```
PORTUGALIAE MATHEMATICA
    Vol. }63\mathrm{ Fasc. 4-2006
        Nova Série
```


AN INTERPRETATION OF S_{2}^{1} IN $\Sigma_{1}^{b}-$ NIA

Gilda Ferreira and Isabel Oitavem

Abstract

In this paper the theory S_{2}^{1} (of Buss) is interpreted in the theory Σ_{1}^{b}-NIA (of Ferreira).

1 - Introduction

Our goal is to interpret Buss's theory S_{2}^{1}, [1], in Ferreira's theory Σ_{1}^{b}-NIA, originally denoted by Σ_{1}^{b}-PIND - see [7]. This correspondence has been mentioned in work of several authors. For instance Cantini [2], Fernandes [4], [5], Ferreira [6], [7], [8], Oliva [9], Strahm [10] and Yamazaki [12]. In spite of the widely acceptance of the result, this is the first time that its proof is formally carried out. Therefore, this is a technical paper which aims to serve as a reference.

In Section 2 we briefly describe the theories and we introduce some elementary properties. The interpretation of the theory S_{2}^{1} in Σ_{1}^{b} - NIA is worked out in Section 3. There we start with some general considerations concerning the notion of interpretation, to then enter the proof of the result of this paper. The main statement is established in Theorem 3.1.

2 - The theories S_{2}^{1} and $\Sigma_{1}^{b}-$ NIA

Let $\mathcal{L}_{\mathbb{N}}$ be the first order language, with equality, which has a single constant 0 , the function symbols $S,+, \cdot,||,.\left\lfloor\frac{1}{2}.\right\rfloor$ and $\#$, and the relation symbol \leq. $\#$ is usually called the smash function and interpreted as $x \# y=2^{|x| \cdot|y|}$. By $\mathcal{L}_{\mathbb{W}}$

Received: October 1, 2005; Revised: January 26, 2006.
AMS Subject Classification: 03F30, 03F25, 03D20.
Keywords: bounded arithmetic; interpretability; polynomial time.
we denote the first order language, with equality, which has the constants $\epsilon, 0$ and 1 , the function symbols \frown and \times, and the relation symbol \subseteq. In the standard model, ϵ denotes the empty word, \frown stands for the concatenation of $0-1$ words, \times for the binary product (i.e. $x \times y=x \frown \ldots \frown x,|y|$-times) and \subseteq for the initial subword relation. The symbol \frown is usually omitted. Thus for terms t, r one writes $t r$ instead of $t \frown r$. Moreover, we follow the convention that \frown has precedence over \times.

Depending on the language that we consider, the designation "bounded quantification" has different meanings. In $\mathcal{L}_{\mathbb{N}}$, a bounded quantification is a quantification of the form $\forall x \leq t \ldots$ or $\exists x \leq t \ldots$, which abbreviates respectively $\forall x(x \leq t \rightarrow \ldots)$ or $\exists x(x \leq t \wedge \ldots)$, and a sharply bounded quantification is a quantification of the form $\forall x \leq|t| \ldots$ or $\exists x \leq|t| \ldots$, which abbreviates respectively $\forall x(x \leq|t| \rightarrow \ldots)$ or $\exists x(x \leq|t| \wedge \ldots)$, where t is any term not involving x. In $\mathcal{L}_{\mathbb{W}}$, a bounded quantification is a quantification of the form $\forall x \preceq t \ldots$ or $\exists x \preceq t \ldots$, which abbreviates $\forall x(1 \times x \subseteq 1 \times t \rightarrow \ldots)$ or $\exists x(1 \times x \subseteq 1 \times t \wedge \ldots)$ respectively (notice that $x \preceq t$ means that "the length of x is less or equal than the length of $t^{\prime \prime}$, and a subword quantification is a quantification of the form $\forall x \subseteq^{*} t \ldots$ or $\exists x \subseteq^{*} t \ldots$, which abbreviates respectively $\forall x(\exists w \subseteq t(w x \subseteq t) \rightarrow \ldots)$ or $\exists x(\exists w \subseteq t(w x \subseteq t) \wedge \ldots)$, for any term t where x does not occur.

Definition 2.1. S_{2}^{1} is the first order theory in the language $\mathcal{L}_{\mathbb{N}}$ with the following axioms:

- Basic Axioms
(1) $y \leq x \rightarrow y \leq S x$
(2) $x \neq S x$
(3) $0 \leq x$
(4) $x \leq y \wedge x \neq y \leftrightarrow S x \leq y$
(5) $x \neq 0 \rightarrow 2 \cdot x \neq 0$
(6) $y \leq x \vee x \leq y$
(7) $x \leq y \wedge y \leq x \rightarrow x=y$
(8) $x \leq y \wedge y \leq z \rightarrow x \leq z$
(9) $|0|=0$
(10) $x \neq 0 \rightarrow|2 \cdot x|=S(|x|) \wedge|S(2 \cdot x)|=S(|x|)$
(11) $|S 0|=S 0$
(12) $x \leq y \rightarrow|x| \leq|y|$
(13) $|x \# y|=S(|x| \cdot|y|)$
(14) $0 \# y=S 0$
(15) $x \neq 0 \rightarrow 1 \#(2 \cdot x)=2(1 \# x) \wedge 1 \#(S(2 \cdot x))=2(1 \# x)$
(16) $x \# y=y \# x$
(17) $|x|=|y| \rightarrow x \# z=y \# z$
(18) $|x|=|u|+|v| \rightarrow x \# y=(u \# y) \cdot(v \# y)$
(19) $x \leq x+y$
(20) $x \leq y \wedge x \neq y \rightarrow S(2 \cdot x) \leq 2 \cdot y \wedge S(2 \cdot x) \neq 2 \cdot y$
(21) $x+y=y+x$
(22) $x+0=x$
(23) $x+S y=S(x+y)$
(24) $(x+y)+z=x+(y+z)$
(25) $x+y \leq x+z \leftrightarrow y \leq z$
(26) $x \cdot 0=0$
(27) $x \cdot(S y)=(x \cdot y)+x$
(28) $x \cdot y=y \cdot x$
(29) $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
(30) $S 0 \leq x \rightarrow(x \cdot y \leq x \cdot z \leftrightarrow y \leq z)$
(31) $x \neq 0 \rightarrow|x|=S\left(\left|\left\lfloor\frac{1}{2} x\right\rfloor\right|\right)$
(32) $x=\left\lfloor\frac{1}{2} y\right\rfloor \leftrightarrow(2 \cdot x=y \vee S(2 \cdot x)=y)$
- Axiom Scheme for Induction
$A(0) \wedge \forall x\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right) \rightarrow \forall x A(x)$, where A is a Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{N}}$.
By a Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{N}}$ we mean a formula belonging to the smallest class of formulas of $\mathcal{L}_{\mathbb{N}}$ containing the set of formulas where all quantifications are sharply bounded and that is closed under \wedge, \vee, bounded existential quantifications and sharply bounded quantifications. \square

Definition 2.2. $\Sigma_{1}^{b}-$ NIA is the first order theory, in the language $\mathcal{L}_{\mathbb{W}}$, with the following axioms:

- Basic Axioms
(1) $x \epsilon=x$
(2) $x(y 0)=(x y) 0$
(3) $x(y 1)=(x y) 1$
(4) $x \times \epsilon=\epsilon$
(5) $x \times y 0=(x \times y) x$
(6) $x \times y 1=(x \times y) x$
(7) $x \subseteq \epsilon \leftrightarrow x=\epsilon$
(8) $x \subseteq y 0 \leftrightarrow x \subseteq y \vee x=y 0$
(9) $x \subseteq y 1 \leftrightarrow x \subseteq y \vee x=y 1$
(10) $x 0=y 0 \rightarrow x=y$
(11) $x 1=y 1 \rightarrow x=y$
(12) $x 0 \neq y 1$
(13) $x 0 \neq \epsilon$
(14) $x 1 \neq \epsilon$
- Axiom Scheme for Induction on Notation

$$
B(\epsilon) \wedge \forall x(B(x) \rightarrow B(x 0) \wedge B(x 1)) \rightarrow \forall x B(x),
$$

where B is a Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$, possible with other free variables besides x. By a Σ_{1}^{b}-formula in \mathcal{L}_{W} we mean a formula of the form $\exists x(x \preceq t(\bar{z}) \wedge A(\bar{z}, x))$, where A is a sw.q. formula, i.e. A belongs to the smallest class of formulas of $\mathcal{L}_{\mathbb{W}}$ containing the atomic formulas and which is closed under Boolean operations and subword quantifications. \square

We present a list of statements, provable in $\Sigma_{1}^{b}-$ NIA, which are used in this paper.

Lemma 2.1. The following is provable in $\Sigma_{1}^{b}-$ NIA:
(1) $\epsilon x=x$
(2) $(x y) z=x(y z)$
(3) $x z=y z \rightarrow x=y$
(4) $\epsilon \times x=\epsilon$
(5) $x \times y=\epsilon \rightarrow x=\epsilon \vee y=\epsilon$
(6) $x \times 0=x \wedge x \times 1=x$
(7) $0 \times(x \times y)=0 \times(y \times x)$
(8) $1 \times(x \times y)=1 \times(y \times x)$
(9) $(x \times y) \times z=x \times(y \times z)$
(10) $(x \times y)(x \times z)=x \times y z$
(11) $1 \times x y=1 \times y x$
(12) $1 \times x=1 \times y \rightarrow 0 \times x=0 \times y$
(13) $1 \times x=1 \times y \rightarrow 1 \times 1 x=1 \times 1 y$
(14) $0 \neq 1$
(15) $\epsilon \neq 0 \wedge \epsilon \neq 1$
(16) $x \neq \epsilon \rightarrow \exists z(z 0=x \vee z 1=x)$
(17) $x \subseteq y \wedge y \subseteq x \rightarrow x=y$
(18) $x \subseteq y \wedge y \subseteq z \rightarrow x \subseteq z$
(19) $x \subseteq x y$
(20) $x \subseteq y \leftrightarrow w x \subseteq w y$
(21) $x \subseteq z \wedge y \subseteq z \rightarrow x \subseteq y \vee y \subseteq x$
(22) $x \subseteq y \rightarrow \exists z x z=y$
(23) $x \neq 0 \times x \rightarrow \exists y \subseteq x \exists z \subseteq 0 \times x(x=y 1 z)$
(24) $x \neq 1 \times x \rightarrow \exists y \subseteq x \exists z \subseteq 1 \times x(x=y 0 z)$.

Proof: All assertions are proved in [6] except (12), (13) and (19). Note that, in [6], results are proved in a theory called PTCA, but similar demonstrations work in Σ_{1}^{b}-NIA. (12) is a consequence of (6) and (7). (13) is a consequence of (11) and Definition $2.2(6)$. (19) can be obtained by induction on notation on y, using (16) and Definition $2.2(1),(7),(8)$ and (9).

Let us consider, in $\mathcal{L}_{\mathbb{W}}$, the class of extended Σ_{1}^{b}-formulas (extended Π_{1}^{b}-formulas). By an extended Σ_{1}^{b}-formula (respectively extended Π_{1}^{b}-formula) we mean a formula that is logically equivalent to a formula that can be constructed in a finite number of steps, starting with sw.q. formulas and permitting conjunctions, disjunctions, subword quantifications and bounded existential quantifications (respectively bounded universal quantifications).

Lemma 2.2. $\quad \Sigma_{1}^{b}-\mathrm{NIA} \vdash A(\epsilon) \wedge \forall x(A(x) \rightarrow A(x 0) \wedge A(x 1)) \rightarrow \forall x A(x)$, for any extended Σ_{1}^{b}-formula A.

Proof: In [7] is proved that, in Σ_{1}^{b}-NIA, any extended Σ_{1}^{b}-formula is equivalent to a Σ_{1}^{b}-formula. This implies our lemma.

Of particular importance is the $\mathcal{L}_{\mathbb{W}}$ formula $x=\epsilon \vee 1 \subseteq x$, that we abbreviate by $x \in \mathbb{W}_{1} . \quad x \in \mathbb{W}_{1}$ is a Σ_{1}^{b}-formula that, in the standard model of Σ_{1}^{b}-NIA, corresponds to consider only the empty word or words starting with 1 .

Lemma 2.3. The following is provable in $\Sigma_{1}^{b}-$ NIA:
(1) $x \in \mathbb{W}_{1} \wedge y \subseteq x \rightarrow y \in \mathbb{W}_{1}$
(2) $x \in \mathbb{W}_{1} \wedge x \neq \epsilon \rightarrow x y \in \mathbb{W}_{1}$.

Proof: (1) Suppose $x \in \mathbb{W}_{1}$ and $y \subseteq x$. From $x \in \mathbb{W}_{1}$, we have that $x=\epsilon$ or $1 \subseteq x$. In the first case $y \subseteq \epsilon$ and so, by Definition $2.2(7), y=\epsilon$. Hence $y \in \mathbb{W}_{1}$. In the second case, by Lemma 2.1 (21), we have $1 \subseteq y$ or $y \subseteq 1$. If $1 \subseteq y$ then $y \in \mathbb{W}_{1}$. If $y \subseteq 1$, then by Lemma 2.1 (1) $y \subseteq \epsilon 1$ and by Definition $2.2(9)$, we have $y \subseteq \epsilon$ or $y=\epsilon 1$. If $y \subseteq \epsilon$, by Definition $2.2(7), y=\epsilon$, and so $y \in \mathbb{W}_{1}$. If $y=\epsilon 1$, by Lemma $2.1(1), y=1$. Thus, by Lemma 2.1 (19) and Definition $2.2(1), 1 \subseteq y$ and so $y \in \mathbb{W}_{1}$.
(2) Suppose $x \in \mathbb{W}_{1}$ and $x \neq \epsilon$, we have $1 \subseteq x$. Lemma 2.1 (19) ensures $x \subseteq x y$. From $x \subseteq x y$ and $1 \subseteq x$, using Lemma 2.1 (18), we have $1 \subseteq x y$. Thus, $x y \in \mathbb{W}_{1}$.

The next lemma states that, in $\Sigma_{1}^{b}-$ NIA, the scheme of induction on notation on $x \in \mathbb{W}_{1}$, for extended Σ_{1}^{b}-formulas, is provable.

Lemma 2.4. $\Sigma_{1}^{b}-$ NIA $\vdash A(\epsilon) \wedge \forall x \in \mathbb{W}_{1}\left(A(x) \rightarrow\left(x 0 \in \mathbb{W}_{1} \rightarrow A(x 0)\right) \wedge A(x 1)\right)$ $\rightarrow \forall x \in \mathbb{W}_{1} A(x)$, where A is an extended Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$.

Proof: It results from applying Lemma 2.2 to the extended Σ_{1}^{b}-formula: $x \in \mathbb{W}_{1} \rightarrow A(x)$.

3 - Interpreting S_{2}^{1} in $\Sigma_{1}^{b}-$ NIA

3.1. Preliminaries

The notion of interpretability between theories was introduced by Tarski, Mostowski and Robinson [11] in 1953 and it has been widely used to prove results on (un)decidability and (relative) consistency. Roughly speaking interpretations are used to show whether a theory is powerful enough to express another.

The notion of interpretability can be formulated in different ways. Here we adopt a formulation similar to the one presented in [3].

Definition 3.1. Let \mathcal{L}_{A} and \mathcal{L}_{B} be languages and T_{B} be a theory in the language \mathcal{L}_{B}. An interpretation of the language \mathcal{L}_{A} into T_{B} consists of a formula σ in \mathcal{L}_{B} and a function ν from the nonlogical symbols of \mathcal{L}_{A} to expressions (terms, formulas) in \mathcal{L}_{B} such that:

1. $T_{B} \vdash \exists x \sigma(x)$
2. If c is a constant of \mathcal{L}_{A}, then $\nu(c)$ is a closed term of \mathcal{L}_{B} and $T_{B} \vdash$ $\exists x(\sigma(x) \wedge \nu(c)=x)$
3. If f is an n-ary function symbol of \mathcal{L}_{A}, then $\nu(f)$ is a formula of \mathcal{L}_{B} in which at most $n+1$-variables occur free and verify $T_{B} \vdash \forall x_{1} \ldots \forall x_{n}$ $\left(\sigma\left(x_{1}\right) \wedge \ldots \wedge \sigma\left(x_{n}\right) \rightarrow \exists y\left(\sigma(y) \wedge \forall z\left(\nu(f)\left(x_{1}, \ldots, x_{n}, z\right) \leftrightarrow z=y\right)\right)\right)$
4. If R is an n-ary relation symbol of \mathcal{L}_{A}, then $\nu(R)$ is a formula of \mathcal{L}_{B} in which at most n variables occur free. \square

The idea is that in any model of T_{B}, the formula $\sigma(x)$ should define a nonempty set to be used as the universe of an \mathcal{L}_{A}-structure.

Remark 3.1. Having an interpretation (σ, ν) of \mathcal{L}_{A} into T_{B}, we can consider a translation I from all formulas of \mathcal{L}_{A} to expressions of \mathcal{L}_{B} in the following way:

1) If α is an atomic formula use recursion on the number of places at which function symbols occur in α. If that number is zero $\alpha=R\left(x_{1}, \ldots, x_{n}\right.$, $\left.a_{1}, \ldots, a_{n}\right)$ with R a relation symbol, x_{i} variables and a_{i} constants. Then $I(\alpha)=\nu(R)\left(x_{1}, \ldots, x_{n}, \nu\left(a_{1}\right), \ldots, \nu\left(a_{n}\right)\right)$. Otherwise, take the rightmost place at which a function symbol f occurs. If f is an n-ary symbol, then that place initiates a segment $f x_{1} \ldots x_{n}$. Replace this segment by some new variable y, obtaining a formula we call $\alpha_{y}^{f x_{1} \ldots x_{n}}$. Then $I(\alpha)$ is $\forall y\left(\nu(f)\left(x_{1}, \ldots, x_{n}, y\right) \rightarrow I\left(\alpha_{y}^{f x_{1} \ldots x_{n}}\right)\right)$;
2) $I(\neg \alpha):=\neg I(\alpha), \quad I(\varphi \square \psi):=I(\varphi) \square I(\psi) \quad$ with $\quad \square \in\{\wedge, \vee \rightarrow, \leftrightarrow\}$, $I(\forall x \varphi):=\forall x(\sigma(x) \rightarrow I(\varphi))$ and $I(\exists x \varphi):=\exists x(\sigma(x) \wedge I(\varphi))$.

Definition 3.2. Let T_{A} be a theory in the language \mathcal{L}_{A} and T_{B} be a theory in $\mathcal{L}_{B} . T_{A}$ is interpretable in T_{B} (or T_{B} interprets T_{A}) if there exists an interpretation (σ, ν) of \mathcal{L}_{A} into T_{B} whose translation I (defined as before) verifies: $T_{B} \vdash I(\varphi)$ for all axioms φ in T_{A}. \square

We also use the following result proved in [7].

Proposition 3.1. To each function f of PTIME, we can assign an extended Σ_{1}^{b}-formula G_{f} and a term b_{f} of \mathcal{L}_{W} such that

$$
\begin{aligned}
& \Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall \bar{x} \exists z \preceq b_{f}(\bar{x}) G_{f}(\bar{x}, z) \\
& \Sigma_{1}^{b}-\mathrm{NIA} \vdash G_{f}(\bar{x}, z) \wedge G_{f}(\bar{x}, y) \rightarrow z=y
\end{aligned}
$$

and
a. in $\Sigma_{1}^{b}-$ NIA the following is valid,
(1) $G_{C_{0}}(x, x 0)$
(2) $G_{C_{1}}(x, x 1)$
(3) $G_{P_{i}^{n}}\left(x_{1}, \ldots, x_{n}, x_{i}\right), 1 \leq i \leq n$
(4) $G_{Q}(x, y, 1) \leftrightarrow x \subseteq y$ and $G_{Q}(x, y, 0) \vee G_{Q}(x, y, 1)$
b.
(1) if f is defined from g, h_{1}, \ldots, h_{k} by composition then, Σ_{1}^{b}-NIA \vdash $G_{h_{1}}\left(\bar{x}, y_{1}\right) \wedge \ldots \wedge G_{h_{k}}\left(\bar{x}, y_{k}\right) \wedge G_{g}\left(y_{1}, \ldots, y_{k}, z\right) \rightarrow G_{f}(\bar{x}, z)$
(2) if f is defined from g, h_{0}, h_{1} by bounded recursion on notation with bound t then, Σ_{1}^{b}-NIA $\vdash G_{g}(\bar{x}, z) \rightarrow G_{f}(\bar{x}, \epsilon, z)$ and $\Sigma_{1}^{b}-\mathrm{NIA} \vdash$ $G_{f}(\bar{x}, y, r) \wedge G_{h_{i}}(\bar{x}, y, r, u) \wedge z=u_{\mid t(\bar{x}, y)} \rightarrow G_{f}(\bar{x}, y i, z)$ with $i=0,1$.

Remark 3.2. If in the previous proposition we replace "extended Σ_{1}^{b}-formula G_{f} " by "extended Π_{1}^{b}-formula $G_{f}^{\pi "}$ the result remains true. [Just take $G_{f}^{\pi}(\bar{x}, z)$ as being $\forall w \preceq b_{f}(\bar{x})\left(G_{f}(\bar{x}, w) \rightarrow w=z\right)$.] Also note that $\Sigma_{1}^{b}-$ NIA $\vdash G_{f} \leftrightarrow G_{f}^{\pi}$. \square

3.2. Interpreting $\mathcal{L}_{\mathbb{N}}$ in $\Sigma_{1}^{b}-$ NIA

To avoid ambiguity, we often use \mathbb{N} and \mathbb{W} as subscripts. For instance $0_{\mathbb{N}} \in \mathcal{L}_{\mathbb{N}}$ and $0_{\mathbb{W}} \in \mathcal{L}_{\mathbb{W}}$. The interpretation of $\mathcal{L}_{\mathbb{N}}$ into Σ_{1}^{b}-NIA is done according to Definition 3.1. The formula $\sigma(x)$, of $\mathcal{L}_{\mathbb{W}}$, is $x \in \mathbb{W}_{1}$ (i.e. $x=\epsilon \vee 1 \subseteq x$). We interpret $0_{\mathbb{N}}$ as being ϵ. To define the interpretation of the function symbols of $\mathcal{L}_{\mathbb{N}}$ we first introduce some functions, constructed according to the inductive characterization of PTIME given in [7]. There, PTIME is described as the smallest class of functions which includes projections $\left(P_{i}^{n}\right)$, concatenation with $0\left(C_{0}\right)$, concatenation with $1\left(C_{1}\right)$ and the characteristic function of " \subseteq " (Q) and which is closed under composition and bounded recursion on notation with bound t (a term of $\mathcal{L}_{\mathbb{W}}$). Consider the functions $S_{\mathrm{w}},\left\lfloor\frac{1}{2} x\right\rfloor_{\mathrm{w}},+_{\mathrm{w}}$ (also T and U), \cdot_{w} and $|\cdot|_{\mathrm{w}}$ defined as follows:

- $S_{\mathrm{w}}(\epsilon)=1, S_{\mathrm{w}}(x 0)=x 1$ and $S_{\mathrm{w}}(x 1)=S_{\mathrm{w}}(x) 0$
- $\left\lfloor\frac{1}{2} .\right\rfloor_{\mathrm{w}}$ defined by $\left\lfloor\frac{1}{2} x\right\rfloor_{\mathrm{w}}=T(x)$, where $T(\epsilon)=\epsilon, T(x 0)=x$ and $T(x 1)=x$
- $\epsilon+_{\mathrm{w}} y=y$ and for $x \neq \epsilon: x+_{\mathrm{w}} \epsilon=x, x+_{\mathrm{w}} y 0=\left(T(x)+_{\mathrm{w}} y\right) \frown U(x)$ and $x+_{\mathrm{w}} y 1=\left\{\begin{array}{ll}\left(T(x)+_{\mathrm{w}} y\right) 1 & \text { if } U(x)=0 \\ S\left(T(x)+_{\mathrm{w}} y\right) 0 & \text { otherwise }\end{array}\right.$ where $U(\epsilon)=\epsilon, U(x 0)=0$ and $U(x 1)=1$
- $\epsilon \cdot{ }_{\mathrm{w}} y=\epsilon$, and for $x \neq \epsilon: x \cdot{ }_{\mathrm{w}} \epsilon=\epsilon, x \cdot{ }_{\mathrm{w}} y 0=\left(x \cdot{ }_{\mathrm{w}} y\right) 0$ and $x \cdot{ }_{\mathrm{w}} y 1=\left(x \cdot{ }_{\mathrm{w}} y\right) 0+{ }_{\mathrm{w}} x$
- $|\epsilon|_{\mathrm{w}}=\epsilon,|y 0|_{\mathrm{w}}=S_{\mathrm{w}}\left(|y|_{\mathrm{w}}\right)$ and $|y 1|_{\mathrm{w}}=S_{\mathrm{w}}\left(|y|_{\mathrm{w}}\right)$.

In each case it is easy to find a bounding term according to the previous definition of PTIME. Consider, for instance, $t(x)=x 11, t(x, y)=x y 11, t(x, y)=$ $(x \times y 1) x 1, t(y)=y 1$ for $S_{\mathrm{w}},+_{\mathrm{w}}, \cdot_{\mathrm{w}}$ and $|\cdot|_{\mathrm{w}}$ respectively. Thus the functions above are functions in PTIME. We define the function ν of $\mathcal{L}_{\mathbb{N}}$ into Σ_{1}^{b}-NIA by applying the function symbols of $\mathcal{L}_{\mathbb{N}}-S_{\mathrm{N}},\left\lfloor\frac{1}{2} \cdot\right\rfloor_{\mathrm{N}},+_{\mathrm{N}}, \cdot_{\mathrm{N}}$ and $|.|_{\mathrm{N}}-$ to the extended Σ_{1}^{b}-formulas of $\mathcal{L}_{\mathbb{W}}$ assigned by Proposition 3.1 to the functions S_{w}, $\left\lfloor\frac{1}{2} \cdot\right\rfloor_{\mathrm{w}},+_{\mathrm{w}}, \cdot_{\mathrm{w}}$ and $|.|_{\mathrm{w}}$ respectively.

The function symbol $\#_{\mathrm{N}}$ and the relation symbol \leq_{N}, of $\mathcal{L}_{\mathbb{N}}$, are interpreted by ν as being the formulas $G_{\#}(x, y, z):=z=1 \frown((0 \times x) \times y)$ and $\leq_{\mathrm{w}}(x, y):=$ $(x \preceq y \wedge \neg(x \equiv y)) \vee(x \equiv y \wedge \exists z \subseteq x(z 0 \subseteq x \wedge z 1 \subseteq y)) \vee x=y$ respectively, where $x \equiv y$ is an abbreviation of $1 \times x=1 \times y$. In the sequent we use infix notation for \leq_{w}, i.e. we write $x \leq_{\mathrm{w}} y$ instead of $\leq_{\mathrm{w}}(x, y)$.

Proposition 3.2. The pair (σ, ν) defined above is an interpretation of $\mathcal{L}_{\mathbb{N}}$ into $\Sigma_{1}^{b}-$ NIA.

Proof: In order to prove that (σ, ν) is, in fact, a valid interpretation of $\mathcal{L}_{\mathbb{N}}$ into Σ_{1}^{b}-NIA, we need to ensure the four clauses of Definition 3.1. The only non immediate assertion is 3 . The study of $\#_{\mathrm{N}}$ follows immediately from Lemma $2.3(2)$. Let us consider any other function symbol f_{N} of $\mathcal{L}_{\mathbb{N}}$. From the definition of $G_{f_{\mathrm{w}}}$, in Proposition 3.1, we know that if f_{N} is an n-ary function symbol then $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x_{1} \ldots \forall x_{n}\left(\sigma\left(x_{1}\right) \wedge \ldots \wedge \sigma\left(x_{n}\right) \rightarrow \exists y \forall z\left(G_{f_{\mathrm{w}}}\left(x_{1}, \ldots, x_{n}, z\right) \leftrightarrow z=y\right)\right.$. Therefore one just need to prove that $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x_{1} \ldots \forall x_{n} \forall y\left(\sigma\left(x_{1}\right) \wedge \ldots \wedge \sigma\left(x_{n}\right) \wedge\right.$ $\left.G_{f_{\mathrm{w}}}\left(x_{1}, \ldots, x_{n}, y\right) \rightarrow \sigma(y)\right)$. The most involving case occurs for $+_{\mathrm{N}}$. We work it out here, assuming the result proved for S_{N}.

To ensure that Σ_{1}^{b}-NIA $\vdash \forall x \forall y \forall z\left(x \in \mathbb{W}_{1} \wedge y \in \mathbb{W}_{1} \wedge G_{+_{\mathrm{w}}}(x, y, z) \rightarrow z \in \mathbb{W}_{1}\right)$, we prove that Σ_{1}^{b}-NIA $\vdash \forall z \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall x^{\prime} \subseteq x \forall z^{\prime} \subseteq z\left(G_{+}\left(x^{\prime}, y, z^{\prime}\right) \rightarrow\right.$ $z^{\prime} \in \mathbb{W}_{1}$), where G_{+}is an abbreviation of $G_{+_{\mathrm{w}}}$. Fix z and x such that $x \in \mathbb{W}_{1}$. The proof is by induction on notation on $y \in \mathbb{W}_{1}$ (see Lemma 2.4) considering that, according to Remark 3.2, we can replace G_{+}by G_{+}^{π}. For $y=\epsilon$ we have,
by Proposition 3.1 for G_{+}, that $\forall x^{\prime} \subseteq x \forall z^{\prime} \subseteq z\left(G_{+}\left(x^{\prime}, y, z^{\prime}\right) \rightarrow z^{\prime}=x^{\prime}\right)$, and so, by Lemma $2.3(1), z^{\prime} \in \mathbb{W}_{1}$. Given $y \in \mathbb{W}_{1}$ we have, by induction hypothesis, that $\forall x^{\prime} \subseteq x \forall z^{\prime} \subseteq z\left(G_{+}\left(x^{\prime}, y, z^{\prime}\right) \rightarrow z^{\prime} \in \mathbb{W}_{1}\right)$. Let us prove that $y 0 \in \mathbb{W}_{1} \rightarrow$ $\forall x^{\prime} \subseteq x \forall z^{\prime} \subseteq z\left(G_{+}\left(x^{\prime}, y 0, z^{\prime}\right) \rightarrow z^{\prime} \in \mathbb{W}_{1}\right)$. Assuming $y 0 \in \mathbb{W}_{1}$, by Lemma 2.1 (1), (14), (15) and Definition $2.2(7)$ and (8) we have $y \neq \epsilon$. If $x^{\prime}=\epsilon$, then $G_{+}\left(x^{\prime}, y 0, z^{\prime}\right) \rightarrow z^{\prime}=y 0$ and so $z^{\prime} \in \mathbb{W}_{1}$. If $x^{\prime} \neq \epsilon$ then $G_{+}\left(x^{\prime}, y 0, z^{\prime}\right)$ implies that there exists w, u and t such that $z^{\prime}=w \frown u, G_{U}\left(x^{\prime}, u\right), G_{T}\left(x^{\prime}, t\right)$ and $G_{+}(t, y, w)$, where G_{U} and G_{T} are the extended Σ_{1}^{b}-formulas of $\mathcal{L}_{\mathbb{W}}$ assigned to the functions U and T that appear in the definition of $+_{w}$. Provided $x \in \mathbb{W}_{1}$, by Lemma 2.3 (1), $x^{\prime} \in \mathbb{W}_{1}$. Noticing that $t \subseteq x^{\prime}$ (this is a consequence of Proposition 3.1 for T, Lemma 2.1 (16) and (19)) and that $x^{\prime} \subseteq x$ we have, by Lemma 2.1 (18), that $t \subseteq x$. By Lemma 2.1 (19), one has that $w \subseteq z^{\prime}$ and so, by Lemma 2.1 (18), $w \subseteq z$. Thus, by induction hypothesis, $G_{+}(t, y, w) \rightarrow w \in \mathbb{W}_{1}$. Moreover, recalling that $y \neq \epsilon$ and $G_{+}(t, y, w)$, by Proposition 3.1 for $+_{\mathrm{w}}$ and Definition 2.2 (13), (14), one has $w \neq \epsilon . w \in \mathbb{W}_{1} \wedge w \neq \epsilon$ implies, by Lemma $2.3(2), z^{\prime} \in \mathbb{W}_{1}$. Now, let us prove that $\forall x^{\prime} \subseteq x \forall z^{\prime} \subseteq z\left(G_{+}\left(x^{\prime}, y 1, z^{\prime}\right) \rightarrow z^{\prime} \in \mathbb{W}_{1}\right)$. If $x^{\prime}=\epsilon$ then $\forall z^{\prime} \subseteq z\left(G_{+}\left(x^{\prime}, y 1, z^{\prime}\right) \rightarrow\right.$ $z^{\prime}=y 1$), and so $z^{\prime} \in \mathbb{W}_{1}$. If $x^{\prime} \neq \epsilon$, we consider two cases: $G_{U}\left(x^{\prime}, 0\right)$ and $G_{U}\left(x^{\prime}, 1\right)$. In the first case we have $\forall z^{\prime} \subseteq z\left(G_{+}\left(x^{\prime}, y 1, z^{\prime}\right) \rightarrow z^{\prime}=w 1\right)$, where $G_{+}(t, y, w)$ and $G_{T}\left(x^{\prime}, t\right)$. Again, by induction hypothesis, $w \in \mathbb{W}_{1}$, so $z^{\prime} \in \mathbb{W}_{1}$. In the later case we have $\forall z^{\prime} \subseteq z\left(G_{+}\left(x^{\prime}, y 1, z^{\prime}\right) \rightarrow z^{\prime}=s 0\right)$, where $G_{+}(t, y, w), G_{T}\left(x^{\prime}, t\right)$ and $G_{S}(w, s)$. Moreover, by induction hypothesis, $w \in \mathbb{W}_{1}$. Assuming the result for S_{N}, we have that $s \in \mathbb{W}_{1}$. Evoking Proposition 3.1 for S_{w}, Lemma 2.1(15) and Definition $2.2(13),(14)$, one ensures that $s \neq \epsilon$. Consequently, by Lemma $2.3(2)$, $s 0 \in \mathbb{W}_{1}$, i.e. $z^{\prime} \in \mathbb{W}_{1}$. This finishes the proof.

3.3. Main result

Before establish our main result, we present some properties in Σ_{1}^{b}-NIA concerning the formulas involved in the interpretation (σ, ν).

Lemma 3.1. The following assertions are provable in $\Sigma_{1}^{b}-$ NIA:
(1) $G_{U}(x, y) \rightarrow y=\epsilon \vee y=0 \vee y=1, \quad G_{U}(x, 0) \wedge G_{T}(x, y) \leftrightarrow x=y 0$, $G_{U}(x, 1) \wedge G_{T}(x, y) \leftrightarrow x=y 1, G_{U}(x, \epsilon) \leftrightarrow x=\epsilon, x \neq \epsilon \wedge y \neq \epsilon \wedge G_{U}(x, a) \wedge$ $G_{U}(y, b) \wedge G_{+}(x, y, z) \rightarrow\left[\left(a=b \rightarrow G_{U}(z, 0)\right) \wedge\left(a \neq b \rightarrow G_{U}(z, 1)\right)\right] ;$
(2) $G_{+}(x, y, s) \wedge G_{T}\left(s, s^{\prime}\right) \wedge G_{+}\left(x^{\prime}, y^{\prime}, r\right) \wedge G_{T}\left(x, x^{\prime}\right) \wedge G_{T}\left(y, y^{\prime}\right) \rightarrow$

$$
\left(\left(G_{U}(x, 1) \wedge G_{U}(y, 1) \rightarrow G_{+}\left(r, 1, s^{\prime}\right)\right) \wedge \neg\left(G_{U}(x, 1) \wedge G_{U}(y, 1) \rightarrow s^{\prime}=r\right)\right)
$$

(3) $\forall x \in \mathbb{W}_{1}\left(G_{T}(x, y) \wedge G_{U}(x, z) \rightarrow y z=x\right)$.

Proof: (1) The first 4 assertions are immediate by Proposition 3.1 for U and T, and Lemma 2.1 (16). Let us prove the last assertion. There are four relevant cases: $a=b=0, a=b=1, a=0 \wedge b=1$ and $a=1 \wedge b=0$. If $a=b=0$ then from $G_{+}(x, y, z)$, using the assertions before, we have $G_{+}\left(x^{\prime} 0, y^{\prime} 0, z\right)$ where $G_{T}\left(x, x^{\prime}\right)$ and $G_{T}\left(y, y^{\prime}\right)$. By Proposition 3.1 for $+_{\mathrm{w}}$ and T we have $z=z^{\prime} 0$, where $G_{+}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. So, we have $G_{U}(z, 0)$. The other cases are analogous.
(2) The proof is easy considering all the possible situations $G_{U}(x, 1) \wedge G_{U}(y, 1)$, $G_{U}(x, 0), G_{U}(y, 0), G_{U}(x, \epsilon)$ and $G_{U}(y, \epsilon)$ and using Lemma 3.1 (1).
(3) This assertion is immediate, using Proposition 3.1 for T, U and considering the cases $x=\epsilon, x=z 0$ and $x=z 1$ - see Lemma 2.1 (16).

Using the abbreviation $x<_{\mathrm{w}} y:=x \leq_{\mathrm{w}} y \wedge x \neq y$, we have the following lemma.

Lemma 3.2. The following is provable in $\Sigma_{1}^{b}-\mathrm{NIA}$:
(1) $\neg x<_{w} x$
(2) $x<_{\mathrm{w}} y \vee y<_{\mathrm{w}} x \vee x=y$
(3) $x<_{\mathrm{w}} y \wedge y<_{\mathrm{w}} z \rightarrow x<_{\mathrm{w}} z$
(4) $G_{S_{\mathrm{w}}}(1 \times x, 1(0 \times x))$
(5) $G_{S_{\mathrm{w}}}(x 0(1 \times y), x 1(0 \times y))$
(6) $x \neq 1 \times x \wedge G_{S_{\mathrm{w}}}(x, y) \rightarrow x \equiv y$
(7) $G_{S_{\mathrm{w}}}(x, y) \rightarrow x<_{\mathrm{w}} y$
(8) $\forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}\left(x<_{\mathrm{w}} y \wedge G_{S_{\mathrm{w}}}(x, z) \rightarrow z \leq_{\mathrm{w}} y\right)$
(9) $x \preceq y \wedge \neg(x \equiv y) \wedge G_{|\cdot| \mathrm{w}}(x, z) \wedge G_{|\cdot| \mathrm{w}}(y, w) \rightarrow z<_{\mathrm{w}} w$
(10) $G_{|\cdot| \mathrm{w}}(x, z) \wedge G_{|\cdot| \mathrm{w}}(y, w) \rightarrow(z=w \leftrightarrow x \equiv y)$
(11) $x \leq_{\mathrm{w}} y \rightarrow x z \leq_{\mathrm{w}} y z$
(12) $G_{|\cdot| \mathrm{w}}(w, y) \wedge x \leq_{\mathrm{w}} y \rightarrow \exists u \subseteq w G_{|\cdot| \mathrm{w}}(u, x)$
(13) $\forall x \in \mathbb{W}_{1}\left(G_{+_{\mathrm{w}}}(x, 1, y) \rightarrow G_{S_{\mathrm{w}}}(x, y)\right)$
(14) $\forall x \in \mathbb{W}_{1}\left(G_{\cdot \mathrm{w}}(1, x, x) \wedge G_{\cdot \mathrm{w}}(x, 1, x)\right)$
(15) $\forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}\left(G_{+\mathrm{w}}(x, y, z) \wedge G_{+_{\mathrm{w}}}(y, 1, w) \wedge G_{+_{\mathrm{w}}}(z, 1, k) \rightarrow G_{+\mathrm{w}}(x, w, k)\right)$
(16) $\forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}\left(G_{|\cdot| \mathrm{w}}(x, z) \wedge G_{|\cdot| \mathrm{w}}(y, w) \wedge G_{+_{\mathrm{w}}}(z, w, u) \rightarrow G_{|\cdot|_{\mathrm{w}}}(x \frown y, u)\right)$
(17) $a<_{\mathrm{w}} b \leftrightarrow a 1<_{\mathrm{w}} b 0, a<_{\mathrm{w}} b \rightarrow a 0<_{\mathrm{w}} b 1, a \leq_{\mathrm{w}} b \leftrightarrow a 0 \leq_{\mathrm{w}} b 1, a \leq_{\mathrm{w}} b \leftrightarrow$ $a 0 \leq_{\mathrm{w}} b 0, a \leq_{\mathrm{w}} b \leftrightarrow a 1 \leq_{\mathrm{w}} b 1$, being the two last equivalences also valid if we replace \leq_{w} by $<_{\mathrm{w}}$.

Proof: The proof of the first three assertions is done in [6], pp. 49-50.
(4) Proceed by induction on notation on x. The case $x=\epsilon$ is clear. Suppose $G_{S_{\mathrm{w}}}(1 \times x, 1(0 \times x))$. By Definition $2.2(6), 1 \times x 1=(1 \times x) 1$ and by Proposition 3.1 for S_{w}, if $G_{S_{\mathrm{w}}}((1 \times x) 1, z)$ then $z=w 0$ where $G_{S_{\mathrm{w}}}(1 \times x, w)$. By induction hypothesis $w=1(0 \times x)$, and using Definition $2.2(2)$ and (6), $z=(1(0 \times x)) 0=$ $1((0 \times x) 0)=1(0 \times x 1)$. Thus, $G_{S_{\mathrm{w}}}(1 \times x 1,1(0 \times x 1))$. The proof of $G_{S_{\mathrm{w}}}(1 \times x 0$, $1(0 \times x 0))$ is similar because $1 \times x 0=(1 \times x) 1$ and $1(0 \times x 1)=1(0 \times x 0)$.
(5) Proceed again by induction on notation on y. Once more the case $y=\epsilon$ is clear. If $G_{S_{\mathrm{w}}}(x 0(1 \times y 1), z)$ then, noticing that $x 0(1 \times y 1)=x 0((1 \times y) 1)$ $=(x 0(1 \times y)) 1, \quad z=w 0$ where $G_{S_{\mathrm{w}}}(x 0(1 \times y), w)$. By induction hypothesis $w=x 1(0 \times y)$. Thus, $z=(x 1(0 \times y)) 0=x 1((0 \times y) 0)=x 1(0 \times y 1)$. The case $G_{S_{\mathrm{w}}}(x 0(1 \times y 0), x 1(0 \times y 0))$ is similar.
(6) By Lemma 2.1 (24) and the previous item, it is enough to prove that $1 \times(x 0(1 \times y))=1 \times(x 1(0 \times y))$. This uses Lemma $2.1(10),(7)$ and (8) among others.
(7) Consider x, y verifying $G_{S_{\mathrm{w}}}(x, y)$. If $x=1 \times x$ let us prove that $x \preceq y \wedge$ $\neg(x \equiv y) \wedge x \neq y$. Notice that $1 \times y \stackrel{(4)}{=} 1 \times 1(0 \times x) \stackrel{L 2.1(11)}{=} 1 \times(0 \times x) 1 \stackrel{D 2.2(6)}{=}$ $(1 \times(0 \times x)) 1 \stackrel{L 2.1(9)}{=}((1 \times 0) \times x) 1 \stackrel{L 2.1(6)}{=}(1 \times x) 1$. Clearly $1 \times x \subseteq(1 \times x) 1$ and $1 \times x \neq$ $(1 \times x) 1$. Thus, $1 \times x \subseteq 1 \times y \wedge 1 \times x \neq 1 \times y$ (which, in particular, implies $x \neq y$). Hence $x \preceq y \wedge \neg(x \equiv y) \wedge x \neq y$. This entails $x<_{\mathrm{w}} y$. Finally, if $x \neq 1 \times x$ use Lemma 2.1 (24) to prove that $x=z 0(1 \times w)$, for some z and w. By (5), $y=z 1(0 \times w)$. Now, it is easy to check that $x<_{\mathrm{w}} y$.
(8) Consider x, y, z such that $x \in \mathbb{W}_{1} \wedge y \in \mathbb{W}_{1} \wedge x<_{\mathrm{w}} y \wedge G_{S_{\mathrm{w}}}(x, z)$. Let us study two cases: $x=1 \times x$ and $x \neq 1 \times x$. In the first case it can be proved, using induction on notation on x and Definition $2.2(7),(13),(5),(9),(12)$ and (6), that it does not exist w such that $w 0 \subseteq 1 \times x=x\left({ }^{*}\right)$, and so, by hypothesis, we have $x \preceq y \wedge \neg(x \equiv y) \wedge x \neq y$. From $x=1 \times x$, using (4), Lemma 2.1 (11), Definition $2.2(6)$ and Lemma $2.1(9),(6)$, one has $1 \times z=(1 \times x) 1$. Now, noticing that $1 \times x \subseteq 1 \times y$, one has, by Lemma $2.1(22)$, that $1 \times y=(1 \times x) k$ for a certain k. By induction on notation, Lemma 2.1 (1), (19) and Definition $2.2(1),(8),(9)$, it can be proved that $k=\epsilon \vee 0 \subseteq k \vee 1 \subseteq k$. Notice that $k \neq \epsilon$ because $\neg(x \equiv y)$. Moreover, if $0 \subseteq k$ one would have that $1 \times y=(1 \times x) 0 t$ for a certain t and consequently, by Lemma 2.1 (19), $(1 \times x) 0 \subseteq 1 \times y$ - this is not possible, see $\left(^{*}\right)$. Thus $1 \subseteq k$, and so, by Lemma $2.1(20),(1 \times x) 1 \subseteq(1 \times x) k$, i.e. $z \preceq y$. If $z \preceq y \wedge \neg(z \equiv y)$ then $z \leq_{\mathrm{w}} y$. Suppose $z \equiv y$. By (4), $z=1(0 \times x)$.

Noticing that $y \in \mathbb{W}_{1}$ and $y \neq \epsilon$, one has $1 \subseteq y$, and so there exists r such that $y=1 r$. If $r=0 \times x$, then $y=z$, which implies $z \leq_{\mathrm{w}} y$. Otherwise, the existence of t and s such that $r=(0 \times t) 1 s$ and $0 \times t \subseteq 0 \times x \wedge 0 \times t \neq 0 \times x$ can be ensured. By Lemma $2.1(20), 1(0 \times t) \subseteq z$. Notice that $1(0 \times t) 0 \subseteq z$ and $1(0 \times t) 1 \subseteq y$, and so $z \leq_{\mathrm{w}} y$. In the second case, $x \neq 1 \times x$, use Lemma 2.1 (24), in order to prove that $x=u 0(1 \times v)$. Then, by (5), $z=u 1(0 \times v)$. By hypothesis, $x \preceq y \wedge \neg(x \equiv y)$ or $x \neq y \wedge x \equiv y \wedge \exists w \subseteq x(w 0 \subseteq x \wedge w 1 \subseteq y)$. In the first situation, provided that by (6) $x \equiv z$, one has $z \preceq y \wedge \neg(z \equiv y)$. This implies $z \leq_{\mathrm{w}} y$. In the second situation, let us take $w \subseteq x$ such that $w 0 \subseteq x \wedge w 1 \subseteq y$. There exist k, k^{\prime} such that $x=w 0 k=u 0(1 \times v)$ and $y=w 1 k^{\prime}$. By Lemma 2.1 (19), $w 0 \subseteq u 0(1 \times v)$ and consequently, by induction on notation, $w 0 \subseteq u 0$. Then, by Definition 2.2 (8), (10), one has $w=u$ or $w 0 \subseteq u$. If $w=u$, then $z=w 1(0 \times v)$. Noticing that $y \equiv x \equiv z$ and $y=w 1 k^{\prime}$, one can prove that $z \leq_{\mathrm{w}} y$. If $w 0 \subseteq u$ then $w 0 \subseteq u \subseteq z$. Noticing that $w 1 \subseteq y$, one has $z \leq_{\text {w }} y$.
(9) and (10) are immediate by [6], p. 67 (in [6] the function $|\cdot|_{\text {w }}$ is denoted by $l h)$.
(11) Consider that $x \leq_{w} y$. By definition of \leq_{w}, we have three possible cases: $x \preceq y \wedge \neg(x \equiv y), x \equiv y \wedge \exists w \subseteq x(w 0 \subseteq x \wedge w 1 \subseteq y)$ and $x=y$. In the first case we have $1 \times x \subseteq 1 \times y$ and $\neg(x \equiv y)$. Moreover, $1 \times x z \stackrel{L 2.1(11)}{=}$ $1 \times z x \stackrel{L 2.1(10)}{=}(1 \times z)(1 \times x)$ and, analogously, $1 \times y z=(1 \times z)(1 \times y)$. Notice that $1 \times x \subseteq 1 \times y \xrightarrow{L 2.1(20)}(1 \times z)(1 \times x) \subseteq(1 \times z)(1 \times y)$. Thus $1 \times x z \subseteq 1 \times y z$, i.e. $x z \preceq y z$. If $1 \times x z=1 \times y z$ then $(1 \times x)(1 \times z)=(1 \times y)(1 \times z)$ and by Lemma $2.1(3)$, $1 \times x=1 \times y$, which is false because $\neg(x \equiv y)$. And so $x z \preceq y z \wedge \neg(x z \equiv y z)$, which implies $x z \leq_{\mathrm{w}} y z$. In the second case, $1 \times x=1 \times y \xrightarrow{\text { L2.1(19),D2.2(1) }} 1 \times x \subseteq$ $1 \times y \wedge 1 \times y \subseteq 1 \times x \xrightarrow{L 2.1(20)}(1 \times z)(1 \times x) \subseteq(1 \times z)(1 \times y) \wedge(1 \times z)(1 \times y) \subseteq(1 \times z)(1 \times x)$ $\xrightarrow{L 2.1(11),(10)} 1 \times x z \subseteq 1 \times y z \wedge 1 \times y z \subseteq 1 \times x z \xrightarrow{L 2.1(17)} 1 \times x z=1 \times y z \rightarrow x z \equiv y z$. We also have that $\exists w \subseteq x(w 0 \subseteq x \wedge w 1 \subseteq y)$. Take such a w. By Lemma 2.1 (19), $x \subseteq x z$. From Lemma 2.1 (18), one has $w 0 \subseteq x z$. In a similar way prove $w 1 \subseteq y z$. Consequently, $x z \leq_{\mathrm{w}} y z$. The third case is trivial.
(12) Proof done in [6], pp. 67-68.
(13) Use Lemma 2.1 (16) to ensure that $x=\epsilon \vee \exists z(z 0=x \vee z 1=x)$. All the cases are straightforward.
(14) It is a consequence of Proposition 3.1, for.$_{\mathrm{w}}$ and $+_{\mathrm{w}}$, together with Lemma 2.1 (1).
(15) Fix $x \in \mathbb{W}_{1}$. It is possible to prove, by induction on notation on $y \in \mathbb{W}_{1}$, that $\forall y \in \mathbb{W}_{1} \forall x^{\prime} \subseteq x \exists z \preceq b_{+}\left(x^{\prime}, y\right) \exists w \preceq b_{+}(y, 1) \exists k \preceq b_{+}(z, 1) \quad\left(G_{+}\left(x^{\prime}, y, z\right) \wedge\right.$ $\left.G_{+}(y, 1, w) \wedge G_{+}(z, 1, k) \wedge G_{+}\left(x^{\prime}, w, k\right)\right)$. Note that, by Proposition 3.1, it is enough to prove this assertion. The case $y=\epsilon$ is clear. The case $y 0 \in \mathbb{W}_{1}$ is easy, considering the three possibilities $G_{U}\left(x^{\prime}, \epsilon\right), G_{U}\left(x^{\prime}, 0\right)$ and $G_{U}\left(x^{\prime}, 1\right)$. The case $y 1$ (the only that requires the induction hypothesis) is also done considering the cases $G_{U}\left(x^{\prime}, \epsilon\right), G_{U}\left(x^{\prime}, 0\right)$ and $G_{U}\left(x^{\prime}, 1\right)$. In the last two cases use Lemma 3.2 (13) and note that if $x^{\prime} \subseteq x$ and $G_{T}\left(x^{\prime}, \bar{x}\right)$ then $\bar{x} \subseteq x^{\prime} \wedge x^{\prime} \subseteq x$. So by Lemma 2.1 (18), $\bar{x} \subseteq x$ and we can apply the induction hypothesis to \bar{x}.
(16) It is enough to prove that Σ_{1}^{b}-NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \exists z \preceq b_{|.|}(x)$ $\exists w \preceq b_{|.|}(y) \exists u \preceq b_{+}(z, w)\left(G_{|\cdot|}(x, z) \wedge G_{|\cdot|}(y, w) \wedge G_{+}(z, w, u) \wedge G_{|\cdot|}(x \frown y, u)\right)$ - see Proposition 3.1. Fix $x \in \mathbb{W}_{1}$. The proof is by induction on notation on $y \in \mathbb{W}_{1}$. The case $y=\epsilon$ is clear. The step cases are immediate by the definition of $|.|_{w}$ and Lemma 3.2 (13), (15).
(17) The proof is easy using the definition of \leq_{w} and $<_{w}$.

Theorem 3.1. S_{2}^{1} is interpretable in Σ_{1}^{b}-NIA.
Proof: According to the definition of interpretability between theories and using Proposition 3.2, to prove that S_{2}^{1} is interpretable in Σ_{1}^{b}-NIA we have to prove that all axioms of S_{2}^{1} translated by I are valid in $\Sigma_{1}^{b}-$ NIA. Notice that I is the translation associated with (σ, ν), presented in Remark 3.1. We analyse the translation of the basic axioms in the following order: $1,2,3,4,6,7,8,9,11$, $12,14,16,17,21,22,23,24,25,19,26,28,29,27,5,10,13,15,18,20,30,31$ and 32 .

By Proposition 3.1, to each $f \in$ PTIME we assign a formula G_{f} which in particular verifies Σ_{1}^{b}-NIA $\vdash \forall \bar{x} \exists^{1} z G_{f}(\bar{x}, z)$. To improve readability in this proof, we sometimes adopt the following abbreviation: for any formula A of $\mathcal{L}_{\mathbb{W}}$, and for any term $\bar{t}, A(f(\bar{t}))$ abbreviates $\forall z\left(G_{f}(\bar{t}, z) \rightarrow A(z)\right)$. Namely, for terms \bar{t} and $s, f(\bar{t})=s$ abbreviates $\forall z\left(G_{f}(\bar{t}, z) \rightarrow z=s\right)$. Moreover, $\Sigma_{1}^{b}-$ NIA \vdash $\left(\forall y\left(G_{f}(\bar{x}, y) \rightarrow y=z\right)\right) \leftrightarrow G_{f}(\bar{x}, z)$. Therefore one may consider, modulo equivalence, that $f(\bar{t})=s$ abbreviates $G_{f}(\bar{t}, s)$. In some cases we use infix notation. For instance $x \# y=z$ abbreviates $G_{\#}(x, y, z)$.

We have to prove that:

1) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I\left(\forall x \forall y\left(y \leq_{\mathrm{N}} x \rightarrow y \leq_{\mathrm{N}} S_{\mathrm{N}} x\right)\right)$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}$ $\left(y \leq_{\mathrm{w}} x \rightarrow \forall z\left(G_{S_{\mathrm{w}}}(x, z) \rightarrow y \leq_{\mathrm{w}} z\right)\right)$, which is equivalent to prove that $\Sigma_{1}^{b}-$ NIA \vdash $\forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall z\left(y \leq_{\mathrm{w}} x \wedge G_{S_{\mathrm{w}}}(x, z) \rightarrow y \leq_{\mathrm{w}} z\right)$. The result is immediate using Lemma 3.2 (7) and (3).
2) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x(x \neq S x))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \exists y\left(G_{S}(x, y) \wedge x \neq y\right)$. This is a consequence of Proposition 3.1 and Lemma 3.2 (7).
3) $\Sigma_{1}^{b}-$ NIA $\vdash I(\forall x(0 \leq x))$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1}\left(\epsilon \leq_{\mathrm{w}} x\right)$. If $x=\epsilon$, the result is trivial. If $x \neq \epsilon$ then by Definition 2.2 (4), Lemma 2.1 (19), (1), (5) and (15) one has $\epsilon \preceq x \wedge \neg(\epsilon \equiv x)$ and so one has $\epsilon \leq_{\mathrm{w}} x$.
4) $\Sigma_{1}^{b}-$ NIA $\vdash I(\forall x \forall y(x \leq y \wedge x \neq y \leftrightarrow S x \leq y))$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1}$ $\forall y \in \mathbb{W}_{1}\left(x \leq_{\mathrm{w}} y \wedge x \neq y \leftrightarrow \forall z\left(G_{S}(x, z) \rightarrow z \leq_{\mathrm{w}} y\right)\right)$. Apply Lemma 3.2 (8) to prove the direct implication. To the other implication i.e. to prove that $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \exists z\left(\left(G_{S}(x, z) \rightarrow z \leq_{\mathrm{w}} y\right) \rightarrow\left(x \leq_{\mathrm{w}} y \wedge x \neq y\right)\right)$, consider $x, y \in \mathbb{W}_{1}$ and z such that $G_{S}(x, z)$ (given by Proposition 3.1). If $z \leq_{\mathrm{w}} y$ (the only case to study) then note that $z=y \vee z<_{\mathrm{w}} y$. If $z=y$ use Lemma 3.2 (7). If $z<_{w} y$ use Lemma 3.2 (7) and (3).
5) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y(y \leq x \vee x \leq y))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}$ ($y \leq_{\mathrm{w}} x \vee x \leq_{\mathrm{w}} y$). Immediately by Lemma 3.2 (2).
6) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y(x \leq y \wedge y \leq x \rightarrow x=y))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1}$ $\forall y \in \mathbb{W}_{1}\left(x \leq_{\mathrm{w}} y \wedge y \leq_{\mathrm{w}} x \rightarrow x=y\right)$. The proof is straightforward by Lemma 3.2 (3) and (1).
7) $\Sigma_{1}^{b}-$ NIA $\vdash I(\forall x \forall y \forall z(x \leq y \wedge y \leq z \rightarrow x \leq z))$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1}$ $\forall y \in \mathbb{W}_{1} \forall z \in \mathbb{W}_{1}\left(x \leq_{\mathrm{w}} y \wedge y \leq_{\mathrm{w}} z \rightarrow x \leq_{\mathrm{w}} z\right)$. If $x=y$ or $y=z$ then the result is clear. Otherwise $x<_{\mathrm{w}} y \wedge y<_{\mathrm{w}} z$ and the result follows from Lemma 3.2 (3).
8) $\quad \Sigma_{1}^{b}-\mathrm{NIA} \vdash I(|0|=0)$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall y\left(G_{|\cdot| \mathrm{w}}(\epsilon, y) \rightarrow y=\epsilon\right)$. This is immediate attending to the definition of $|\cdot|_{\mathrm{w}}$ and to Proposition 3.1.
9) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(|S 0|=S 0)$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall y \forall z\left(G_{S}(\epsilon, y) \wedge G_{\mid .}(y, z) \rightarrow z=y\right)$. The result is immediate using the definitions of S_{w} and $|\cdot|_{\mathrm{w}}$ together with Lemma 2.1 (1).
10) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y(x \leq y \rightarrow|x| \leq|y|))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}$ $\forall z \forall w\left(x \leq_{\mathrm{w}} y \wedge G_{|\cdot|}(y, z) \wedge G_{|\cdot|}(x, w) \rightarrow w \leq_{\mathrm{w}} z\right)$. Given x, y, z, w such that $x, y \in$ \mathbb{W}_{1} and $x \leq_{\mathrm{w}} y \wedge G_{|.|}(y, z) \wedge G_{|\cdot|}(x, w)$. From $x \leq_{\mathrm{w}} y$, we have that $x \preceq y \wedge \neg(x \equiv y)$ or $x \equiv y$. In the first case, Lemma 3.2 (9) entails $w<_{\mathrm{w}} z$ and so we have $w \leq_{\mathrm{w}} z$. In the second case, Lemma 3.2 (10) ensures that $w=z$ and so $w \leq_{\mathrm{w}} z$.
11) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall y(0 \# y=S 0))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall y \in \mathbb{W}_{1} \forall z \forall w\left(G_{S}(\epsilon, z) \wedge\right.$ $\left.G_{\#}(\epsilon, y, w) \rightarrow w=z\right)$. Noticing that $G_{S}(\epsilon, z)$ implies $z=1$ and $G_{\#}(\epsilon, y, w):=$ $w=1 \frown((0 \times \epsilon) \times y)$, the result follows immediately from Definition $2.2(4)$, Lemma 2.1 (4) and Definition 2.2 (1).
12) $\quad \Sigma_{1}^{b}-$ NIA $\vdash I(\forall x \forall y(x \# y=y \# x))$, i.e. $\quad \Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}$ $\forall z \forall w\left(G_{\#}(y, x, z) \wedge G_{\#}(x, y, w) \rightarrow w=z\right)$. It is enough to prove that $\Sigma_{1}^{b}-$ NIA \vdash $\forall x \in \mathbb{W}_{1} \quad \forall y \in \mathbb{W}_{1}(1 \frown((0 \times x) \times y)=1 \frown((0 \times y) \times x))$. By Lemma $2.1(9)$, $1 \frown((0 \times x) \times y)=1 \frown(0 \times(x \times y))$. By Lemma $2.1(7)$, we have $1 \frown(0 \times(x \times y))=$ $1 \frown(0 \times(y \times x))$. Again by Lemma $2.1(9), \quad 1 \frown(0 \times(y \times x))=1 \frown((0 \times y) \times x)$. Thus $1 \frown((0 \times x) \times y)=1 \frown((0 \times y) \times x)$.
13) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y \forall z(|x|=|y| \rightarrow x \# z=y \# z))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1}$ $\forall y \in \mathbb{W}_{1} \forall z \in \mathbb{W}_{1} \exists v \exists w\left(\left(G_{|\cdot|}(y, v) \wedge G_{|.|}(x, w) \rightarrow w=v\right) \rightarrow 1 \frown((0 \times x) \times z)=\right.$ $1 \frown((0 \times y) \times z))$. Suppose $x, y, z \in \mathbb{W}_{1}$. Let v, w be such that $G_{|\cdot|}(y, v)$ and $G_{|.|}(x, w)$. We have to prove that whenever one has $w=v$ we have $1 \frown((0 \times x) \times z)=$ $1 \frown((0 \times y) \times z)$. Lemma $3.2(10)$, implies $x \equiv y$, i.e. $1 \times x=1 \times y$. Then from Lemma $2.1(12)$, we have $0 \times x=0 \times y$. Therefore $1 \frown((0 \times x) \times z)=1 \frown((0 \times y) \times z)$.
14) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y(x+y=y+x))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}$ $\forall z \forall w\left(G_{+}(y, x, z) \wedge G_{+}(x, y, w) \rightarrow w=z\right)$. Take $x \in \mathbb{W}_{1}$. It is enough to prove, by induction on notation on $y \in \mathbb{W}_{1}$, that $\forall y \in \mathbb{W}_{1} \forall x^{\prime} \subseteq x \exists z \preceq b_{+}\left(y, x^{\prime}\right) \exists w \preceq$ $b_{+}\left(x^{\prime}, y\right)\left(G_{+}\left(y, x^{\prime}, z\right) \wedge G_{+}\left(x^{\prime}, y, w\right) \wedge w=z\right)$ - see Proposition 3.1. The case $y=\epsilon$ is clear. For the step cases use the definition of $+_{w}$ and the induction hypothesis applied to v such that $G_{T}\left(x^{\prime}, v\right)$. Notice that $v \subseteq x$.
15) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x(x+0=x))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y\left(G_{+}(x, \epsilon, y) \rightarrow y=x\right)$. Immediate by definition of $+_{w}$.
16) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y(x+S y=S(x+y)))$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}$ $\forall z \forall w \forall v\left(G_{+}(x, y, z) \wedge G_{S}(z, w) \wedge G_{S}(y, v) \rightarrow G_{+}(x, v, w)\right)$. This is a consequence of Lemma 3.2 (13) and (15).
17) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y \forall z((x+y)+z=x+(y+z)))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1}$ $\forall y \in \mathbb{W}_{1} \forall z \in \mathbb{W}_{1} \forall w \forall k \forall u\left(G_{+}(y, z, w) \wedge G_{+}(x, w, k) \wedge G_{+}(x, y, u) \rightarrow G_{+}(u, z, k)\right)$. The proof is done, by induction on notation on $z \in \mathbb{W}_{1}$ over the following assertion: $\forall z \in \mathbb{W}_{1} \forall x^{\prime} \subseteq x \forall y^{\prime} \subseteq y \exists w \preceq b_{+}\left(y^{\prime}, z\right) \exists k \preceq b_{+}\left(x^{\prime}, w\right) \exists u \preceq b_{+}\left(x^{\prime}, y^{\prime}\right)$ $\left(G_{+}\left(y^{\prime}, z, w\right) \wedge G_{+}\left(x^{\prime}, w, k\right) \wedge G_{+}\left(x^{\prime}, y^{\prime}, u\right) \wedge G_{+}(u, z, k)\right)$ and it uses two facts $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ which result from Lemma 3.2 (15) and Theorem 3.1 (21):
$(*) \Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall z \forall w \forall k\left(G_{+}(1, y, z) \wedge G_{+}(x, z, w) \wedge G_{+}(x, 1, k)\right.$ $\left.\rightarrow G_{+}(k, y, w)\right)$
$(* *) \Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall z \forall w \forall k\left(G_{+}(x, y, z) \wedge G_{+}(1, z, w) \wedge G_{+}(1, x, k)\right.$ $\left.\rightarrow G_{+}(k, y, w)\right)$.

The case $z=\epsilon$ is clear. Suppose, by induction hypothesis, that we have the above assertion for an arbitrary $z \in \mathbb{W}_{1}$ and suppose $z 0 \in \mathbb{W}_{1}$. Being $x^{\prime} \subseteq x$
and $y^{\prime} \subseteq y$ we want to prove that $\exists w^{\prime} \preceq b_{+}\left(y^{\prime}, z 0\right) \exists k^{\prime} \preceq b_{+}\left(x^{\prime}, w^{\prime}\right) \exists u^{\prime} \preceq b_{+}\left(x^{\prime}, y^{\prime}\right)$ $G_{+}\left(y^{\prime}, z 0, w^{\prime}\right) \wedge G_{+}\left(x^{\prime}, w^{\prime}, k^{\prime}\right) \wedge G_{+}\left(x^{\prime}, y^{\prime}, u^{\prime}\right) \wedge G_{+}\left(u^{\prime}, z 0, k^{\prime}\right)$. Consider $w^{\prime}, k^{\prime}, u^{\prime}$ such that $G_{+}\left(y^{\prime}, z 0, w^{\prime}\right) \wedge G_{+}\left(x^{\prime}, w^{\prime}, k^{\prime}\right) \wedge G_{+}\left(x^{\prime}, y^{\prime}, u^{\prime}\right)$. Suppose that $G_{+}\left(u^{\prime}, z 0, r\right)$. We want to prove that $r=k^{\prime}$. The cases $x^{\prime}=\epsilon$ or $y^{\prime}=\epsilon$ are easily verified. Here we study the case $x^{\prime}, y^{\prime} \neq \epsilon$. By definition of $+_{\mathrm{w}}$, we have $r=a \frown b$, where $G_{T}\left(u^{\prime}, s\right), G_{+}(s, z, a)$ and $G_{U}\left(u^{\prime}, b\right)$. We consider the three possible situations: a) $G_{U}\left(x^{\prime}, 1\right) \wedge G_{U}\left(y^{\prime}, 1\right)$, b) $G_{U}\left(x^{\prime}, 0\right) \wedge G_{U}\left(y^{\prime}, 0\right)$, c) not in the previous cases. In situation a), by Lemma 3.1 (1) and (2), considering that $G_{T}\left(x^{\prime}, \bar{x}\right), G_{T}\left(y^{\prime}, \bar{y}\right)$, $G_{+}(\bar{x}, \bar{y}, \bar{u})$ and $G_{+}(\bar{u}, 1, c)$ we have $r=d \frown 0$, with $G_{+}(c, z, d)$. By Theorem 3.1 (21) (already verified), $G_{+}(1, \bar{u}, c)$ and so, using fact (${ }^{* *}$), $r=e \frown 0$, where $G_{+}(\bar{u}, z, l)$ and $G_{+}(1, l, e)$. By induction hypothesis applied to \bar{x} and \bar{y}, we have $G_{+}(\bar{x}, h, l)$, where $G_{+}(\bar{y}, z, h)$, and again by Theorem $3.1(21)$ we have $r=f \cap 0$, where $G_{+}(l, 1, f)$. So, by definition of $+_{\mathrm{w}}, G_{+}\left(x^{\prime}, h 1, r\right)$. Provided $G_{U}\left(y^{\prime}, 1\right)$, we have $G_{+}\left(x^{\prime}, m, r\right)$ where $G_{+}\left(y^{\prime}, z 0, m\right)$. Analogously, we also conclude that in situations b) and c) one obtains $G_{+}\left(x^{\prime}, m, r\right)$, where $G_{+}\left(y^{\prime}, z 0, m\right)$. By hypothesis, we have $G_{+}\left(y^{\prime}, z 0, w^{\prime}\right)$ and $G_{+}\left(x^{\prime}, w^{\prime}, k^{\prime}\right)$ and so $m=w^{\prime}$ and $r=k^{\prime}$. The case $z 1$ is analogous to the case $z 0$. Use the definition of $+_{\mathrm{w}}$, consider the situations a), b) and c) as before, use the Lemma 3.1 (1) and (2), the fact (*), Theorem 3.1 (21) (already verified), Lemma 3.2 (15) and the induction hypothesis. This finishes the proof.
25) $\quad \Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y \forall z(x+y \leq x+z \leftrightarrow y \leq z))$, i.e. $\quad \Sigma_{1}^{b}-$ NIA \vdash $\forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall z \in \mathbb{W}_{1}\left(\forall w \forall k\left(G_{+}(x, z, w) \wedge G_{+}(x, y, k) \rightarrow k \leq_{\mathrm{w}} w\right) \leftrightarrow y \leq_{\mathrm{w}} z\right)$. First we need some facts:

Fact 3.1. $\quad \Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall a \in \mathbb{W}_{1} \forall b \in \mathbb{W}_{1} \forall c\left(G_{+}(a, b, c) \wedge b \neq \epsilon \rightarrow a<_{\mathrm{w}} c\right) . \square$
Fix $a \in \mathbb{W}_{1}$. To prove this fact we show, by induction on notation on $b \in \mathbb{W}_{1}$, that $\forall b \in \mathbb{W}_{1} \forall a^{\prime} \subseteq a \exists c \preceq b_{+}\left(a^{\prime}, b\right)\left(G_{+}\left(a^{\prime}, b, c\right) \wedge\left(b \neq \epsilon \rightarrow a^{\prime}<_{\mathrm{w}} c\right)\right)$, or simplifying $\forall b \in \mathbb{W}_{1} \forall a^{\prime} \subseteq a\left(b \neq \epsilon \rightarrow a^{\prime}<_{\mathrm{w}} a^{\prime}+b\right)$. The case $b=\epsilon$ is clear. For $b 0 \in \mathbb{W}_{1}$, fix $a^{\prime} \subseteq a$. We want to prove that $a^{\prime}<_{\mathrm{w}} a^{\prime}+b 0$. If $a^{\prime}=\epsilon$ the result is clear. If $a^{\prime} \neq \epsilon$, then $a^{\prime}+b 0=\left(T\left(a^{\prime}\right)+b\right) U\left(a^{\prime}\right)$. Notice that $T\left(a^{\prime}\right) \subseteq a$. Therefore, by induction hypothesis, $T\left(a^{\prime}\right)<_{\mathrm{w}} T\left(a^{\prime}\right)+b$. Consequently, by Lemma 3.2 (17), we have that $T\left(a^{\prime}\right) \frown U\left(a^{\prime}\right)<_{\mathrm{w}}\left(T\left(a^{\prime}\right)+b\right) U\left(a^{\prime}\right)$. By Lemma $3.1(3), T\left(a^{\prime}\right) U\left(a^{\prime}\right)=a^{\prime}$, so $a^{\prime}<_{\mathrm{w}} a^{\prime}+b 0$. For $b 1$ proceed in a similar way.

Fact 3.2. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall a \in \mathbb{W}_{1} \forall b \in \mathbb{W}_{1} \forall c \in \mathbb{W}_{1} \forall d \forall e\left(G_{+}(b, c, d) \wedge G_{+}(a, c, e)\right.$ $\rightarrow(e \neq d \leftrightarrow a \neq b))$. \square

The direct implication is immediate. The other implication is done by induction on notation on $c \in \mathbb{W}_{1}$. Fix $a, b \in \mathbb{W}_{1}$ such that $a \neq b$ and prove that
$\forall c \in \mathbb{W}_{1} \forall a^{\prime} \subseteq a \forall b^{\prime} \subseteq b \exists d \preceq b_{+}\left(b^{\prime}, c\right) \exists e \preceq b_{+}\left(a^{\prime}, c\right)\left(G_{+}\left(b^{\prime}, c, d\right) \wedge G_{+}\left(a^{\prime}, c, e\right) \wedge\right.$ $\left(a^{\prime} \neq b^{\prime} \rightarrow e \neq d\right)$). In an abridged manner, $\forall c \in \mathbb{W}_{1} \forall a^{\prime} \subseteq a \forall b^{\prime} \subseteq b\left(a^{\prime} \neq b^{\prime} \rightarrow\right.$ $a^{\prime}+c \neq b^{\prime}+c$). The case $c=\epsilon$ is clear. For $c 0 \in \mathbb{W}_{1}$ we want to prove that $\forall a^{\prime} \subseteq a \forall b^{\prime} \subseteq b\left(a^{\prime} \neq b^{\prime} \rightarrow a^{\prime}+c 0 \neq b^{\prime}+c 0\right)$. Fix $a^{\prime} \subseteq a$ and $b^{\prime} \subseteq b$ such that $a^{\prime} \neq b^{\prime}$. If $a^{\prime}=\epsilon$ or $b^{\prime}=\epsilon$ the result is immediate considering that $a^{\prime} \neq b^{\prime}$ and using Fact 3.1. Let us study the case $a^{\prime} \neq \epsilon$ and $b^{\prime} \neq \epsilon$. We have $a^{\prime} \neq b^{\prime} \xrightarrow{\text { L3.1(3) }}$ $T\left(a^{\prime}\right) U\left(a^{\prime}\right) \neq T\left(b^{\prime}\right) U\left(b^{\prime}\right) \rightarrow T\left(a^{\prime}\right) \neq T\left(b^{\prime}\right) \vee U\left(a^{\prime}\right) \neq U\left(b^{\prime}\right)$. Noticing that $T\left(a^{\prime}\right) \subseteq a^{\prime}$ and $T\left(b^{\prime}\right) \subseteq b^{\prime}$ one has
i) $T\left(a^{\prime}\right) \neq T\left(b^{\prime}\right) \xrightarrow{I \cdot H .} T\left(a^{\prime}\right)+c \neq T\left(b^{\prime}\right)+c \xrightarrow{L 3.2(17)}\left(T\left(a^{\prime}\right)+c\right) U\left(a^{\prime}\right) \neq$

$$
\left(T\left(b^{\prime}\right)+c\right) U\left(b^{\prime}\right) \xrightarrow{P 3.1 \text { for }}+\mathrm{w} a^{\prime}+c 0 \neq b^{\prime}+c 0
$$

ii) $U\left(a^{\prime}\right) \neq U\left(b^{\prime}\right) \xrightarrow{D 2.2(12)}\left(T\left(a^{\prime}\right)+c\right) U\left(a^{\prime}\right) \neq\left(T\left(b^{\prime}\right)+c\right) U\left(b^{\prime}\right) \xrightarrow{P 3.1 \text { for }+w}$ $a^{\prime}+c 0 \neq b^{\prime}+c 0$.
In any case $a^{\prime}+c 0 \neq b^{\prime}+c 0$. The case $c 1$ is similar to the one above. The only difference is that while using the definition of $+_{\mathrm{w}}$, we have to consider four situations: $G_{U}\left(a^{\prime}, 0\right), G_{U}\left(a^{\prime}, 1\right), G_{U}\left(b^{\prime}, 0\right)$ and $G_{U}\left(b^{\prime}, 1\right)$.

To prove 25), fix $y \in \mathbb{W}_{1}$ and $z \in \mathbb{W}_{1}$ and prove, by induction on notation on $x \in \mathbb{W}_{1}$, that $\forall x \in \mathbb{W}_{1} \forall y^{\prime} \subseteq y \forall z^{\prime} \subseteq z \exists w \preceq b_{+}\left(z^{\prime}, x\right) \exists k \preceq b_{+}\left(y^{\prime}, x\right)\left(G_{+}\left(z^{\prime}, x, w\right) \wedge\right.$ $\left.G_{+}\left(y^{\prime}, x, k\right) \wedge\left(k \leq_{\mathrm{w}} w \leftrightarrow y^{\prime} \leq_{\mathrm{w}} z^{\prime}\right)\right)$, which is enough by Proposition 3.1 and Theorem 3.1 (21) already verified. This is equivalent to prove that $\forall x \in \mathbb{W}_{1} \forall y^{\prime} \subseteq y$ $\forall z^{\prime} \subseteq z\left(y^{\prime}+x \leq_{\mathrm{w}} z^{\prime}+x \leftrightarrow y^{\prime} \leq_{\mathrm{w}} z^{\prime}\right)$. The case $x=\epsilon$ is clear. Given $x 0 \in \mathbb{W}_{1}$, fix $y^{\prime} \subseteq y, z^{\prime} \subseteq z$. We want to prove that $y^{\prime}+x 0 \leq_{\mathrm{w}} z^{\prime}+x 0 \leftrightarrow y^{\prime} \leq_{\mathrm{w}} z^{\prime}$. If $y^{\prime}=\epsilon$ and $z^{\prime}=\epsilon$ the result is trivial. If $y^{\prime}=\epsilon$ but $z^{\prime} \neq \epsilon$ then $\epsilon \leq{z^{\prime}}^{\text {F3.1,TM3.1(3) }} x 0<x 0+z^{\prime}$ $\stackrel{T 3.1(21)}{\leftrightarrow} x 0<z^{\prime}+x 0$. If $y^{\prime} \neq \epsilon$ and $z^{\prime}=\epsilon$ then $y^{\prime} \leq z^{\prime}$ does not hold (because one would have $y^{\prime} \leq \epsilon$ but also by Theorem 3.1 (3) $\epsilon \leq y^{\prime}$, therefore by Theorem 3.1 (7) $y^{\prime}=\epsilon$). For $y^{\prime} \neq \epsilon \wedge z^{\prime} \neq \epsilon$, consider two cases:
a) $U\left(y^{\prime}\right)=U\left(z^{\prime}\right) \vee\left(U\left(y^{\prime}\right)=0 \wedge U\left(z^{\prime}\right)=1\right)$
b) $U\left(y^{\prime}\right)=1 \wedge U\left(z^{\prime}\right)=0$.

In case a), $y^{\prime}+x 0 \leq_{\mathrm{w}} z^{\prime}+x 0 \xrightarrow{P 3.1} \xrightarrow{\text { for }} \mathrm{w}_{\mathrm{w}}\left(T\left(y^{\prime}\right)+x\right) U\left(y^{\prime}\right) \leq_{\mathrm{w}}\left(T\left(z^{\prime}\right)+x\right) U\left(z^{\prime}\right)$ $\stackrel{L 3.2(17)}{\leftrightarrow} T\left(y^{\prime}\right)+x \leq_{\mathrm{w}} T\left(z^{\prime}\right)+x \stackrel{I \cdot H .}{\leftrightarrow} T\left(y^{\prime}\right) \leq_{\mathrm{w}} T\left(z^{\prime}\right) \stackrel{L 3.2(17)}{\longleftrightarrow} T\left(y^{\prime}\right) U\left(y^{\prime}\right) \leq_{\mathrm{w}} T\left(z^{\prime}\right) U\left(z^{\prime}\right)$ $\stackrel{L 3.1(3)}{\leftrightarrow} y^{\prime} \leq_{\mathrm{w}} z^{\prime}$.

In case b), $y^{\prime}+x 0 \leq_{\mathrm{w}} z^{\prime}+x 0 \stackrel{P 3.1 \stackrel{\text { for }+\mathrm{w}}{\leftrightarrow}}{ }\left(T\left(y^{\prime}\right)+x\right) U\left(y^{\prime}\right) \leq_{\mathrm{w}}\left(T\left(z^{\prime}\right)+x\right) U\left(z^{\prime}\right)$ $\stackrel{L 3.2(17)}{\leftrightarrow} T\left(y^{\prime}\right)+x<_{\mathrm{w}} T\left(z^{\prime}\right)+x \stackrel{I . H, F, F 3.2}{\longleftrightarrow} T\left(y^{\prime}\right)<_{\mathrm{w}} T\left(z^{\prime}\right) \stackrel{L 3.2(17)}{\leftrightarrow} T\left(y^{\prime}\right) 1 \leq_{\mathrm{w}} T\left(z^{\prime}\right) 0$ $\stackrel{L 3.1(3)}{\leftrightarrow} y^{\prime} \leq_{\mathrm{w}} z^{\prime}$.

The case $z 1$ is proved in a similar way, using the definition of $+_{w}$ (this time divided in the cases: $G_{U}\left(y^{\prime}, 0\right) \wedge G_{U}\left(z^{\prime}, 0\right), G_{U}\left(y^{\prime}, 1\right) \wedge G_{U}\left(z^{\prime}, 1\right), G_{U}\left(y^{\prime}, 0\right) \wedge G_{U}\left(z^{\prime}, 1\right)$ and $\left.G_{U}\left(y^{\prime}, 1\right) \wedge G_{U}\left(z^{\prime}, 0\right)\right)$, using Lemma 3.2 (17), Fact 3.2, the induction hypothesis and the following result, whose proof does not involve any special difficulty:

Fact 3.3. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall a \in \mathbb{W}_{1} \forall b \in \mathbb{W}_{1} \forall c\left(G_{S}(b, c) \rightarrow\left(a<_{\mathrm{w}} c \leftrightarrow a \leq_{\mathrm{w}} b\right)\right)$ and $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall a \in \mathbb{W}_{1} \forall b \in \mathbb{W}_{1} \forall c \forall d\left(G_{+}(a, 1, c) \wedge G_{+}(b, 1, d) \rightarrow\left(c \leq_{\mathrm{w}} d \leftrightarrow a \leq_{\mathrm{w}} b\right)\right) . \square$
19) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y(x \leq x+y))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall w$ $\left(G_{+}(x, y, w) \rightarrow x \leq_{\mathrm{w}} w\right)$ or $\quad \Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} x \leq x+y$. This is an immediate consequence of Theorem 3.1 (25) and (3).
26) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x(x \cdot 0=0))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y(G .(x, \epsilon, y) \rightarrow y=\epsilon)$. Immediate by definition of $\cdot \mathrm{w}$.
28) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y(x \cdot y=y \cdot x))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall z \forall k$ $(G .(y, x, z) \wedge G .(x, y, k) \rightarrow k=z)$ or $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} x \cdot y=y \cdot x$. The case $x=\epsilon$ is immediate. If $x \neq \epsilon$ then, by Lemma 2.1 (16), $\exists z(z 0=x \vee z 1=x)$. Fix such a z. We want to prove that $z 0 \cdot y=y \cdot z 0$ and $z 1 \cdot y=y \cdot z 1$. Both assertions can be proved by induction on notation on $y \in \mathbb{W}_{1}$. The reasoning leading to the second one requires Theorem $3.1(24)$ and (21).
29) Σ_{1}^{b}-NIA $\vdash I(\forall x \forall y \forall z(x \cdot(y+z)=(x \cdot y)+(x \cdot z)))$, i.e. Σ_{1}^{b}-NIA \vdash $\forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall z \in \mathbb{W}_{1} \forall w \forall k \forall l \forall r\left(G .(x, z, w) \wedge G .(x, y, k) \wedge G_{+}(k, w, l) \wedge\right.$ $\left.G_{+}(y, z, r) \rightarrow G \cdot(x, r, l)\right)$ or $\forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall z \in \mathbb{W}_{1} x \cdot(y+z)=(x \cdot y)+(x \cdot z)$. By Theorem $3.1(28)$ this is equivalent to prove $\forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall z \in \mathbb{W}_{1}$ $(y+z) \cdot x=(y \cdot x)+(z \cdot x)$. The proof is by induction on $x \in \mathbb{W}_{1}$. The case $x=\epsilon$ is trivial using Theorem 3.1 (28) and (26). For $x 0 \in \mathbb{W}_{1}$, let us prove that $(y \cdot z) \cdot x 0$ $=(y \cdot x 0)+(z \cdot x 0)$. If $y=\epsilon \vee z=\epsilon$ the result is immediate. If $y \neq \epsilon \wedge z \neq \epsilon$ then, noticing that $y+z \neq \epsilon$, we have $(y+z) \cdot x 0 \stackrel{P 3.1 \text { for } \cdot w}{=}((y+z) \cdot x) 0 \stackrel{I H}{=}$ $((y \cdot x)+(z \cdot x)) 0 \stackrel{P 3.1 \text { for }+{ }_{\mathrm{w}}, T, U}{=}(y \cdot x) 0+(z \cdot x) 0 \stackrel{P 3.1 \text { for } \cdot \mathrm{w}}{=}(y \cdot x 0)+(z \cdot x 0)$. For the case $x 1$ the reasoning is analogous to the one above, using in addition Theorem 3.1 (24) and (21).
27) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y(x \cdot(S y)=(x \cdot y)+x))$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}$ $\forall z \forall w \forall k\left(G .(x, y, z) \wedge G_{+}(z, x, w) \wedge G_{S}(y, k) \rightarrow G .(x, k, w)\right)$ or $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1}$ $\forall y \in \mathbb{W}_{1} x \cdot(S y)=(x \cdot y)+x$. Given $x, y \in \mathbb{W}_{1}$ one has $x \cdot(S y) \stackrel{L 3.2(13)}{=} x \cdot(y+1) \stackrel{T 3.1(29)}{=}$ $(x \cdot y)+(x \cdot 1) \stackrel{L 3.2(14)}{=}(x \cdot y)+x$.
5) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x(x \neq 0 \rightarrow 2 \cdot x \neq 0))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1}(x \neq \epsilon \rightarrow$ $\exists y(G .(10, x, y) \wedge y \neq \epsilon))$ or $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1}(x \neq \epsilon \rightarrow 10 \cdot x \neq \epsilon)$. For $x \in \mathbb{W}_{1}$ such that $x \neq \epsilon$ one has $10 \cdot x \stackrel{T 3.1(28)}{=} x \cdot 10 \stackrel{P 3.1 \text { for } \cdot \mathrm{w}}{=}(x \cdot 1) 0 \stackrel{\text { L3.2(14) }}{=} x 0 \stackrel{D 2.2(13)}{\neq} \epsilon$.
10) Σ_{1}^{b}-NIA $\vdash I(\forall x(x \neq 0 \rightarrow|2 \cdot x|=S(|x|) \wedge|S(2 \cdot x)|=S(|x|)))$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1}\left(x \neq \epsilon \rightarrow \forall y \forall z \forall w \forall v \forall u \forall k\left(G_{|\cdot|}(x, y) \wedge G_{S}(y, z) \wedge G .(10, x, w) \wedge\right.\right.$ $\left.\left.G_{|\cdot|}(w, v) \wedge G_{S}(w, u) \wedge G_{|\cdot|}(u, k) \rightarrow v=z \wedge k=z\right)\right)$ or $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1}(x \neq \epsilon \rightarrow$ $|10 \cdot x|=S(|x|) \wedge|S(10 \cdot x)|=S(\mid x) \mid)$. Given $x \in \mathbb{W}_{1}$ such that $x \neq \epsilon$, one has that $10 \cdot x=x 0$ - this uses Theorem 3.1 (28), Proposition 3.1 for $\cdot \mathrm{w}$ and Lemma 3.2 (14). Then, by Proposition 3.1 for $|\cdot|_{\mathrm{w}}$ and S_{w}, the result is immediate.
20) Σ_{1}^{b}-NIA $\vdash I(\forall x \forall y(x \leq y \wedge x \neq y \rightarrow S(2 \cdot x) \leq 2 \cdot y \wedge S(2 \cdot x) \neq 2 \cdot y))$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}\left(x \leq_{\mathrm{w}} y \wedge x \neq y \rightarrow \forall z \forall w \forall v(G \cdot(10, y, z) \wedge G \cdot(10, x, w) \wedge\right.$ $\left.\left.G_{S}(w, v) \rightarrow v \leq_{\mathrm{w}} z \wedge v \neq z\right)\right)$ or $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}(x<y \rightarrow S(10 \cdot x)<$ $10 \cdot y$). Notice that, whenever $x \neq \epsilon$, one has $10 \cdot x=x 0$ (see proof of item 10). If $x=\epsilon$ then $\epsilon<y \xrightarrow{L 3.2(17)} \epsilon 1<y 0 \xrightarrow{L 2.1(1)} 1<y 0 \xrightarrow{P 3.1} \xrightarrow{\text { for }} S_{\mathrm{w}} S(\epsilon)<y 0$. Thus $\epsilon<y \rightarrow$ $S(10 \cdot \epsilon)<10 \cdot y$. If $x \neq \epsilon$ the statement is a trivial consequence of Lemma 3.2 (17), attending to Proposition 3.1 for $S_{\text {w }}$.
13) $\Sigma_{1}^{b}-$ NIA $\vdash I(\forall x \forall y(|x \# y|=S(|x| \cdot|y|)))$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}$ $\forall z \forall w \forall k \forall r \forall u \forall v\left(G_{|\cdot|}(x, z) \wedge G_{|\cdot|}(y, w) \wedge G .(z, w, k) \wedge G_{S}(k, r) \wedge G_{\#}(x, y, u) \wedge\right.$ $\left.G_{|.|}(u, v) \rightarrow v=r\right)$. We mean $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}|1 \frown((0 \times x) \times y)|=$ $S(|x| \cdot|y|)$. We have $1 \times((0 \times x) \times y) \stackrel{L 2.1(9)}{=} 1 \times(0 \times(x \times y)) \stackrel{L 2.1(8)}{=} 1 \times((x \times y) \times 0)$ $\stackrel{L 2.1(9)}{=} 1 \times(x \times(y \times 0)) \stackrel{L 2.1(6)}{=} 1 \times(x \times y)$. Noticing that $(0 \times x) \times y \equiv x \times y \xrightarrow{L 2.1(13)}$ $1 \frown((0 \times x) \times y) \equiv 1 \frown(x \times y) \xrightarrow{L 2.1(11)} 1 \frown((0 \times x) \times y) \equiv(x \times y) 1 \xrightarrow{L 3.2(10)}|1 \frown((0 \times x) \times y)|$ $=\left.|(x \times y) 1| \xrightarrow{P 3.1} \xrightarrow{\text { for }}|\cdot|\right|_{\mathrm{w}}|1 \frown((0 \times x) \times y)|=S(|x \times y|)$, we just need to prove that $|x \times y|=|x| \cdot|y|$. We proceed by induction on $y \in \mathbb{W}_{1}$. The case $y=\epsilon$ is clear. For $y 0$ we have $|x \times y 0| \stackrel{D 2.2(5)}{=}|(x \times y) \frown x| \stackrel{L 3.2(16)}{=}|x \times y|+|x| \stackrel{I H}{=}(|x| \cdot|y|)+|x| \stackrel{T 3.1(29)}{=}$ $|x| \cdot(|y|+1) \stackrel{L 3.2(13)}{=}|x| \cdot S(|y|) \stackrel{P 3.1}{=} \stackrel{\text { for }|\cdot| \mathrm{w}}{=}|x| \cdot|y 0|$. The case $y 1$ is analogous. This finishes the proof.
15) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x(x \neq 0 \rightarrow 1 \#(2 \cdot x)=2(1 \# x) \wedge 1 \#(S(2 \cdot x))=2(1 \# x)))$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \forall z\left(x \neq \epsilon \wedge G\right.$. $\left.\left.\left.(10, x, y) \wedge G_{S}(y, z) \rightarrow x\right), 1 \frown((0 \times 1) \times z)\right)\right)$ or $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1}(x \neq \epsilon \rightarrow(10 \cdot(1 \frown((0 \times 1) \times x))=1 \frown((0 \times 1) \times(10 \cdot x)) \wedge$ $10 \cdot(1 \frown((0 \times 1) \times x))=1 \frown((0 \times 1) \times(S(10 \cdot x)))))$. Given $x \in \mathbb{W}_{1}$ such that $x \neq \epsilon$, let us prove the two equalities above. Note that $10 \cdot(1 \frown((0 \times 1) \times x)) \stackrel{L 2.1(6)}{=}$ $10 \cdot(1 \frown(0 \times x)) \stackrel{T 3.1(28)}{=}(1 \frown(0 \times x)) \cdot 10 \stackrel{P 3.1 \text { for } \cdot w}{=}((1 \frown(0 \times x)) \cdot 1) \frown 0 \stackrel{L 3.2(14)}{=}$ $(1 \frown(0 \times x)) \frown 0 \stackrel{L 2.1(2)}{=} 1 \frown((0 \times x) \frown 0) \stackrel{D 2.2(5)}{=} 1 \frown(0 \times x 0)$. Now, for the first equality, just notice that $1 \frown(0 \times x 0) \stackrel{L 3.2(14)}{=} 1 \frown(0 \times(x \cdot 1) \frown 0)^{P 3.1} \stackrel{\text { for }}{=}{ }^{*} 1 \frown(0 \times(x \cdot 10))$ $\stackrel{T 3.1(28)}{=} 1 \frown(0 \times(10 \cdot x)) \stackrel{L 2.1(6)}{=} 1 \frown((0 \times 1) \times(10 \cdot x))$. To establish the other equality
$1 \frown(0 \times x 0) \stackrel{D 2.2(5),(6)}{=} 1 \frown(0 \times x 1) \stackrel{L 3.2(14)}{=} 1 \frown(0 \times(x \cdot 1) \frown 1)^{P 3.1 \text { for } S_{\mathrm{w}}} 1 \frown(0 \times S((x \cdot 1) \frown 0))$ $\stackrel{P 3.1 \text { for } \cdot \mathrm{w}}{=} 1 \frown(0 \times S(x \cdot 10)) \stackrel{T 3.1(28)}{=} 1 \frown(0 \times S(10 \cdot x)) \stackrel{L 2.1(6)}{=} 1 \frown((0 \times 1) \times S(10 \cdot x))$.
18) Σ_{1}^{b}-NIA $\vdash I(\forall x \forall y \forall u \forall v(|x|=|u|+|v| \rightarrow x \# y=(u \# y) \cdot(v \# y)))$, i.e. $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall u \in \mathbb{W}_{1} \forall v \in \mathbb{W}_{1} \exists z \exists w \exists k \exists l\left(\left(G_{|\cdot|}(v, z) \wedge G_{|\cdot|}(u, w) \wedge\right.\right.$ $\left.\left.G_{+}(w, z, k) \wedge G_{|.|}(x, l) \rightarrow l=k\right) \rightarrow G .(1 \frown((0 \times u) \times y), 1 \frown((0 \times v) \times y), 1 \frown((0 \times x) \times y))\right)$ or $\Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall u \in \mathbb{W}_{1} \forall v \in \mathbb{W}_{1}(|x|=|u|+|v| \rightarrow 1 \frown((0 \times x) \times y)=$ $(1 \frown((0 \times u) \times y)) \cdot(1 \times((0 \times v) \times y)))$. First notice that $(*) \Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}$ $(x \neq \epsilon \rightarrow G .(x, 1 \frown(0 \times y), x \frown(0 \times y)))$ can be easily proved by induction on notation on $y \in \mathbb{W}_{1}$. For $y=\epsilon$ use Lemma 3.2 (14). The cases $y 0$ and $y 1$ follow straightforwardly using the axioms that define \times, \frown, the definition of ${ }_{\mathrm{w}}$ and Lemma 2.1 (2). Now, fix $x, y, u, v \in \mathbb{W}_{1} .|x|=|u|+|v| \xrightarrow{L 3.2(16)}|x|=|u \frown v| \xrightarrow{L 3.2(10)}$ $x \equiv u \frown v \xrightarrow{L 2.1(12)} 0 \times x=0 \times(u \frown v) \rightarrow 1 \frown((0 \times x) \times y)=1 \frown((0 \times(u \frown v)) \times y)$. Now, notice that $1 \frown((0 \times(u \frown v)) \times y) \stackrel{L 2.1(9)}{=} 1 \frown(0 \times((u v) \times y)) \stackrel{L 2.1(7)}{=} 1 \frown(0 \times(y \times u v))$ $\stackrel{L 2.1(10)}{=} 1 \frown(0 \times((y \times u)(y \times v))) \stackrel{L 2.1(10)}{=} 1 \frown((0 \times(y \times u)) \frown(0 \times(y \times v))) \stackrel{L 2.1(7)}{=}$ $1 \frown((0 \times(u \times y)) \frown(0 \times(v \times y))) \stackrel{L 2.1(9)}{=} 1 \frown(((0 \times u) \times y) \frown(0 \times(v \times y))) \stackrel{L 2.1(2)}{=}$ $(1 \frown((0 \times u) \times y)) \frown(0 \times(v \times y)) \stackrel{(*)}{=}(1 \frown((0 \times u) \times y)) \cdot(1 \frown(0 \times(v \times y))) \stackrel{L 2.1(9)}{=}$ $(1 \frown((0 \times u) \times y)) \cdot(1 \frown((0 \times v) \times y))$.
30) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I(\forall x \forall y \forall z(S 0 \leq x \rightarrow(x \cdot y \leq x \cdot z \leftrightarrow y \leq z)))$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash$ $\forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall z \in \mathbb{W}_{1}\left(\forall w\left(G_{S}(\epsilon, w) \rightarrow w \leq_{\mathrm{w}} x\right) \rightarrow(\forall k \forall l(G .(x, z, k) \wedge G \cdot(x, y, l)\right.$ $\left.\left.\rightarrow l \leq_{\mathrm{w}} k\right) \leftrightarrow y \leq_{\mathrm{w}} z\right)$) or equivalently, using Theorem 3.1 (28) and Proposition 3.1 for $S_{\mathrm{w}}, \quad \Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1} \forall z \in \mathbb{W}_{1}(1 \leq x \rightarrow(y \cdot x \leq z \cdot x \leftrightarrow y \leq z))$. The proof is by induction on $x \in \mathbb{W}_{1}$. The case $x=\epsilon$ is clear. For $x 0 \in \mathbb{W}_{1}$ we can ensure that $1 \leq x$. If $y=\epsilon$ or $z=\epsilon$ the result is immediate. Otherwise, $y \cdot x 0 \leq z \cdot x 0 \stackrel{P 3.1 \text { for } \cdot \mathrm{w}}{\leftrightarrow}(y \cdot x) 0 \leq(z \cdot x) 0 \stackrel{L 3.2(17)}{\longleftrightarrow} y \cdot x \leq z \cdot x \stackrel{I H}{\leftrightarrow} y \leq z$. For $x 1 \in \mathbb{W}_{1}$ notice that $x=\epsilon$ or $1 \leq x$. The case $x=\epsilon$ is trivial. For $1 \leq x$ $y \leq z \stackrel{I H}{\leftrightarrow} y \cdot x \leq z \cdot x \stackrel{L 3.2(17)}{\longleftrightarrow}(y \cdot x) 0 \leq(z \cdot x) 0 \stackrel{T 3.1(21),(25)}{\longleftrightarrow}(y \cdot x) 0+y \leq(z \cdot x) 0+y$. But also, $\quad y \leq z \stackrel{T 3.1(25)}{\longleftrightarrow}(z \cdot x) 0+y \leq(z \cdot x) 0+z$. Thus, by Theorem 3.1 (8), $y \leq z \rightarrow(y \cdot x) 0+y \leq(z \cdot x) 0+z$ and so $y \leq z \rightarrow y \cdot x 1 \leq z \cdot x 1$. The other implication is proved by contraposition. The reasoning is similar to the one above, but it also uses Lemma 2.1 (3) and Theorem 3.1 (7). This finishes the proof.
31) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I\left(\forall x\left(x \neq 0 \rightarrow|x|=S\left(\left|\left\lfloor\frac{1}{2} x\right\rfloor\right|\right)\right)\right)$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash \forall x \in \mathbb{W}_{1} \forall y \forall z$ $\forall w \forall k\left(x \neq \epsilon \wedge G_{\left\lfloor\frac{1}{2} \cdot\right\rfloor}(x, y) \wedge G_{|.|}(y, z) \wedge G_{S}(z, w) \wedge G_{|.|}(x, k) \rightarrow k=w\right)$ or $\Sigma_{1}^{b}-$ NIA \vdash $\forall x \in \mathbb{W}_{1}\left(x \neq \epsilon \rightarrow|x|=S\left(\left|\left\lfloor\frac{1}{2} x\right\rfloor\right|\right)\right)$. Immediate by Proposition 3.1 for $|.|_{\mathrm{w}}$ and $\left\lfloor\frac{1}{2} \cdot\right\rfloor_{\mathrm{w}}$.
32) $\Sigma_{1}^{b}-\mathrm{NIA} \vdash I\left(\forall x \forall y\left(x=\left\lfloor\frac{1}{2} y\right\rfloor \leftrightarrow(2 \cdot x=y \vee S(2 \cdot x)=y)\right)\right)$, i.e. $\Sigma_{1}^{b}-\mathrm{NIA} \vdash$ $\forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}\left(G_{\left\lfloor\frac{1}{2} \cdot\right\rfloor}(y, x) \leftrightarrow G .(10, x, y) \vee\left(\forall w\left(G \cdot(10, x, w) \rightarrow G_{S}(w, y)\right)\right)\right)$ or $\quad \Sigma_{1}^{b}-$ NIA $\vdash \forall x \in \mathbb{W}_{1} \forall y \in \mathbb{W}_{1}\left(x=\left\lfloor\frac{1}{2} y\right\rfloor \leftrightarrow(10 \cdot x=y \vee S(10 \cdot x)=y)\right)$. Immediate using Theorem 3.1 (28) and Proposition 3.1 for \cdot_{w}, $\left\lfloor\frac{1}{2} \cdot\right\rfloor_{\mathrm{w}}, S_{\mathrm{w}}$.

- Finally, let us study the induction scheme. We want to prove that $\Sigma_{1}^{b}-$ NIA $\vdash I\left(A(0) \wedge \forall x\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right) \rightarrow \forall x A(x)\right)$, with A a Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{N}}$, i.e. $\quad \Sigma_{1}^{b}-$ NIA $\vdash I(A(0)) \wedge \forall x \in \mathbb{W}_{1}\left(I\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right)\right) \rightarrow I(A(x))\right) \rightarrow \forall x \in \mathbb{W}_{1} I(A(x))$, which is equivalent to prove that $\Sigma_{1}^{b}-$ NIA $\vdash I(A)(\epsilon) \wedge \forall x \in \mathbb{W}_{1}\left(\forall z\left(G_{T}(x, z) \rightarrow\right.\right.$ $I(A)(z)) \rightarrow I(A)(x)) \rightarrow \forall x \in \mathbb{W}_{1} I(A)(x)$ (see the definition of I and Proposition 3.1).

First we prove the following facts.
Fact 3.4. The following formulas are equivalent in $\Sigma_{1}^{b}-\mathrm{NIA}$:
a) $\forall y\left(G_{|.|}(w, y) \rightarrow \forall x \leq_{\mathrm{w}} y \varphi(x)\right)$, i.e. $\forall x \leq_{\mathrm{w}}|w| \varphi(x)$
b) $\forall x \subseteq w \forall z\left(G_{|\cdot|}(x, z) \rightarrow \varphi(z)\right)$, i.e. $\forall x \subseteq w \varphi(|x|)$,
where φ is a formula in $\mathcal{L}_{\mathbb{W}}$. \square
Noticing that $x \subseteq w \rightarrow x \preceq w$ (by induction on notation on w) and using Lemma $3.2(9),(10)$, we have that a) implies $b)$. The other implication is straightforward using Lemma 3.2 (12).

Fact 3.5. If A is a Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{N}}$, then $I(A)$ is equivalent, in $\Sigma_{1}^{b}-\mathrm{NIA}$, to an extended Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$.

The proof of this fact is by induction on the complexity of the formula A. We assume \rightarrow defined, as usually, based on \neg and \vee.

If A is an atomic formula in $\mathcal{L}_{\mathbb{N}}$, we have $A:=t_{1}=t_{2}$ or $A:=t_{1} \leq t_{2}$, where t_{1}, t_{2} are terms of $\mathcal{L}_{\mathbb{N}}$.

If no function symbols occur in the terms, i.e. they are just variables or the constant 0 , then $I(A):=t_{1}^{\prime}=t_{2}^{\prime}$ or $I(A):=t_{1}^{\prime} \leq_{\mathrm{w}} t_{2}^{\prime}$, where $t_{i}^{\prime}=t_{i}$ if t_{i} is a variable and $t_{i}^{\prime}=\epsilon$ if t_{i} is the constant $0(i=1,2)$. In both cases $I(A)$ is an extended Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$. Note that $I(A)$ is also an extended Π_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$ (this is used later on while studying the negation case).

If there are n function symbols occurring in A then $I(A)$ is equivalent to a formula of the form $\forall y_{1} \ldots \forall y_{n}\left(G_{1}\left(\ldots, y_{1}\right) \wedge \ldots \wedge G_{n}\left(\ldots, y_{n}\right) \rightarrow B\right)$, where B is the atomic formula $a=b$ or $a \leq_{\mathrm{w}} b$, with a and b variables or the constant ϵ, and G_{i} 's are the extended Σ_{1}^{b}-formulas of $\mathcal{L}_{\mathbb{W}}$ assign by ν to the functions symbols of $\mathcal{L}_{\mathbb{N}}$ in A. By Proposition 3.1, we know that $I(A)$ is equivalent to $\exists y_{1} \preceq b_{1}(\ldots) \ldots \exists y_{n} \preceq b_{n}(\ldots)\left(G_{1}\left(\ldots, y_{1}\right) \wedge \ldots \wedge G_{n}\left(\ldots, y_{n}\right) \wedge B\right)$, so $I(A)$ is equivalent to an extended Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$. Notice that this is also equivalent to
the formula $\forall y_{1} \preceq b_{1}(\ldots) \ldots \forall y_{n} \preceq b_{n}(\ldots)\left(G_{1}\left(\ldots, y_{1}\right) \wedge \ldots \wedge G_{n}\left(\ldots, y_{n}\right) \rightarrow B\right)$ which is an extended Π_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$.

If A and B are formulas in $\mathcal{L}_{\mathbb{N}}$ such that $I(A)$ and $I(B)$ are equivalent to extended Σ_{1}^{b}-formulas in $\mathcal{L}_{\mathbb{W}}$, then $I(A \wedge B)$ and $I(A \vee B)$ are respectively $I(A) \wedge I(B)$ and $I(A) \vee I(B)$, which are equivalent to extended Σ_{1}^{b}-formulas in $\mathcal{L}_{\mathbb{W}}$.

If $A:=\forall x \leq|t| B(x)$, such that $I(B)$ is equivalent to an extended Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$, then $I(A)$ is the formula $\forall x \in \mathbb{W}_{1}(I(x \leq|t|) \rightarrow I(B)(x))$. Suppose that t has no function symbols, otherwise the result is similar just adding $\forall y_{i}^{\prime} s$ and $G_{i}^{\prime} s$. So, $I(A)$ has the form $\forall x \in \mathbb{W}_{1}\left(\forall y\left(G_{|\cdot|}(t, y) \rightarrow x \leq_{\mathrm{w}} y\right) \rightarrow I(B)(x)\right)$. This is equivalent to $\forall y\left(G_{|\cdot|}(t, y) \rightarrow \forall x \leq_{\mathrm{w}} y\left(x \in \mathbb{W}_{1} \rightarrow I(B)(x)\right)\right)$, which by Fact 3.4, is equivalent to $\forall x \subseteq t \forall z\left(G_{|\cdot|}(x, z) \rightarrow\left(z \in \mathbb{W}_{1} \rightarrow I(B)(z)\right)\right)$. Now using Proposition 3.1 the formula above can be rewritten as $\forall x \subseteq t \exists z \preceq b_{|.|}(x)\left(G_{|.|}(x, z) \wedge\left(z \in \mathbb{W}_{1}\right.\right.$ $\rightarrow I(B)(z)))$ which by its turn is equivalent to an extended Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$. Note that it is also equivalent to $\forall x \subseteq t \forall z \preceq b_{|\cdot|}(x)\left(G_{|\cdot|}(x, z) \rightarrow\left(z \in \mathbb{W}_{1} \rightarrow I(B)(z)\right)\right)$.

If $A:=\exists x \leq|t| B(x)$ such that $I(B)$ is equivalent to an extended Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$, then the proof is similar to the previous case. One just need to prove the following analogue of Fact 3.4: in $\Sigma_{1}^{b}-$ NIA, $\forall y\left(G_{|\cdot|}(w, y) \rightarrow \exists x \leq_{\mathrm{w}} y \varphi(x)\right)$ is equivalent to $\exists x \subseteq w \forall z\left(G_{|\cdot|}(x, z) \rightarrow \varphi(z)\right)$.

Consider $A:=\neg B$, for B a formula of $\mathcal{L}_{\mathbb{N}}$ where all quantifications are sharply bounded. By the remarks we have been doing along the proof $I(B)$ is equivalent to an extended Π_{1}^{b}-formula. Now noticing that the negation of an extended Π_{1}^{b}-formula is equivalent to an extended Σ_{1}^{b}-formula, we finish this case.

Consider now the case $A:=\exists x \leq t B(x)$, where $I(B)$ is equivalent to an extended Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$. If t is a variable or the constant 0 then $I(\exists x \leq t B(x)):=\exists x \in \mathbb{W}_{1}\left(x \leq_{\mathrm{w}} t^{\prime} \wedge I(B)(x)\right)$, where $t^{\prime}=t$ or $t^{\prime}=\epsilon$ respectively. This formula is equivalent to $\exists x \preceq t^{\prime}\left(x \in \mathbb{W}_{1} \wedge x \leq_{\mathrm{w}} t^{\prime} \wedge I(B)(x)\right)$ which, noticing that $x \leq_{\mathrm{w}} t^{\prime}$ is here an abbreviation of a sw.q. formula, is equivalent to an extended Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$. If t has function symbols, use Proposition 3.1 to deal with the quantifications and the formulas G_{f} we have to introduce. This finishes the proof of Fact 3.5.

Now, to prove in Σ_{1}^{b}-NIA the translation of the induction scheme, suppose that we have $I(A)(\epsilon)$ and $\forall x \in \mathbb{W}_{1}\left(\forall z\left(G_{T}(x, z) \rightarrow I(A)(z)\right) \rightarrow I(A)(x)\right)$. We want to prove that $\forall x \in \mathbb{W}_{1} I(A)(x)$. Taking $x=y 0 \in \mathbb{W}_{1}$ we get $I(A)(y) \rightarrow I(A)(y 0)$. For $x=y 1 \in \mathbb{W}_{1}$ we have $I(A)(y) \rightarrow I(A)(y 1)$. Putting all together it comes $I(A)(\epsilon) \wedge \forall y \in \mathbb{W}_{1}\left[I(A)(y) \rightarrow\left(\left(y 0 \in \mathbb{W}_{1} \rightarrow I(A)(y 0)\right) \wedge I(A)(y 1)\right)\right]$. By Fact 3.5, we know that $I(A)$ is equivalent to an extended Σ_{1}^{b}-formula in $\mathcal{L}_{\mathbb{W}}$, so applying Lemma 2.4 to that formula, we have that $\forall x \in \mathbb{W}_{1} I(A)(x)$.

ACKNOWLEDGEMENTS - The first author was supported by a PhD grant from FCT, POCTI/FCT, FEDER and CMAF.

The second author thanks FCT-UNL, CMAF and FCT (grant SFRH/BPD/9455/2002 and project POCI/MAT/61720/2004).

REFERENCES

[1] Buss, S. - Bounded Arithmetic, Bibliopolis, Napoli (1986).
[2] Cantini, A. - Asymmetric interpretations for bounded theories, Mathematical Logic Quarterly, 42 (1996), 270-288.
[3] Enderson, H. - A Mathematical Introduction to Logic, Academic Press (1991).
[4] Fernandes, A. - Investigações em Sistemas de Análise Exequível, Ph.D. Dissertation, Faculdade de Ciências da Universidade de Lisboa (2001).
[5] Fernandes, A. and Ferreira, F. - Groundwork for weak analysis, The Journal of Symbolic Logic, 67(2) (2002), 557-578.
[6] Ferreira, F. - Polynomial Time Computable Arithmetic and Conservative Extensions, Ph.D. Dissertation, Pennsylvania State University (1988).
[7] Ferreira, F. - Polynomial time computable arithmetic, in "Logic and Computation" (W. Sieg, Ed.), Contemporary Mathematics (AMS), vol. 106 (1990), 137-156.
[8] Ferreira, F. - A feasible theory for analysis, The Journal of Symbolic Logic, 59(3) (1994), 1001-1011.
[9] Oliva, P. - Polynomial-time algorithms from ineffective proofs, in "LICS", $18^{\text {th }}$ Annual IEEE Symposium on Logic in Computer Science (2003), 128-137.
[10] Strahm, T. - Polynomial time operations in explicit mathematics, The Journal of Symbolic Logic, 62(2), 575-594.
[11] Tarski, A.; Mostowski, A. and Robinson, R. - Undecidable Theories, NorthHolland Publishing Company, third printing (1971).
[12] Yamazaki, T. - Reverse mathematics and weak systems of 0-1 strings for feasible analysis, in "Reverse Mathematics 2001", (S. Simpson, Ed.), Lecture Notes in Logic 21 (2005).

Gilda Ferreira,
CMAF - Universidade de Lisboa, 1649-003 Lisboa - PORTUGAL E-mail: gildafer@cii.fc.ul.pt
and
Isabel Oitavem,
Dept. Matemática da FCT-UNL and CMAF-UL,
PORTUGAL
E-mail: isarocha@ptmat.fc.ul.pt

