation, it is

well-known that if the viscosity is constant, the no-slip condition at the liquid-

solid interface leads to a force singularity at the moving contact lines. The most

common way to remove the impossibility of expanding droplets is to allow for
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appropriate slip conditions. Here we adopt a different relaxation of the pair

constant viscosity/no-slip condition, first proposed by Weidner and Schwartz [25],

consisting in keeping the no-slip condition and assuming instead a shear-thinning

rheology of the form:

(1.1)
1

η
=

1

η0

(

1 +
∣

∣

∣

τ

τ̃

∣

∣

∣

p−2
)

,

where p > 2, η is the viscosity, τ denotes the shear stress, η0 is the viscosity at

zero shear stress and τ̃ > 0 is the shear stress at which viscosity is reduced by

a factor 1/2. The difference with respect to similar nonlinear relations between

the viscosity and the shear stress, such as “power-law” rheology, is that (1.1)

does not have a singularity at zero shear stress for p > 2, and therefore allows to

recover the Newtonian case:

(1.2)
1

η
=

1

η0

(

1 +
∣

∣

∣

τ

τ̃

∣

∣

∣

p−2
)

−→
1

η0
∀τ ∈ R whenever τ̃p−2 → ∞ .

This approach leads to the following evolution: a fourth order degenerate parabolic

equation for the film rescaled height h(t, x) (the shear-thinning equation) on its

positivity set

(1.3) ht + κ
[

h3
(

1 + |b h hxxx|
p−2

)

hxxx

]

x
= 0 ,

where

(1.4) b =

(

3

p+ 1

)
1

p−2 1

τ̃

t is the time and x is the spatial coordinate. The equation is coupled to conditions

of vanishing flux and zero contact angle at triple junctions:

hx

∣

∣

∣

∂{h>0}
= 0 , lim

x→∂{h>0}
h3

(

1 + |b h hxxx|
p−2

)

hxxx = 0 .(1.5)

As worked out by [2], the problem (1.3)–(1.5) admits non-negative mass-

conserving solutions whose support is compact for all times and fills the whole real

line as time tends to infinity. So the shear-thinning liquids are not affected by the

contact-line paradox and this suggests the possibility of adopting weakly shear-

thinning rheology in order to describe the macroscopic dynamics of liquid films.

Here we analyze a class of quasi–self–similar solutions for an almost newtonian
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rheology (which corresponds to the smallness of the parameter b) using a method

introduced in [3]. This gives a quantitative description of the solution in terms

of the macroscopic profile and effective contact angle.

Let

h(t, x) = (7κ t)−
1
7 u(t, y) , y = x(7κ t)−

1
7 .

At this point the problem (1.3)–(1.5) can be rewritten as the problem (P ) where

ǫ := b (7κ t)−
5
7 and ǫp−2 ≪ 1, M is the mass of the droplet and a is the contact

point.

Let us state a well-posedness result for problem (P ), which will be proved in

Section 4:

Theorem (Existence of quasi-self-similar solutions). For any M>0, p>2

and ǫ > 0, problem (P) admits a solution (a, u).

Since this problem is not invariant under rescaling, we will first consider a > 0

as fixed and prove existence and uniqueness for the following problem

(Pa)











u′′′ = F (y, u) in (0, a)

u′(0) = 0 ,

u(a) = 0 , u′(a) = 0 .

This will be achieved by an argument used by Ferreira and Bernis [12] in a

similar context, based on estimates of the Green’s function and on Schauder’s

fixed point theorem. Then we will prove that there exists a positive number a

such that

∫ a

0
ua(y) dy = M , where ua is the solution to (Pa).

2 – Preliminaries

Introducing the function

W (y, u, ξ) := u2 ξ
[

1 + (ǫ u ξ)p−2
]

− y ,

the equation of (P ) can be rewritten as

(2.1) W (y, u, ξ) = 0
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with u′′′ = ξ > 0. Since (2.1) implies

ǫp−2 up ξp−1 = y − u2 ξ ,

for any fixed (y, u) ∈ (0,∞)×(0,∞) there exists a unique value ξ ∈ (0,∞) such

that W (y, u, ξ) = 0. This allows to define the function ξ = F (y, u):

{

(y, u, ξ) ∈ (0,∞)×(0,∞)×(0,∞) : W (y, u, ξ) = 0
}

=(2.2)

=
{

(y, u, F (y, u)) : (y, u) ∈ (0,∞)×(0,∞)
}

.

Hence we obtain the explicit form:

(2.3) u′′′ = F (y, u) .

Since W is continuous, differentiable and strictly increasing with respect to ξ,

we see that F ∈ C1((0,∞)×(0,∞)). Moreover F ∈ C([0,∞)×(0,∞)) and

F (y, u) ∼















y

u2
(ǫ u u′′′)p−2 ≪ 1

(

y

ǫp−2 up

)
1

p−1

(ǫ u u′′′)p−2 ≫ 1 ,

that is

(2.4) F (y, u) ∼















y

u2
ǫ y ≪ u

(

y

ǫp−2 up

)
1

p−1

ǫ y ≫ u .

This expansion already shows that the macroscopic behaviour of the solu-

tion is governed by the limit equation, whereas the shear–thinning rheology takes

over for small values of u. Due to the nonlinearity in the third derivative, such

phenomenon is not transparent from the PDE itself. In addition, simple compu-

tations show that

(2.5) F (0, u) = 0 ,
∂F

∂y
> 0 and

∂F

∂u
< 0 in (0,∞)×(0,∞)

and

(2.6) lim
u→0+

F (y, u) = +∞ ∀ y > 0 .
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3 – Green’s function and properties

We consider the following problem:

(3.1) (Pψ)

{

u
′′′

= ψ(y) in (0, a)

u′(0) = 0 , u(a) = 0 , u′(a) = 0 .

For t ∈ (0, a), we introduce the parabolas P−(y, t) defined in y ∈ [0, t] and P+(y, t)

defined in y ∈ [t, a] such that

(3.2) P ′
−(0, t) = P+(a, t) = P ′

+(a, t) = 0

and

(3.3) P−(t, t) = P+(t, t) , P ′
−(t, t) = P ′

+(t, t) , P ′′
+(t, t) − P ′′

−(t, t) = 1

where here and throughout the section, ′ denotes differentiation w.r.t. y. Condi-

tion (3.2) and (3.3) give

P−(y, t) = −
(a−t)

2 a
y2 +

t

2
(a−t) , P+(y, t) =

t

2 a
(a−y)2 .

Then the Green’s function associated to the linear problem (3.1) is defined by

the formula

(3.4) G(y, t) =











t

2
(a−t) −

(a−t)

2 a
y2 if y ≤ t

t

2 a
(a− y)2 if y ≥ t .

Note that G(·, t) ∈ C1([0, a]), and we have

(3.5) G′(y, t) =











−
(a−t)

a
y if y ≤ t

−
t

a
(a−y) if y ≥ t

(3.6) G′′(y, t) =











−
(a−t)

a
if y ≤ t

t

a
if y ≥ t

G
′′′

(y, t) = δ(y − t) , 0<y<a, 0<t<a ,

(3.7) G′(0, t) = G(a, t) = G′(a, t) = 0 , 0<t<a .
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We collect some properties of the Green’s function in the following Lemma.

Lemma 3.1. The function defined by (3.4) satisfies the following properties,

where C1 and C2 are positive constants:

(1) G(y, t) > 0 if 0≤y≤a and 0<t<a;

(2) G′(y, t) < 0 if y, t ∈ (0, a);

(3) G(y, t) ≤ C1(a−t) and |G′(y, t)| < C1(a−t) for all y, t ∈ [0, a];

(4)

∫ a

y
G(y, t) dt ≥ C2 (a−y)3 for all y ∈ [0, a].

Proof: Property (2) is evident from (3.5), while (1) follows from (2) and

G(a, t)=0. The assertion (3) for G′′ and G follows respectively from (3.5) and by

integration in y. Since G(y, t) ≥ G(t, t) when y ≤ t, and G(t, t) can be rewritten

as

G(t, t) =
t

2 a
(a−t)2 =

(a−t)2

2
−

(a−t)3

2 a
,

we have

∫ a

y
G(y, t) dt ≥

∫ a

y
G(t, t) dt

=

∫ a

y

(a−t)2

2
dt −

∫ a

y

(a− t)3

2 a
dt

=
(a−y)3 (a+3y)

24 a
≥ C2 (a−y)3

which is assertion (4).

The solution of (Pψ) can of course be obtained through the Green’s functionG,

as stated in the following Lemma:

Lemma 3.2. For any ψ∈C([0, a]) there exists a unique solution u∈C3([0, a])

of problem (Pψ). Furthermore, u satisfies

(3.8) u(j)(y) =

∫ a

0
G(j)(y, t)ψ(t) dt , j = 0, 1 .
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Proof: Let u(y) =

∫ a

0
G(y, t)ψ(t) dt. Since G(·, t) ∈ C1([0, a]), by (3) of

Lemma 3.1 and (3.7) we obtain

u′(y) =

∫ a

0
G′(y, t)ψ(t) dt ,

and u′(0)=u(a)=u′(a)=0. Given a test function ϕ such that supp(ϕ)⊂ (0, a),

integrating by parts we obtain

∫ a

0
u(y)ϕ′′′(y) dy = −

∫ a

0
u′′′(y)ϕ(y) dy

(3.1)
= −

∫ a

0
ψ(y)ϕ(y) dt .

This means that u′′′ = ψ in the sense of distributions. Hence u is a solution of

(3.1). Since uniqueness is elementary, the proof is complete.

4 – Existence proof

The proof of the Theorem proceeds along several steps. We first consider

a > 0 as fixed and prove the following result.

Proposition 4.1. Let p > 2 and F defined by (2.2). For any a > 0 there

exists u ∈ C3([0, a))∩C1([0, a]), u>0 in [0, a) which solves the following problem:

(4.1) (Pa)















u′′′= F (y, u) in (0, a)

u′(0) = 0 ,

u(a) = 0 , u′(a) = 0 .

Furthermore,

(4.2) u(j)(y) =

∫ a

0
G(j)(y, t)F (t, u(t)) dt , j = 0, 1 .

To this aim, we consider the approximating problem

(4.3) (Pδ)

{

u′′′= F (y, u) in (0, a)

u′(0) = 0 , u(a) = δ , u′(a) = 0 ,

where δ is a positive number.
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Remark 4.2. By (2.4), it follows that

(4.4)
y

2u2
≤ F (y, u) ≤

y

u2
for u ≥ ǫ y

(4.5)
( y

2 ǫp−2 up

)1/p−1
≤ F (y, u) ≤

( y

ǫp−2 up

)1/p−1
for u ≤ ǫ y .

Lemma 4.3. For every p > 2 problem (Pδ) has at least a positive solution

uδ ∈ C3([0, a]), which satisfies

(4.6) uδ(y) = δ +

∫ a

0
G(y, t)F (t, uδ(t)) dt ,

(4.7) u′δ(y) =

∫ a

0
G′(y, t)F (t, uδ(t)) dt .

Proof: We proceed to apply Schauder’s fixed point theorem. Let S be the

closed convex set of the Banach space C([0, a]) defined by

S =
{

v ∈ C([0, a]) : δ≤v≤A in [0, a]
}

,

where A is a constant to be chosen later. We introduce a nonlinear operator T

by setting T (v)=u for each v∈S, where u is the unique solution (cf. Lemma3.2)

of the problem
{

u′′′= F (y, v) in (0, a)

u′(0) = 0 , u(a) = δ , u′(a) = 0 .

By (3.8),

(4.8) u(y) = δ +

∫ a

0
G(y, t)F (t, v(t)) dt ,

(4.9) u′(y) =

∫ a

0
G′(y, t)F (t, v(t)) dt .

We claim that T (S)⊂S for A sufficiently large. Indeed, by (2.5), u′′′>0 in (0, a)

implies that u′ is a convex function with u′(0) = u′(a) = 0. Therefore u′ < 0 in

(0, a), which means that u(y) ≥ u(a) = δ. By (4.8), (2.5) and (3) of Lemma

3.1, for y ∈ [0, a] and δ ≤ v ≤ A we obtain u(y) ≤ δ + 1
2 F (a, δ)C1 a

2 := A. This
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proves the claim. Again by (4.8), since F (t, ·) is uniformly continuous on [δ, A],

T is continuous. By (4.9) and (3) of Lemma 3.1, |u′(y)| ≤ A− δ; therefore T (S)

is bounded in C1([0, a]) and hence relatively compact in C([0, a]). By Schauder’s

fixed point theorem there exists uδ∈S such that T (uδ)=uδ, which is the desired

solution. Finally, (4.6) and (4.7) follows respectively from (4.8) and (4.9).

For y ∈ (0, a], we consider

(4.10) H̄y(ξ) := H(y, ξ) =
ξ

F (y, ξ)
.

In view of (2.5),
dH̄y

dξ >0 in (0,∞). Hence its inverse ξ = H̄y
−1

(r) is well-defined

and increasing in (0,∞) for any y ∈ (0, a].

Lemma 4.4. The solution uδ(y) of problem (Pδ) satisfies for all y ∈ (0, a]:

(1) uδ(y) ≥ H̄y
−1

(C2(a−y)
3) where H̄y(ξ) is defined by (4.10);

(2) uδ(y) ≤ C and |u′δ(y)| ≤ C independently by δ.

Proof: By (4.6), (2.5) and (4) of Lemma 3.1, denoting with C a generic

positive constant independently by δ, we have

(4.11) uδ(y) ≥ F (y, uδ(y))

∫ a

y
G(y, t) dt ≥ C(a−y)3 F (y, uδ(y)) .

Hence

(4.12) H̄y(uδ(y)) = H(y, uδ(y)) =
uδ(y)

F (y, uδ(y))
≥ C(a−y)3 .

Since H̄y
−1

is increasing, (4.12) means that

(4.13) uδ(y) = H̄y
−1(

H̄y(uδ(y))
)

≥ H̄y
−1(

C(a− y)3
)

.

By Remark 4.2, the following inequalities hold:

(4.14)
ξ3

y
≤ H̄y(ξ) ≤

2 ξ3

y
for ξ ≥ ǫ y ,

(4.15)

(

ǫp−2 ξ2p−1

y

)1/p−1

≤ H̄y(ξ) ≤

(

2 ǫp−2 ξ2p−1

y

)1/p−1

for ξ ≤ ǫ y .
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In turn, (4.14) and (4.15) imply that

(

1

2
y r

)1/3

≤ H̄y
−1

(r) ≤ (y r)1/3 for r ≥ H̄y(ǫ y) ,

(

1

2
ǫ2−p y rp−1

)1/2p−1

≤ H̄y
−1

(r) ≤
(

ǫ2−p y rp−1
)1/2p−1

for r ≤ H̄y(ǫ y) .

Using also the monotonicity of F , if uδ(y) ≤ ǫ y we see that

F
(

y, uδ(y)
)

(4.13)

≤ F
(

y, H̄y
−1(

C(a− y)3
)

)

≤ F
(

y, C y
1

2p−1 (a−y)
3(p−1)
2p−1

)

(4.5)

≤ C y
1

2p−1 (a−y)
−3p

2p−1 .(4.16)

Let y∗ ∈ (0, a) such that ǫ y∗= uδ(y
∗). This point y∗ exists and is unique for

δ sufficiently small since u′δ < 0 in (0, a) and as it has been proved in Lemma

4.3, uδ ∈ S. Moreover since uδ is decreasing we observe that uδ(y) ≥ uδ(y
∗) =

ǫ y∗ ≥ ǫ y for 0<y≤y∗ and uδ(y) ≤ uδ(y
∗) = ǫ y∗ ≤ ǫ y for y∗≤y≤a. By (4.6),

(3) of Lemma 3.1, (4.4) and (4.16), we obtain

uδ(y) ≤ 1 + C

∫ y∗

0
(a−t)F

(

y∗, uδ(y
∗)

)

dt

+ C

∫ a

y∗
t

1
2p−1 (a−t)

− p+1
2p−1 dt

≤ 1 + C
a y∗2

u(y∗)2
+ C a

3p−2
2p−1

= 1 + C a+ C a
p−1
2p−1 .(4.17)

Hence uδ(y) ≤ C independently by δ. In the same way one proves that

|u′δ(y)| ≤ C.

Proof of Proposition 4.1: We wish to pass to the limit as δ ↓ 0 in the

approximating problems. By (2) of Lemma 4.4, there exists a subsequence

(still labelled by δ) such that

uδ → u uniformly in [0, a] as δ ↓ 0 .
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Since u > 0 in [0, a) by (1) of Lemma 4.4, then

u′′′δ = F (y, uδ) → F (y, u) uniformly in compact subsets of [0, a) .

On the other hand, u′′′δ → u′′′ in the sense of distributions and hence u satisfies

the differential equation of problem (4.1). By (3) of Lemma 3.1 and (4.16),

we have

|G(j)(y, t)|F (t, uδ(t)) ≤ C t
1

2p−1 (a−t)
− p+1

2p−1 , y∗≤ t≤a j=0, 1 .

Since − p+1
2p−1 + 1 = p−2

2p−1 > 0, it follows from (4.6) and Lebesgue’s dominated

convergence theorem that uδ converges in C1([0, a]) and hence u′ satisfies the

boundary conditions of problem (4.1). This argument also proves (4.2) and

completes the proof of Proposition 4.1.

In the next result we show that the solution u of problem (Pa) obtained in

Proposition (4.1) is in fact unique.

Proposition 4.5. The solution of problem (Pa) is unique.

Proof: Let u and v be two solutions of problem (4.1) and let w = u − v;

then

w′(0) = 0 , w(a) = 0 , w′(a) = 0 .

Since ww′′′ = (u− v) (u′′′ − v′′′) = (u− v) (F (y, u) − F (y, v)) and the function

u→ F (y, u) is decreasing, it follows that

(4.18) ww′′′ ≤ 0 .

On the other hand, the following identity holds:

(4.19) y ww′′′ = (y ww′′)′ − (ww′)′ −
1

2

(

y(w′)2
)′

+
3

2
(w′)2 .

Therefore the function

(4.20) g(y) = y ww′′ − ww′ −
1

2
y(w′)2

is non-increasing. Clearly g(0) = 0. Since g is non-increasing the following limits

exists:

lim
y→a

g(y) = lim
y→a

w(y)w′′(y) = L .
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Since u′ and v′ are bounded, and zero in y = a, we have that |w(y)| ≤ C(a−y).

If L 6=0 then |w′′(y)| ≥ |L|/C(a−y) near y = a, which contradicts the continuity

of w′. Hence L=0. Since g(0)=0 and g is non-increasing, we conclude that g≡0.

Then by (4.19) and (4.20)

g′ = y ww′′′ −
3

2
(w′)2 ≡ 0 ,

and it follows from (4.18) that w′≡0. Therefore w≡0 and the proof is complete.

Now we are ready to prove the Theorem.

Proof of the Theorem: Let Ma=

∫ a

0
ua(y) dy. In view of Propositions 4.1

and 4.5, it suffices to prove that

lim
a→∞

Ma = ∞ and lim
a→0

Ma = 0 .

Let ya ∈ (0, a) such that ua(ya) = ya
β , β > 0. If ya ≥

a
4 , we have

Ma ≥

∫ ya

0
ua(y) dy ≥ ua(ya) ya ≥ C aβ+1 → ∞ as a ↑ ∞ .

If ya<
a
4 and t ≤ 2 ya ≤ y, since a− 2ya >

a
2 , we have

(4.21) Ma ≥

∫ a

2ya

dy

∫ 2ya

ya

G(y, t)F (t, ua(t)) dt > C F
(

ya, ua(ya)
)

ya
2 a2 .

From Remark 4.2 and (4.21), it follows that

Ma > C ya
3−2β a2 if ua(ya) ≥ ǫ ya ,

and

Ma > C ya
2p−1−βp

p−1 a2 if ua(ya) ≤ ǫ ya .

Then

Ma > C a2 min
{

ya
3−2β , ya

2p−1−βp

p−1

}

.
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Choosing β = 2 we obtain (since ya< a/4)

Ma > C a2 min
{

ya
−1, ya

− 1
p−1

}

> C a2 min
{

a−1, a
− 1

p−1

}

> C min
{

a, a
2p−3
p−1

}

,

and therefore Ma tends to infinity as a→ ∞. In the limit a ↓ 0, we consider

Ma =

∫ a

0
dy

∫ y∗

0
G(y, t)F (t, ua(t)) dt +

∫ a

0
dy

∫ a

y∗
G(y, t)F (t, ua(t)) dt

= I1 + I2 .

As observed before, since ua(y) ≥ ua(y
∗) = ǫ y∗ ≥ ǫ y for 0 < y ≤ y∗ and

ua(y) ≤ ua(y
∗) = ǫ y∗ ≤ ǫ y for y∗ ≤ y ≤ a, by (3) of Lemma 3.1 and (4.4),

I1 ≤ C

∫ a

0
dy

∫ y∗

0
(a−t)F

(

y∗, ua(y
∗)

)

dt ≤ C a2

(

y∗

u(y∗)

)2

=
C a2

ǫ2
.

By (3) of Lemma 3.1 and passing to the limit δ ↓ 0 in (4.16),

I2 ≤ C

∫ a

0
dy

∫ a

y∗
t

1
2p−1 (a−t)

− p+1
2p−1 dt ≤ C a

3p−2
2p−1 ,

and the proof is complete.

Remark 4.6. Unfortunately we can not conclude the uniqueness of solution.

In fact, it is not difficult to see that the regularity of u ∈ C3([0, a)) ∩ C1([0, a])

is not sufficient to prove that Ma is monotone in a. Therefore, we refer to the

proof in [1] obtained by a standard shooting argument.

Remark 4.7. It’s also interesting to consider solutions of (P ) with non-zero

contact angle, more precisely, with u′(a)=0 replaced by u′(a)=−θ, where θ>0

is prescribed. For any M > 0, p > 2, ǫ > 0 and θ > 0, problem (P ) admits a

solution. Since the proof is identical to the previous case, we omit it.
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