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AN ORLIK–SOLOMON TYPE ALGEBRA FOR MATROIDS

WITH A FIXED LINEAR CLASS OF CIRCUITS

Raul Cordovil and David Forge

Abstract: A family CL of circuits of a matroid M is a linear class if, given a mod-

ular pair of circuits in CL, any circuit contained in the union of the pair is also in CL.

The pair (M, CL) can be seen as a matroidal generalization of a biased graph.

We introduce and study an Orlik–Solomon type algebra determined by (M, CL).

If CL is the set of all circuits of M this algebra is the Orlik–Solomon algebra of M .

1 – Introduction

Let AC = {H1, . . . , Hn} be a central and essential arrangement of hyperplanes

in C
d (i.e, such that

⋂
Hi∈AC

Hi = {0}). The manifold M = C
d \

⋃
H∈AC

H plays

an important role in the Aomoto–Gelfand multivariable theory of hypergeometric

functions (see [9] for a recent introduction from the point of view of arrangement

theory). There is a rank d matroid M := M(AC) on the ground set [n] canonically

determined by AC: a subset D ⊆ [n] is a dependent set of M if and only if

there are scalars ζi ∈ C, i ∈ D, not all nulls, such that
∑

i∈D ζi θHi
= 0, where

θHi
∈ (Cd)∗ denotes a linear form such that Ker(θHi

) = Hi.

Let M be a matroid and M⋆ be its dual. In the following, we suppose that

the ground set of M is [n] := {1, 2, . . . , n} and its rank function is denoted by rM .
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The subscript M in rM will often be omitted. Let C = C(M) be the family of

circuits of M . Let K be a field and E = {e1, . . . , en} be a finite set of order n.

Let
⊕

e∈E Ke be the vector space over K of basis E and E be the graded exterior

algebra
∧ ( ⊕

e∈E Ke
)
, i.e.,

E :=
∑

i=0

Ei = E0(=K) ⊕ E1

(
=

⊕

e∈E

Ke
)
⊕ · · · ⊕ Ei

(
=

i∧(⊕

e∈E

Ke
))

⊕ · · · .

For every linearly ordered subset X = {i1, . . . , im} ⊆ [n], i1 < · · · < im, let eX be

the monomial eX := ei1∧ei2∧· · ·∧eim . By definition set e∅ = 1 ∈ K. Consider the

map ∂ : E→ E , extended by linearity from the “differentials”, ∂ei = 1 for every

ei ∈ E, ∂e∅ = 0 and

∂e
X

= ∂(ei1∧ · · · ∧ eim) =
∑

(−1)j ei1 ∧ · · · ∧ eij−1
∧ eij+1

∧ · · · ∧ eim .

The (graded) Orlik–Solomon K-algebra OS(M) of the matroid M is the quotient

E/ℑ where ℑ denotes the (homogeneous) two-sided ideal of E generated by the

set {
∂eC : C ∈ C(M), |C| > 1

}
∪

{
eC : C ∈ C(M), |C| = 1

}

or equivalently by the set

{
∂eC : C ∈ C(M), |C| > 1

}
∪

{
eC : C ∈ C(M)

}
.

The de Rham cohomology algebra H•
(
M(AC);K

)
is shown to be isomorphic to

the Orlik–Solomon K-algebra of the matroid M(AC), see [6, 7]. We refer to [5] for

a recent discussion on the role of matroid theory in the study of Orlik–Solomon

algebras.

2 – Linear class of circuits

Given a family C of circuits of a matroid M set

H(C) :=
{

H(C)=[n]\C : C ∈ CL

}

be the associated family of hyperplanes of M⋆. We recall that a pair {X, Y } of

subsets of the ground set [n] is a modular pair of M([n]) if

r(X) + r(Y ) = r(X ∪ Y ) + r(X ∩ Y ) .
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Proposition 2.1. Let {C1, C2} be a pair of circuits of M and {H(C1), H(C2)}

be the associated hyperplanes of M⋆. The following four conditions are equivalent:

◦ {C1, C2} is a modular pair of circuits of M ,

◦ {H(C1), H(C2)} is a modular pair of hyperplanes of M⋆,

◦ rM (C1 ∪ C2) = |C1 ∪ C2| − 2,

◦ rM⋆

(
H(C1) ∩ H(C2)

)
= r(M⋆) − 2 (= n−r−2).

Definition 2.2 ([10]). We say that the family of circuits C′, C′⊆C(M), is

a linear class of circuits if, given a modular pair of circuits in C′, all the circuits

contained in the union of the modular pair are also in C′.

In the following we will always denote by CL a linear class of circuits of the

matroid M .

Definition 2.3. We say that the family H of hyperplanes of M is a linear

class of hyperplanes of M if, given a modular pair of hyperplanes in H, all the

hyperplanes of M containing the intersection of the pair are also in H.

The following corollary is a direct consequence of Proposition 2.1 and Defini-

tions 2.2 and 2.3.

Corollary 2.4. The following two assertions are equivalent:

◦ The family C′ is a linear class of circuits of M ;

◦ The set H(C′) is a linear class of hyperplanes of M⋆.

Remark 2.5. The linear class of hyperplanes H(CL) of M⋆ determines a

single-element extension

M⋆([n])
H(CL)
→֒ N⋆

(
[n+1]

)
,

where {n + 1} is in the closure in N⋆([n + 1]) of a hyperplane H of M⋆([n]),

if and only if H ∈ H(CL). Two special cases occur:

◦ If CL = C(M) the element n + 1 is a coloop of N([n + 1]).

◦ If CL = ∅ = H(CL) the element n+1 is a is in general position in N⋆([n+1]).

In the literature N([n + 1]) is called the extended lift of M([n]) (determined

by the linear class of circuits CL).
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Lemma 2.6. Let N = N([n+1]) be the extended lift of M([n]) determined

by the linear class of circuits CL, CL 6= ∅, C(M). Then N has the family of

circuits:

C(N) =





CL ∪ C1 if

∣∣⋃
C∈CL

C
∣∣ − rM

( ⋃
C∈CL

C
)

= n−r−1 ;

CL ∪ C1 ∪ C2 otherwise ,

where

C1 :=
{

C ∪ {n+1} : C ∈ C(M)\CL

}
,

C2 :=
{

C ′ ∪ C ′′ : C ′, C ′′ is a modular pair of C(M)\CL

}
.

Proof: The matroid N⋆([n + 1]) has the family of hyperplanes:

H(N⋆) =





H0 ∪H1 if rM⋆

( ⋂
C∈CL

H(C)
)

= 1 ;

H0 ∪H1 ∪H2 otherwise ,

where

H0 :=
{

H ∪ {n+1} : H ∈ H(CL)
}

,

H1 :=
{

H(C ′) : C ′∈ C(M)\CL

}
,

H2 :=
{

H ′ ∩ H ′′ ∪ {n+1} : H ′, H ′′ is a modular pair of H
(
C(M)\CL

)}
.

3 – A bias algebra

The pair (M, CL) can be seen as a matroidal generalization of the pair (G, CL)

(defining a biased graph) where G is a graph and CL a set of balanced circuits

of G. A biased graph is a graph together with a (linear) class of circuits which

are called balanced. It is a generalisation of signed and gain graphs which are

related to some special class of hyperplane arrangements. In the classical graphic

hyperplane arrangements, a hyperplane has equation of the form xi = xj . In the

“signed graphic” arrangements, the equations can be of the form xi = ±xj . In the

“gain graphic” arrangements, the equations can be of the form xi = gxj (in the

biased case) or of the form xi = xj + g (in the lift case). All these definitions due

to T. Zaslavsky are very natural and produce a nice theory [12, 13] in connection

with graphs, matroids and arrangements. The following bias algebra is close

related to the biased graphs (and its matroidal generalizations).
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Definition 3.1. Let CL be a linear class of circuits of the matroid M([n])

and N =N([n+1]) be the extended lift of M([n]) determined by CL. Let OS(N)

be the Orlik–Solomon K-algebra of the matroid N . The bias K-algebra of the

pair (M, CL), denoted Z(M, CL), is the graded quotient of the Orlik–Solomon

algebra OS(N) by the two-sided ideal generated by en+1, i.e.,

Z(M, CL) := OS(N)/〈en+1〉 .

Remark 3.2 ([11]). This algebra is also known as the Orlik–Solomon al-

gebra of the pointed matroid N , with basepoint n + 1, see [5, Definition 3.2].

If N may be realized by a complex hyperplane arrangement, then Z(M, CL)

is isomorphic to the cohomology ring of the complement of the decone of this

arrangement with respect to the (n+1)st hyperplane, [7, Corollary 3.57].

Two special cases occur when M itself is realizable and CL is either all of C(M)

or the empty set. Indeed, suppose that M is the matroid associated to a complex

hyperplane arrangement A. Then Z(M, C(M)) is isomorphic to the cohomology

of the complement of A (i.e., the Orlik–Solomon algebra of M), and Z(M, ∅)

is isomorphic to the cohomology of the complement of the affine arrangement

attained by translating each of the hyperplanes of A some distance away from

the origin, so that every dependent set will have empty intersection.

Theorem 3.3. The bias K-algebra Z(M, CL) is independent of the order

of the elements of M([n]), i.e., it is an invariant of the pair (M, CL). For every

linear class CL, the algebra Z(M, CL) is isomorphic to the quotient of the exterior

K-algebra

(3.1) E :=
∧( n⊕

i=1

Kei

)

by the two-sided ideal 〈ℑ(CL)〉 generated by the set

ℑ(CL) :=
{

∂eC : C ∈ CL, |C| > 1
}

∪
{

eC : C ∈ C(M)
}

.

Proof: Since the Orlik–Solomon K-algebra OS(N) does not depend of the

ordering of the ground set the first part of the theorem follows. The second

assertion is a straightforward consequence of Lemma 2.6.

As the element en+1 does not appear in the algebra Z(M, CL) we will omit it.

We remark that the monomial eX , X ⊆ [n], in Z(M, CL) is different from zero

if and only if X is an independent set of M .
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Corollary 3.4. The bias K-algebra Z(M, C(M)) is the Orlik–Solomon

K-algebra of OS(M). Furthermore the bias K-algebra Z(M, ∅) is isomorphic

to the quotient of the exterior algebra (3.1) by the two-sided ideal generated by

the set {eC : C ∈ C(M)}.

Definition 3.5. Given an independent set I, a non-loop element x ∈ cl(I)\I

is said to be CL-active in I if C(x, I) (i.e., the unique circuit contained in I ∪ x)

is a circuit of the family CL and x is the smallest element of C(x, I). An inde-

pendent set with at least one CL-active element is said to be CL-active, and

CL-inactive otherwise. We denote by a(I) the smallest CL-active element in an

active independent set I.

Definition 3.6. We say that a subset U ⊆ [n] is a CL-unidependent (set of

M) if it contains a unique circuit C(U) of M , C(U) ∈ CL and |C(U)| > 1.

We say that a CL-unidependent set U is CL-inactive if the minimal element

of C(U), minC(U), is the the smallest CL-active element of the independent set

U\minC(U). Otherwise the set U is said CL-active.

Definition 3.7. For every circuit C∈ CL, |C|>1, the set C \min(C), is said

to be a CL-broken circuit. The family of CL-inactive independents, denoted NBCCL
,

is the family of independent sets of M not containing a CL-broken circuit.

Set

nbcCL
:=

{
eI : I ∈ NBCCL

}
,

bℑ(CL) :=
{

∂eU : U is CL-inactive unidependent
}
∪

{
eD : D is dependent

}
.

Theorem 3.8. The sets nbcCL
and bℑ(CL) are bases, respectively of the bias

K-algebra Z(M, CL) and of the ideal 〈ℑ(CL)〉.

Proof: We will show the two statements at the same time by proving that

both sets are spanning and that they have the correct size. Let I be an indepen-

dent set of M. If I is CL-active then we have

eI =
∑

x∈C(a(I),I)\a(I)

ζx eI∪a(I)\x ,

where ζ(x) ∈ {−1, 1}. This is an expression for eI whit respect to lexicographi-

cally smaller eX where X is an independent of M and |X| = |I|. By induction,

we get that the set nbcCL
is a generator of the graded algebra Z(M, CL).
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Let U be a CL-unidependent set of M . Suppose that U is CL-active and let

a = min C(U) and set I := C(U)\a. Note that {C(U), C(a(I), I)} is a modular

pair of circuits of CL, so every circuit contained in the cycle C(U) ∪ C(a(I), I)

is in CL. From the definition of the map ∂ we know that

∂eU =
∑

x∈C(U)\a

ǫx ∂eU∪a(I)\x ,

where ǫx ∈ {−1, 1}. This is an expression for ∂eU with respect to lexicographically

smaller ∂eX , where X is a CL-unidependent and |U |= |X|. By induction, we get

that the set bℑ(CL) is a generator of 〈ℑ(CL)〉. By the definition of Z(M, CL),

we know that

dim
(
Z(M, CL)

)
+ dim

(
〈ℑ(CL)〉

)
= dim(E) = 2n .

Given a subset X of [n], it is either dependent or independent CL-active or

independent CL-inactive. To every independent CL-active independent set I

corresponds uniquely the unidependent CL-inactive I ∪ a(I). We have then that

∣∣nbcCL
(M)

∣∣ +
∣∣bℑ(CL)

∣∣ = 2n .

We define the deletion and contraction operation for an arbitrary subset of

circuits C′⊆ C(M) setting:

C′\x :=
{

C ∈ C′ : x 6∈ C
}

and

C′/x :=






C′\x if x is a loop of M ,

{
C\x : x ∈ C ∈ C′

}
⊎

{
C ∈ C′ : x 6∈ clM (C)

}
otherwise .

From the preceding definition, we can see that given a circuit C of C′/x, where

x is a non-loop of M , there exists a unique circuit Ĉ ∈ C′ such that

Ĉ :=





C ∪ x if x ∈ clM (C) ,

C otherwise .

Proposition 3.9. Let M be a matroid and CL be a linear class of circuits

of M . For an element x of the matroid, the circuit sets CL\x and CL/x are linear

classes of M\x and M/x, respectively.
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Proof: The statement for the deletion is clear. If x is a loop the result is

also clear for the contraction. Suppose that x is a non-loop of M . If Y ⊆X are

sets such that rM (X) = rM (Y ) + 1 then we have

(3.2) rM/x(X\x) = rM/x(Y \x) + ǫ , ǫ ∈ {0, 1} .

So, if {C1, C2} is a modular pair of circuits of CL/x, {Ĉ1, Ĉ2} is also a modular

pair of circuits of CL. We see also from Equation 3.2 that if C ⊆ C1∪C2 is a

circuit of M/x then Ĉ ⊆ Ĉ1∪ Ĉ2, so Ĉ∈ CL and necessarily C∈ CL/x.

Definition 3.10. For a pair (M, CL) and an element x of M , we define the

deletion and the contraction of the pair (M, CL) by:

(M, CL)\x := (M\x, CL\x)
and

(M, CL)/x := (M/x, CL/x) .

As a corollary of Theorem 3.3 we have:

Proposition 3.11. For every element x of M, there is a unique monomor-

phism of vector spaces,

ix : Z(M, CL)\x → Z(M, CL) ,

such that, for every independent set I of M\x, we have ix(eI) = eI .

Proposition 3.12. For every non-loop element x of M, there is a unique

epimorphism of vector spaces, px : Z(M, CL) → Z(M, CL)/x, such that, for every

subset I = {i1, . . . , iℓ} ⊆ [n],

(3.3) pxeI :=






eI\x if x ∈ I ,

± eI\y if ∃ y ∈ I such that {x, y} ∈ CL ,

0 otherwise .

More precisely the value of the coefficient ±1 in the second case is the sign of the

permutation obtained by replacing y by x in I.

Proof: From Theorem 3.3, it is enough to prove that the map px is well

determined, i.e., for all CL-unidependent U = (i1, . . . , im) set of M , we have

px ∂eU = 0 ∈ ℑ(CL/x) .
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We can also suppose that x is the last element n. Note that if n ∈ U then U\n

is a CL/n-unidependent set of M/n. If n 6∈ U but there is y ∈ U and {n, y} ∈ CL,

we know that eU = ± eU\y∪n in Z(M, CL). Suppose that n 6∈ U and that there

does not exist y ∈ U such that {n, y} ∈ CL. Then it is clear that pn ∂eU = 0.

Suppose that n ∈ U . It is easy to see that

± pn ∂eU =
m−1∑

j=1

eU\{j,n} = 0 .

Finally, if an independent set I of M contains an element y such that {x, y} is

a circuit in CL, we know that there is a scalar χ(I; x, y) ∈ {−1, 1} such that

eI = χ(I; x, y) eI\y∪x. More precisely the value of χ(I; x, y) ∈ {−1, 1} is the sign

of the permutation obtained by replacing y by x in I.

Theorem 3.13. Let M be a loop free matroid and CL be a linear class of

circuits of M . For every element x of M , there is a splitting short exact sequence

of vector spaces

(3.4) 0 → Z(M, CL)\x
ix−→ Z(M, CL)

px
−→ Z(M, CL)/x → 0 .

Proof: From the definitions we know that px◦ ix, is the null map so Im(ix) ⊆

Ker(px). We will prove the equality dim(Ker(pn)) = dim(Im(in)). By a reorder-

ing of the elements of [n] we can suppose that x = n. The minimal CL/n-broken

circuits of M are the minimal sets X such that either X or X ∪ {n} is a

CL-broken circuit of M (see [1, Proposition 3.2.e]). Then

NBCCL/n =
{

X : X ⊆ [n−1] and X∪{n} ∈ NBCCL

}

and we have

(3.5) NBCCL
= NBCCL\n ⊎

{
I ∪ n : I ∈ NBCCL/n

}
.

So dim(Ker(pn)) = dim(Im(in)). There is a morphism of vector spaces

p−1
n : Z(M, CL)/n → Z(M, CL) ,

where, for every I ∈ NBCCL/n, we have p−1
n eI := eI∪n. It is clear that pn ◦ p−1

n is

the identity map. From Equation (3.5) we conclude that the exact sequence (3.4)

splits.
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Remark 3.14. A large class of algebras, the so called χ-algebras (see [4] for

more details), contain the Orlik–Solomon, Orlik–Terao [8] (associated to vectorial

matroids) and Cordovil algebras [3] (associated to oriented matroids). Following

the same ideas it is possible to generalize the definition of the bias algebras and

obtain a class of bias χ-algebras, determined by a pair (M, CL), and that contain

all the mentioned algebras.

Similarly to [4], we now construct, making use of iterated contractions, the

dual basis nbc
∗
CL

of the standard basis nbcCL
. Let Z(M, CL)h be the subspace of

Z(M, CL) generated by the set

{
eX : X is an independent set of M and |X| = h

}
.

We associate to the (linearly ordered) independent set I = (i1, . . . , ih) of M

the linear form on Z(M, CL)h, pI : Z(M, CL)h → K,

(3.6) pI := pei1
◦ pei2

◦ · · · ◦ peih
.

We also associate to the linearly ordered independent I = (i1, . . . , ij) the flag of

its final independent subsets, defined by

{
It : It = (it, . . . , ij), 1 ≤ t ≤ j

}
.

Proposition 3.15. Let I = (i1, . . . , ih) and J = (j1, . . . , jh) be two linearly

ordered independents of M , then we have pI(eJ) 6= 0 if and only if there is a

permutation τ ∈Sh such that for every 1≤ t≤h, jτ(t)∈cl(It) and C(jτ(t), It)∈CL.

When the permutation τ exists, it is unique and we have pI(eJ) = sgn(τ).

In particular we have pI(eI) = 1 for any independent set I.

Proof: The first equivalence is very easy to prove in both directions.

To obtain the expression of pI(eJ) we just need to iterate h times the formula

of contraction of Proposition 3.11. With the definition of the permutation τ we

know that pI(eτ(1) ∧ · · · ∧ eτ(h)) = 1. By the antisymmetric of the wedge product

we also have that eJ = sgn(τ)×eτ(1)∧· · ·∧eτ(h). And finally the last result comes

from the fact that if I = J then clearly τ = id .

Theorem 3.16. The set {pI : I ∈ NBCCL
} is the dual basis of the standard

basis nbcCL
of Z(M, CL).
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Proof: Pick two elements eI and eJ in nbcCL
, |I| = |J | = h. We just need to

prove that pI(eJ) = δIJ (the Kronecker delta). From the preceding proposition

we already have that pI(eI) = 1. Suppose for a contradiction that there exists

a permutation τ such that jτ(t)∈ cl(It) and C(jτ(t), It) ∈ CL for every 1 ≤ t ≤ h.

Suppose that jτ(m+1) = im+1, . . . , jτ(h) = ih and im 6= jτ(m). Then there is a

circuit C ∈ CL such that

im, jτ(m) ∈ C ⊆
{
im, jτ(m), im+1, im+2, . . . , ih

}
.

If jτ(m) < im
[
resp. im < jτ(m)

]
we conclude that I 6∈ NBCCL

[
resp. J 6∈ NBCCL

]
,

a contradiction.

The following corollary is an extension of results of [2], [3] and [4].

Corollary 3.17. Let J = {j1, . . . , jℓ} be an independent set of M such that

the expansion of eJ in nbcCL
is eJ =

∑
I∈nbcCL

ξ(I, J)eI . Then the following are

equivalent:

◦ ξ(I, J) 6= 0 ,

◦ there exists a permutation τ such that eτ(t) ∈ cl(It) and C(jτ(t), It) ∈ CL

for every 1 ≤ t ≤ h. Moreover, in the case where ξ(I, J) 6= 0 we have

ξ(I, J) = sgn(τ).
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