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NORMAL FAMILIES OF HOLOMORPHIC FUNCTIONS

ON INFINITE DIMENSIONAL SPACES
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Abstract: The purpose of the present work is to extend some classical results

of holomorphic functions of one complex variable to holomorphic functions defined on

infinite dimensional spaces. Montel-type and other classical theorems regarding normal

families and exceptional values are established for holomorphic functions of infinitely

many complex variables. This text culminates in a generalization of the classical Schottky

Theorem, from which we derive Montel’s fundamental criterion for normal families with

exceptional values.

1 – Introduction

If E is a locally convex space, always assumed complex and Hausdorff, and U

is a nonvoid open subset of E, let H(U) denote the vector space of all holomorphic

functions f : U → C. Throughout this text, H(U) is endowed with the topology

of uniform convergence on all compact subsets of U , which will be designated by

(H(U), τc).

In this paper we establish infinite dimensional versions of several classical

theorems from the theory of normal families of holomorphic functions of one

complex variable.

In Section 2 we establish an infinite dimensional version of a classical theorem

of Montel on normal families (Montel [7], Section 10). Our result improves earlier

results of Hue and Yue [5] and Kim and Krantz [6]. Several related theorems are

also included in this section.
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Section 3 is devoted to the study of normal families of holomorphic functions

with exceptional values. After giving infinite dimensional versions of the classical

Schottky Theorem and Hurwitz Theorem, we prove an infinite dimensional ver-

sion of a classical theorem of Montel for normal families of holomorphic functions

with exceptional values (Montel [7], Section 32). As an additional application of

our Schottky-type theorem, we prove an infinite dimensional version of the Little

Picard Theorem.

We refer to the books of Dineen [4] or Mujica [8] for background information

on infinite dimensional complex analysis.

2 – Normal families

We designate by C∞ the extended complex plane, that is, C∞= C∪{∞}.

Definition 1. a) A family F ⊂ H(U) is said to be normal if each sequence

in F has a subsequence which converges in (H(U), τc).

b) The family F is called C∞-normal if each sequence in F either admits

a subsequence which converges in (H(U), τc) or admits a subsequence which

diverges to infinity uniformly on each compact subset of U .

Remark 2. Clearly both definitions above coincide when F is bounded at

a fixed point of U .

Next we give a sufficient condition for a family F ⊂ H(U) to be normal.

It extends the classical Montel Theorem (Montel [7], Section 10 or Conway [3],

Theorem VII.2.9) to holomorphic functions on separable locally convex spaces.

Theorem 3. Let E be a separable locally convex space and U ⊂ E a

nonvoid open set. Then every locally bounded family F ⊂ H(U) is normal.

Proof: Since E is separable, there is a subset D = {x1, x2, ...} ⊂ U dense

in U . For each n, let Xn := F(xn). By hypothesis, each Xn is a closed and

bounded subset of C, therefore compact, and according to Tychonoff’s Theorem,

X :=
∏

∞

n=1 Xn is a compact metric space.

Let {fk}
∞

k=1 be a sequence in F . For each k, we denote by xfk the element in X

given by (fk(x1), fk(x2), ...). Thus {xfk}
∞

k=1 is a sequence in X, and therefore
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it admits a convergent subsequence {xfki}
∞

i=1. It will be shown that {fki
}
∞

i=1

converges in (H(U), τc).

Since F is locally bounded and thus equicontinuous, it suffices to prove that

{fki
}
∞

i=1 converges pointwise on all of U . To accomplish this, let y=(y1, y2, ...)∈X

be the limit of {xfki}
∞

i=1, that is, yn = lim
i→∞

fki
(xn). In other words, {fki

}
∞

i=1

converges pointwise at each xn. Finally, let x ∈ U and ε > 0. Since {fki
}
∞

i=1

constitutes an equicontinuous family, there is a neighborhood V ⊂ U of x

such that: ∣∣fki
(x′) − fki

(x)
∣∣ <

ε

3
, ∀x′∈ V, ∀ i .

Since D is dense in U , there is some xn ∈ V . Moreover, {fki
(xn)} is convergent,

so that there exists I such that:

∣∣fki
(xn) − fkj

(xn)
∣∣ <

ε

3
, ∀ i, j ≥ I .

Hence, for i, j ≥ I, we have:

∣∣fki
(x) − fkj

(x)
∣∣ ≤

∣∣fki
(x) − fki

(xn)
∣∣ +

∣∣fki
(xn) − fkj

(xn)
∣∣ +

∣∣fkj
(xn) − fkj

(x)
∣∣

< ε .

Thus {fki
(x)} ⊂ C is a Cauchy sequence, and therefore convergent. The limit

function f is G-holomorphic. Since {fki
} is locally bounded, f is locally bounded

as well, and thus holomorphic.

Separability hypothesis is indeed essential in Theorem 3, as we can see in the

following example, which can be found in [6]:

Example 4. Consider the non-separable Banach space E = ℓ∞ and let

F = BE′ be the closed unit ball in E′. Clearly F is a locally bounded subset

of H(E), but we claim that F is not a normal family.

In fact, let {ϕj}
∞

j=1⊂ F be the sequence of the canonical linear functionals

defined on E by ϕj

(
{ξn}

∞

n=1

)
= ξj . If F were normal, then it would admit a

subsequence which converges in (H(E), τc). However, if {ϕjk
}
∞

k=1 is any subse-

quence, let x = (ξj)
∞

j=1 ∈ E be given by ξjk
= (−1)k for every k and ξj = 0 for

j 6= jk. Then {ϕjk
(x)}

∞

k=1 = {(−1)k}
∞

k=1 is the alternating sequence of scalars

that does not converge, contradiction.

When E is metrizable, Theorem 3 has been stated by Hu and Yue ([5],

Theorem 2.1), but their proof has a gap. The authors claim that if D is a dense
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subset of an open set U then D ∩K is a dense subset of K for each compact set

K ⊂ U . It is very easy to give examples where D ∩ K is empty.

If U is a nonvoid open subset of a locally convex space E, then every locally

bounded family F ⊂ H(U) is relatively compact in (H(U), τc) (see Dineen [4],

Lemma 3.25). We could also prove Theorem 3 by combining the preceding re-

sult with the fact that on F the topology τc coincides with the topology τp of

pointwise convergence at each point of U and also with the topology of pointwise

convergence at each point of the dense sequence D = {xn}. Indeed this shows

that F
τp

is compact and metrizable for τc.

Corollary 5. Let E be a separable metrizable locally convex space and

U ⊂ E a nonvoid open set. Then a family F ⊂ H(U) is normal iff F is bounded

in (H(U), τc).

Proof: If F is bounded in (H(U), τc) and E is metrizable, then F is locally

bounded (see Dineen [4], Example 3.20) and Theorem 3 applies.

Conversely suppose F is normal but fails to be bounded in (H(U), τc).

Then there is a compact set K⊂ U and a sequence {fn} in F such that

sup
x∈K

|fn(x)|>n, ∀n. Since F is normal, {fn} admits a subsequence {fni
} which

converges in (H(U), τc), say to f . But f(K) is compact, and thus bounded.

So there exists M < ∞ such that sup
x∈K

|f(x)| < M . This gives that:

ni < sup
x∈K

∣∣fni
(x)

∣∣ ≤ sup
x∈K

∣∣fni
(x)−f(x)

∣∣ + sup
x∈K

∣∣f(x)
∣∣ , for each i .

By letting i → ∞, we obtain a contradiction.

When E is a Banach space, Corollary 5 has been stated by Kim and Krantz

([6], Theorem 1.8). Corollary 5 follows also from a remark of Boyd and Dineen

([1], p. 34).

The next result on convergence of holomorphic functions extends the Stieltjès

Theorem (Montel [7], Théorème 15).

By a domain in a locally convex space E we mean a connected open subset

U ⊂ E.

Theorem 6. Let E be a separable locally convex space, U ⊂ E a domain,

and let {fn}
∞

n=1 be a sequence which is locally bounded. If {fn}
∞

n=1 converges

pointwise on some nonvoid open set V ⊂ U then {fn}
∞

n=1 converges in (H(U), τc).
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Proof: Let K be a compact subset of U and suppose for the moment that

there exist ε0 > 0, two strictly increasing sequences {mk}
∞

k=1, {nk}
∞

k=1 ⊂ N and

a sequence {xk}
∞

k=1 ⊂ K such that:
∣∣fmk

(xk) − fnk
(xk)

∣∣ > ε0 , ∀ k .

For each k, consider the holomorphic function:

gk := fmk
− fnk

.

Since the sequence {fn}
∞

n=1 is locally bounded, so is the family:

F =
{
gk : k ∈ N

}
,

and therefore F is normal. Hence, there exists a subsequence {gki
}
∞

i=1 which

converges in (H(U), τc), say to a function g. Since the values of gk converge to

zero at each point of V , g is identically zero on V . According to the Identity

Principle (Mujica [8], Proposition 5.7), g is identically zero on all of U . It means

in particular that {gki
(x)}

∞

i=1 converges uniformly to zero on all of K. But this

is a contradiction, for |gk(xk)| > ε0, ∀ k.

An examination of the proof of the Identity Principle established in [8]

for holomorphic mappings defined on Banach spaces shows that it is still true

for holomorphic functions defined on locally convex spaces.

Before extending the following Montel-type theorems (Montel [7], Section 19),

some definitions are needed:

Definition 7. Let F ⊂ H(U) and let V ⊂ U be an open set. The family F

is said to be normal on V if each sequence in F has a subsequence which converges

uniformly on each compact subset of V . In this case, we say that each sequence

in F has a subsequence which converges in (H(V ), τc).

When V = U , this definition simply coincides with the definition of a normal

family.

Definition 8. A family F ⊂ H(U) is said to be normal at a point x0 ∈ U

if there exists an open neighborhood V ⊂ U of x0 where the family is normal.

A family which is normal on an open set U is evidently normal at each of its

points. It will be shown that the converse is also true for separable metrizable

locally convex spaces. Before this theorem is proved, it is necessary to obtain a

further result.
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Theorem 9. Let U be an open subset of a locally convex space E and let

{Vn}
∞

n=1 be a sequence of open sets in U . If a family F ⊂ H(U) is normal on

each Vn then F is normal on
⋃∞

n=1

Vn.

Proof: Consider a sequence {fn}
∞

n=1 ⊂ F . Since F is normal on each Vn,

then in particular {fn} has a subsequence {f
(1)
n } which converges uniformly on

each compact subset of V1. On the one hand {f
(1)
n } has in particular a subse-

quence {f
(2)
n } which is uniformly convergent on each compact subset of V2, and on

the other hand, being a subsequence of {f
(1)
n }, {f

(2)
n } is also uniformly convergent

on each compact subset of V1. Thus {f
(2)
n } converges in (H(V1∪V2), τc). Analo-

gously, {f
(2)
n } admits a subsequence {f

(3)
n } which converges in (H(V1∪V2∪V3), τc).

Proceeding this way, we obtain for each k a subsequence {f
(k)
n } of {f

(k−1)
n } which

converges in (H(V1 ∪ · · · ∪ Vk), τc). It will be shown that the diagonal sequence

{f
(n)
n } converges in

(
H(

⋃∞
n=1

Vn), τc

)
.

Let K be a compact subset of
⋃∞

n=1

Vn. Since
⋃∞

n=1

Vn forms an open cover of K,

we can extract a finite subcover and thus we can write K⊂ V1∪· · ·∪Vk, for some k.

But {f
(n)
n } is, except for the k−1 first terms f

(1)
1 , f

(2)
2 , ..., f

(k−1)
k−1 , a subsequence

of {f
(k)
n }, which converges uniformly on the compact subsets of V1 ∪ · · · ∪ Vk,

whence {f
(n)
n } is uniformly convergent in K. By hypothesis the limit function f

is holomorphic on each Vn. Thus f is holomorphic on
⋃∞

n=1

Vn.

Theorem 10. Let U be an open subset of a separable metrizable locally

convex space E. Then a family F⊂H(U) is normal iff it is normal at each point

of U .

Proof: To prove the nontrivial implication assume F is normal at each point

of U . It means that for each x ∈ U there is an open neighborhood Vx ⊂ U of

x such that F is normal on Vx. Since U =
⋃

x∈U

Vx and every separable metric

space is a Lindelöf space, there exists a countable subcover of
⋃

x∈U

Vx, and thus

U =
⋃∞
n=1

Vxn , and the desired conclusion follows immediately from Theorem 9.

3 – Holomorphic functions with exceptional values

This section is devoted to the study of normal families of holomorphic func-

tions with exceptional values. To prove two of the theorems we will need the follow-

ing extension of the classical Hurwitz Theorem, which result is of interest in itself.
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Theorem 11. Let E be a locally convex space, U ⊂ E a domain, and let

{fn}
∞

n=1 be a sequence in H(U) that converges to f . If each fn never vanishes on U

then either f ≡ 0 or f never vanishes on U .

Proof:

First Case: First assume U convex.

Suppose that there exists x0 ∈ U such that f(x0) = 0. We must show that

f(x) = 0, for all x ∈ U .

For this purpose, let x ∈ U . Define:

Λ :=
{

λ ∈ C : x0 + λ(x−x0) ∈ U
}

.

Since U is convex, the open set Λ is convex as well, and in particular connected,

and then Λ ⊂ C is a domain. For each n, the function:

gn(λ) := fn

(
x0 + λ(x−x0)

)

is holomorphic in Λ and never vanishes. By defining:

g(λ) := f
(
x0 + λ(x−x0)

)
,

we have gn→ g uniformly on compact subsets of Λ. Hence, Hurwitz Theorem for

holomorphic functions of one complex variable (Conway [3], Corollary VII.2.6)

implies that g ≡ 0 or g never vanishes on Λ. But 0 ∈ Λ and g(0) = f(x0) = 0,

and therefore g ≡ 0. In particular, 0 = g(1) = f(x). Since x ∈ U was arbitrary

it follows that f ≡ 0.

General Case: Consider A :=
{
x ∈ U : f(x) = 0

}
.

A is obviously closed. We claim that A is also open. In fact, let a ∈ A and let

V ⊂ U be a convex open neighborhood of a. In particular, {fn} is a sequence of

holomorphic functions on V that converge to f uniformly on compact subsets of

V and that never vanish on V . Since V is convex, it follows from the first case that

either f ≡ 0 on V or f never vanishes on V . But f(a) = 0. Hence f ≡ 0 on V ,

that is, V ⊂ A, and A is open.

Since U is connected and A ⊂ U is open and closed, either A = U or A = ∅.

In other words, either f ≡ 0 or f never vanishes on U .

Definition 12. When a function f omits a value a, we say that a is an

exceptional value of f .
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To begin with, we extend a theorem on functions with an exceptional region

(Montel [7], Section 17). However, Theorem 16 will substantially improve this

result.

Theorem 13. Let E be a separable locally convex space, U ⊂ E a domain

and let F ⊂ H(U). If there exist a ∈ C and m > 0 such that |f(x) − a| > m for

all f ∈ F and for all x ∈ U , then F is C∞-normal.

Proof: Consider the family G of the following functions:

g(x) :=
1

f(x) − a
, with f ∈ F .

Each g ∈ G is holomorphic and their values are bounded by the constant 1/m

on all of U . In particular, G is locally bounded and therefore G is normal.

Now let {fn}
∞

n=1 be a sequence in F . Then the corresponding sequence

{gn}
∞

n=1⊂ G admits a convergent subsequence {gnk
}
∞

k=1, say to a function g.

Since fnk
is always finite, each gnk

never vanishes. Thus, according to Theorem 11,

either g ≡ 0 or g never vanishes on U . If g ≡ 0 then it is easy to see that

fnk
(x) → ∞ uniformly on each compact subset of U ; if g never vanishes then

the function:

f(x) := a +
1

g(x)

is holomorphic on U and fnk
→ f in (H(U), τc).

The main tool used in the proof of the next results is the following extension

of the classical Schottky Theorem. If we denote the open disc and the closed disc

in C respectively by:

∆(z0, R) =
{

z ∈ C : |z − z0| < R
}

,

∆(z0, R) =
{

z ∈ C : |z − z0| ≤ R
}

,

then the classical Schottky theorem asserts that, for each 0<α<∞ and 0<β<1,

there is a constant c(α, β)>0 such that, if f ∈H(∆(0, 1)) is a function that omits

the values 0 and 1, and such that |f(0)| ≤ α, then |f(z)| ≤ c(α, β) for every

z ∈ ∆(0, β). We refer to the books of Carathodory ([2], p. 201) or Saks–Zygmund

([9], p. 348) for this version of the Schottky Theorem.

We remark that there is a misprint in the version of the Schottky Theorem

that appears in the book of Conway ([3], p. 298). The constant β there should
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be strictly less than one. Indeed the functions fρ(z) = (z−ρ)−1, with ρ > 1, give

a counterexample to the statement for β = 1.

Before proving the generalization for locally convex spaces we recall that a

set U ⊂ E is said to be balanced if µx ∈ U for each x ∈ U and each µ ∈ ∆(0, 1).

Theorem 14. For each 0 < α < ∞ and 0 < β < 1, there is a constant

c(α, β) > 0 such that, given a locally convex space E and a balanced open set

U ⊂ E, if f ∈ H(U) is a function that omits the values 0 and 1, and such that

|f(0)| ≤ α, then:

|f(x)| ≤ c(α, β) , ∀x ∈ βU .

Proof: Fix α, β and f in the above conditions. For each x ∈ U , define:

Λx :=
{

λ ∈ C : λx ∈ U
}

.

Since U is balanced each Λx ⊃ ∆(0, 1), and the functions:

gx(λ) := f(λx)

are holomorphic on Λx (and therefore on ∆(0, 1)), omit the values 0 and 1, and

|gx(0)| = |f(0)| ≤ α for all x ∈ U . Hence the classical Schottky theorem can

be applied to yield a constant c(α, β) > 0 such that |gx(λ)| ≤ c(α, β), for all

λ ∈ ∆(0, β) and x ∈ U . In particular,

|f(βx)| = |gx(β)| ≤ c(α, β),

for all x ∈ U , and the theorem is proved.

We can also state the more general form:

Corollary 15. For each 0<α<∞ and 0<β<1, there is a constant c(α, β)

such that, given a locally convex space E and a balanced open set U ⊂ E,

if f ∈ H(x0 + U) is a function that omits the values 0 and 1, and such that

|f(x0)| ≤ α, then:

|f(x)| ≤ c(α, β) , ∀ x ∈ x0 + βU .

Proof: It suffices to consider the function g(x) := f(x0 + x), x ∈ U .

We shall next apply this result to extend a classical theorem of Montel for

normal families with exceptional values (Montel [7], Section 32).
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Theorem 16. Let E be a separable locally convex space and U ⊂ E a

domain. Then every family of holomorphic functions on U which have two distinct

exceptional values a and b is C∞-normal.

Proof: Let F be a family of holomorphic functions on U that omit the

values a and b (we can always assume the exceptional values of the functions in F

are 0 and 1, for replacing, if necessary, each f ∈ F by the function ϕ given by

ϕ(x) := f(x)−a
b−a

, we obtain a family of holomorphic functions that do not assume

the values 0 and 1 which will be equally C∞-normal or not).

Fix a point x0 ∈ U and define the following families:

G :=
{

f ∈ F : |f(x0)| ≤ 1
}

and H :=
{

f ∈ F : |f(x0)| ≥ 1
}

.

It is clear that F = G ∪ H. The proof will be accomplished by showing that

G is normal and that H is C∞-normal.

Since E is separable, Theorem 3 is applied to show the normality of G, so that

it is sufficient to show that G is locally bounded. Thus if a is any point of U ,

let γ be a curve in U from x0 to a and let V0, V1, ..., Vn ⊂ U be open neighbor-

hoods of x0, x1, ..., xn = a, where each xk lies on the trace of γ and Vk = xk + Uk,

Uk being balanced and such that xk + 2Uk ⊂ U for 0 ≤ k ≤ n, and such that

xk−1 and xk are in Vk−1 ∩ Vk for 1 ≤ k ≤ n. It will be shown that G is uniformly

bounded on Vn.

Notice that each function in G is in particular holomorphic on x0 + 2U0,

2 U0 being balanced. Then applying Corollary 15 for each function in G and for

α = 1 and β = 1/2 we obtain a constant c0 := c(α, β) such that |f(x)| ≤ c0, for

all x ∈ V0 and for all f ∈ G. That is, G is uniformly bounded by the constant

c0 on V0. In particular x1 ∈ V0, so that |f(x1)| ≤ c0, for all f ∈ G. Another

application of Corollary 15 for each function in G and for α = c0 and β = 1/2

yields a constant c1 such that G is uniformly bounded on V1 by c1. Proceeding

this way, we get that G is uniformly bounded by a constant cn on Vn, as asserted.

Now to show that H is C∞-normal, we consider the family:

H̃ :=
{

1/f : f ∈ H
}

.

Note that H̃⊂G, and therefore H̃ is normal. Hence, if {fn}
∞

n=1 is a sequence in H,

there is a subsequence {fnk
}
∞

k=1 and a function f ∈ H(U) such that {1/fnk
}
∞

k=1

converges to f . Since each fnk
is always finite, the functions 1/fnk

never vanish.

Thus, according to Theorem 11, either f ≡ 0 or f never vanishes. If f ≡ 0 then

fnk
(x) → ∞ uniformly on compact subsets of U ; if f never vanishes then 1/f is

holomorphic and fnk
→ 1/f in (H(U), τc). This completes the proof.



HOLOMORPHIC FUNCTIONS ON INFINITE DIMENSIONAL SPACES 361

This section concludes by extending the classical Picard Theorem (Conway

[3], Theorem XII.2.3). It should be mentioned that it is easy to derive the next

theorem from the Little Picard Theorem for entire functions of one complex

variable. The proof presented here uses the concept of families of holomorphic

functions with exceptional values as another application of Schottky Theorem.

Theorem 17. If f is an entire function on a locally convex space that do

not reduces to a constant then f assumes each complex number, with one possible

exception.

Proof: Suppose f omits two distinct values a and b. We must show that

f is a constant. (Again, we may assume the exceptional values are 0 and 1, for

replacing, if necessary, the function f by the function ϕ given by ϕ(x) := f(x)−a
b−a

,

we obtain an entire function that does not assume the values 0 and 1, and is

equally constant or not.)

Fix a balanced open neighborhood U ⊂ E of the origin and for each n define

Un := 2nU and fn(x) := f(2nx).

Each fn is an entire function, and in particular holomorphic on 2U . Moreover,

0 and 1 are exceptional values of fn on 2U and fn(0) = f(0), for each n. Thus

applying Theorem 14 for each fn and for α = |f(0)| and β = 1/2, we obtain a

constant C := c(α, β) such that:

|fn(x)| ≤ C ,

for all x ∈ U and for all n.

Finally, each x ∈ E is in some Un, and f assumes on each Un the same values

that fn assumes on U , these last ones being bounded by C. That is, f is bounded

in all of E, so that Liouville Theorem (Mujica [8], Proposition 5.10) implies that

f is a constant.

A glance at the proof of Liouville Theorem established in [8] for holomorphic

mappings defined on Banach spaces shows that it is equally valid for holomorphic

functions defined on locally convex spaces.
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[7] Montel, P. – Leçons sur les Familles Normales de Fonctions Analytiques et leurs

applications, Chelsea Publishing Company, Bronx, New York, 1974.

[8] Mujica, J. – Complex Analysis in Banach Spaces (Leopoldo Nachbin, Ed.), North-
Holland Mathematics Studies, 120 (Notas de Matemática 107), Elsevier Science
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