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Abstract: Let X be a separable Banach space, σ > 0 and Cσ := C([−σ, 0],X) the

Banach space of the continuous functions from [−σ, 0] into X, K a locally closed set in X

and F : [a, b)×Cσ → 2X a closed valued and locally integrable bounded multifunction,

withF (., ϕ) measurable and F (t, .) Lipschitz continuous in the Hausdorff–Pompeiu metric.

In this paper we establish some sufficient conditions in order that, for each τ ∈ [a, b) and

for each ϕ ∈ Cσ with ϕ(0) ∈ K, there exist at least one solution u : [τ−σ, T ] → X of the

differential inclusion u′(t) ∈ F (t, ut), such that uτ = ϕ on [−σ, 0] and u(t) ∈ K for every

t ∈ [τ, T ].

1 – Introduction

Let X be a separable Banach space, σ > 0 and Cσ := C([−σ, 0], X) the Banach

space of the continuous functions from [−σ, 0] into X, endowed with the norm

‖ϕ‖σ := sup{‖ϕ(s)‖; s ∈ [−σ, 0]}. If u ∈ C([τ −σ, T ], X) is a given function then,

for each t ∈ [τ, T ], we define the function ut ∈ Cσ by

ut : [−σ, 0] → X , ut(s) = u(t+ s), for every s ∈ [−σ, 0] .

If K is a given subset in X then we introduce the following set K0 := {ϕ ∈ Cσ;

ϕ(0) ∈ K}.

Let I := [a, b) be given, F : I×Cσ→ 2X a multifunction with nonempty and

closed values and K a nonempty subset in X. We consider the following differ-

ential inclusions

(1.1) u′(t) ∈ F (t, ut) , t ∈ I
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and we are interested in finding sufficient conditions in order for K to be a viable

domain for (1.1) i.e. that for each (τ, ϕ) ∈ I×K0 there exists at least one solution

u : [τ−σ, T ] → X of (1.1) satisfying the initial condition

(1.2) uτ = ϕ

and such that u(t) ∈ K for every t ∈ [σ, T ].

We recall that a continuous function u : [τ−σ, T ] → X, is said to be a solution

of (1.1) and (1.2) if there exists f ∈ L1([τ, T ], X) with f(t) ∈ F (t, ut) a.e. on [τ, T ]

such that

(1.3) u(t) =





ϕ(t− τ) , t ∈ [τ−σ, τ ]

ϕ(0) +

∫ t

τ

f(s) ds , t ∈ [τ, T ] .

The existence of the viable solutions for the differential inclusion (1.1), in the

case in which F is single-valued, were studied by many authors. For result and

references in this framework see [1], [3], [11], [12] and [13].

The first viability result for differential inclusions with memory were given by

Haddad [8], [9] in the case in which F is upper semi-continuous and with convex

compact values and X is a finite dimensional space. The Haddad’s result has

been extended by Syam [14] and Gavioli and Malaguti [6] in the case in which X

is a separable Banach space.

As is well known, any viability result need a tangential conditions in order to

keep the trajectory u(t) inside in K. The tangential conditions use in the papers

mentioned above are given in terms of classical contingent cone (Bouligand–Severi

cone).

The aim of this paper is to established a viable result for non-convex differen-

tial inclusion (1.1) using the same kind of tangential condition that in Duc Ha [7],

accordingly adapted. Also, the construction method for a sequence of approxi-

mate solutions of (1.1), defined on an apriori given interval, is closed to the one

used by Cârjă and Vrabie [4].

2 – Preliminaries and main result

In this paper we denote by X a separable Banach space with the norm ‖ . ‖

and by C(X) the family of nonempty closed subset of X. For the subset

A,B ∈ C(X) and for a ∈ A we denote d(a,B) := inf{‖a− b‖; b ∈B}, d(A,B) :=
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sup{d(a,B); a ∈ A} and by dHP (A,B) := max{d(A,B), d(B,A)} the Hausdorff–

Pompeiu distance between A and B. Also, we denote by L the σ-field of the

(Lebesque) measurable subset of I := [a, b).

We recall that a multifunction G : I → C(X) is called measurable if

{t ∈ I; G(t) ∩ V 6= ∅} ∈ L for each open V ⊂ X. Notice that the condition

{t ∈ I; G(t) ⊂ V } ∈ L for each open V implies the measurability of G.

For compact-valued multifunctions the reverse also holds (see Himmelberg

[10, Theorem 3.1]).

In what follows we shall use the assumptions:

(H0) X is a separable Banach space, K is a locally closed subset in X and

F : I×K0 → 2X is a nonempty and closed values multifunction ;

(H1) For each (τ, ϕ)∈I×K0 there exist ρ>0, r>0 and χ ∈ L1([τ, τ+ρ],R+)

such that

sup
{
|F (t, ψ)|; ψ ∈ K0×Bσ(ϕ, r)

}
≤ χ(t)

a.e. on [τ, τ + ρ], where |F (t, ϕ)| := sup{‖y‖; y ∈ F (t, ψ)} and

Bσ(ϕ, r) :=
{
ψ ∈ Cσ; ‖ψ − ϕ‖ ≤ r

}
;

(H2) For each (τ, ϕ)∈I×K0 there exist ρ>0, r>0 and µ ∈ L1([τ, τ +ρ],R+)

and a negligible subset Z ⊂ [τ, τ + ρ] such that

dHP

(
F (t, ϕ1), F (t, ϕ2)

)
≤ µ(t) ‖ϕ1 − ϕ2‖σ

for every t ∈ [τ, τ+ρ]\Z and every ϕ1, ϕ2 ∈ K0×Bσ(ϕ, r);

(H3) For each ϕ ∈ K0,the multifunction F (·, ϕ) : I → 2X is L-measurable;

(H4) For every (τ, ϕ) ∈ I×K0 and for every locally integrable selection

f(·) ∈ F (·, ϕ) holds the following tangential condition:

lim inf
h↓0

1

h
d

(
ϕ(0) +

∫ τ+h

τ

f(s) ds, K

)
= 0 .

We are now ready to state the main result of this paper.

Theorem 2.1. If (H0)–(H4) are satisfied, thenK is a viable domain for (1.1).

In order to prove our theorem we need the following technical result, concern-

ing measurable multifunction in Banach spaces, established by Q.I. Zhu [15].
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Theorem 2.2. Let X be a separable Banach space, ψ : [a, b) → X a measur-

able function and G(·) : [a, b) → 2X a measurable multifunction with nonempty

and closed values. Then for any positive measurable function ν : [a, b) → R+,

there exists a measurable selection g(·) ∈ G(·) such that
∥∥g(t) − ψ(t)

∥∥ ≤ d
(
ψ(t), G(t)

)
+ ν(t)

a.e. on [a, b).

In the following we recall a general principle on ordered sets due to Brézis and

Browder [2]. It will be use in the next section in order to obtain some “maximal”

elements in an ordered set.

Theorem 2.3. Let 4 be a given preorder on the nonempty set M and S :

M→ R∪{+∞} be an increasing function. Suppose that each increasing sequence

in M is majorated in M . Then, for each ξ0 ∈M , there exists ξ ∈M with ξ0 4 ξ

such that ξ 4 ξ implies S(ξ) = S(ξ).

In the paper by Brézis and Browder, the function S is supposed to be finite

and bounded from above, but, as remarked in [5], this restriction can be removed

by replacing the function S by ξ → arctan(S(ξ)).

Finally, let u a function defined on interval J of R with values into X. Thus,

for some δ > 0, we denote by ω(u,J0, δ) the modulus of continuity of a function u

defined on interval J0 ⊂ J , given by

ω(u,J0, δ) = sup
{∥∥u(t) − u(s)

∥∥; t, s ∈ J0, |t− s| ≤ δ
}
.

3 – Proof of the main result

We shall show that the tangential conditions (H4) and Theorem 2.3 imply

that, for each (τ, ϕ) ∈ I×K0, there exists one sequence un : [τ − σ, T ] → X of

“approximate solutions” of (1.1) and (1.2), defined on same interval, such that

(un)n converges in some sense to a solution of (1.1) satisfying (1.2).

Assume that the hypotheses (H0)–(H4) are satisfied and we begin by fixing

an arbitrary initial data (τ, ϕ) ∈ I×K0. Since the hypotheses (H1) and (H2) have

a locally character and K is locally closed we can choose r > 0, ρ ∈ (0, b − τ),

χ and µ in L1([τ, τ + ρ],R+) such that K ∩ B(ϕ(0), r) is closed in X and the

relations (2.1) and (2.2) are satisfied on [τ, τ + ρ]×Bσ(ϕ, r). We emphasize that

this choice for r, ρ, χ and µ is same along of this paper.
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Remark 3.1. The following statements hold:

(i) If α ∈ K0 ∩Bσ(ϕ, r) then α(0) ∈ K ∩B(ϕ(0), r),

(ii) If K ∩B(ϕ(0), r) is closed in X then K0 ∩Bσ(ϕ, r) is closed in Cσ.

Indeed, the first statement is obvious. For the second statement, we assume

thatK∩B(ϕ(0),r) is closed inX and we consider a sequence (αn)n in K0∩Bσ(ϕ,r)

that is convergent (in the norm ‖ . ‖σ) to α ∈ Cσ. Then follows that α ∈ Bσ(ϕ, r),

αn(0)→α(0) and αn(0) ∈ K∩B(ϕ(0), r); therefore, since K∩B(ϕ(0), r) is closed,

we obtain that α(0)∈K and thus α ∈ K0∩Bσ(ϕ, r).

In the following, we denote by χ : [τ, τ+ρ] → R+ the function defined by

(3.1) χ(t) =

∫ t

τ

χ(s) ds , for every t ∈ [τ, τ+ρ]

and with ω̃ : R+→ R+ the function defined by

(3.2) ω̃(δ) = ω
(
ϕ, [−σ, 0], δ

)
+ ω

(
χ, [τ, τ+ρ], δ

)
+ δ ,

for every δ > 0.

It is obvious that ω̃ is increasing and limδ↓0 ω̃(δ) = 0.

We shall define the “approximate solution” concept.

Definition 3.1. Let ε ∈ (0, 1) and ψ ∈ L1([τ, τ + ρ], X) be arbitrary fixed.

By the (ε, ψ)-approximate solution of (1.1) and (1.2), defined on an interval

[τ − σ, ν] ⊂ [τ − σ, τ + ρ], we mean a 4-tuple (θ, g, f, u) that is compose of the

functions θ : [τ, ν] → [τ, ν], g ∈ L∞([τ, ν], X), f ∈ L1([τ, ν], X) and of the contin-

uous function u : [τ − σ, ν] → X defined by

(3.3) u(t) =





ϕ(t−τ) , t ∈ [τ−σ, τ ] ,

ϕ(0) +

∫ t

τ

f(s) ds+

∫ t

τ

g(s) ds , t ∈ [τ, ν] ,

such that:

(A1) uθ(t) ∈ K0 ∩Bσ(ϕ, r) for every t ∈ [τ, ν] ;

(A2) 0 ≤ t− θ(t) and ω̃(t− θ(t)) ≤ ε for every t ∈ [τ, ν] ;

(A3) ‖g(t)‖ ≤ ε a.e. on [τ, ν] ;

(A4) f(t) ∈ F (t, uθ(t)) a.e. on [τ, ν] ;

(A5)
∥∥f(t) − ψ(t)

∥∥ ≤ d
(
ψ(t), F (t, uθ(t))

)
+ εµ(t) a.e. on [τ, ν] ;

(A6) uν ∈ K0 ∩Bσ(ϕ, r) .
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Remark 3.2. We emphasize that for to define an (ε, ψ)-approximate solu-

tion it is sufficiently to indicate the interval [τ − σ, ν] ⊂ [τ − σ, τ + ρ] and the

functions θ, g and f . Although the function u is uniquely determined by g and f ,

for sake of simplicity, we preferred to consider it is a component of (θ, g, f, u).

Remark 3.3. Let ν ∈ (τ, τ + ρ], g ∈ L∞([τ, ν], X), f ∈ L1([τ, ν], X) and

u : [τ − σ, ν] → X defined by (3.3). If ‖f(t)‖ ≤ χ(t) and ‖g(t)‖ ≤ 1 a.e. on [τ, ν]

then for every t, s ∈ [τ, ν] we have

(3.4) ‖ut − us‖σ ≤ ω̃
(
|t− s|

)
.

Indeed, for every t, s ∈ [τ, ν] we have

‖ut − us‖σ = sup
α∈[−σ,0]

∥∥ut(α) − us(α)
∥∥

= sup
α∈[−σ,0]

∥∥u(t+α) − u(s+α)
∥∥

≤ ω
(
u, [τ−σ, ν], |t−s|

)

≤ ω
(
u, [τ−σ, τ ], |t−s|

)
+ ω

(
u, [τ, ν], |t−s|

)
.

Further on, from uτ = ϕ it follows that

ω
(
u, [τ−σ, τ ], |t−s|

)
= ω

(
ϕ, [−σ, 0], |t−s|

)
.

On the other hand, by definition of u on [τ, ν] and (3.1), we have

∥∥ϕ(t) − ϕ(s)
∥∥ ≤

∣∣∣∣
∫ t

s

χ(ρ) dρ

∣∣∣∣ + |t−s| <
∣∣χ(t)−χ(s)

∣∣ + |t−s|

and so

ω
(
u, [τ, ν], |t−s|

)
≤ ω

(
χ, [τ, τ+ρ], |t−s|

)
+ |t−s| .

Therefore

‖ut−us‖σ ≤ ω
(
ϕ, [−σ, 0], |t−s|

)
+ ω

(
χ, [τ, τ+ρ], |t−s|

)
+ |t−s| ,

hence (3.4).

Remark 3.4. Let (θ, g, f, u) be an (ε, ψ)-approximate solution of (1.1) and

(1.2) defined on [τ − σ, ν] ⊂ [τ − σ, τ + ρ]. By (A1), (A3) and (A4) follows that

‖f(t)‖ ≤ χ(t) and ‖g(t)‖ ≤ 1 a.e. on [τ, ν] and by Remark 3.3 and (A2) we deduce

that

(3.5)
∥∥ut− uθ(t)

∥∥
σ
≤ ε , for every t ∈ [τ, ν] .
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Further on, we show how to define an (ε, ψ)-approximate solution of (1.1) and

(1.2) defined on an interval [τ − σ, T ] with T ∈ (τ, τ + ρ].

Lemma 3.1. Assume that the hypotheses (H0)–(H4) are satisfied. There exists

T ∈ (τ, τ + ρ] with
∫ T

τ
µ(s) ds ≤ 1

2 such that for every ε ∈ (0, 1) and for every

ψ ∈ L∞([τ, τ + ρ], X) the problem (1.1) and (1.2) have at least one (ε, ψ)-approxi-

mate solution on [τ − σ, T ].

Proof: We fixed T ∈ (τ, τ + ρ] such that

(3.6) ω̃(T − τ) ≤ r and

∫ T

τ

µ(s) ds ≤ 1/2 .

This choice is always possible because µ ∈ L1([τ, τ + ρ],R+) and limδ↓0 ω̃(δ) = 0.

We denote by MT the set of all (ε, ψ)-approximate solutions (θ, g, f, u) on

[τ − σ, ν] ⊂ [τ − σ, T ] and we show that MT is nonempty set.

Applying Theorem 2.2 to G(.) = F (., ϕ) on [τ, τ + ρ] we obtain that there

exists a measurable function f : [τ, τ + ρ] → X such that f(t) ∈ F (t, ϕ) a.e. on

[τ, τ + ρ] and

∥∥f̄(t) − ψ(t)
∥∥ ≤ d

(
ψ(t), F (t, ϕ)

)
+ ε µ(t) a.e. on [τ, τ+ρ] .

Moreover, from (H1) we obtain that ‖f(t)‖ ≤ χ(t) a.e. on [τ, τ +ρ] and there-

fore f̄ ∈L1([τ, τ+ρ], X). Using tangential condition (H4) applied at (τ, ϕ)∈I×K0

for integrable selection f(.) ∈ F (., ϕ) we obtain that there exist (hn)n in R+ with

hn ↓0 and (qn)n in X with qn→ 0 such that

(3.7) ϕ(0) +

∫ τ+hn

τ

f̄(s) ds+ hnqn ∈ K , for every n ∈ N .

Since limδ↓0 ω̃(δ) = 0 we can fix n0 ∈ N such that hn0
∈ (0, T − τ ], ω̃(hn0

) ≤ ε

and ‖qn0
‖ ≤ ε. For n0 fixed as above, we define: ν0 := τ+hn0

, θ(t) := τ for every

t ∈ [τ, ν0], g(t) := qn0
and f(t) := f̄(t) a.e. on [τ, ν0] and we show that (θ, g, f, u),

with u defined by (3.3), is an (ε, ψ)-approximate solution on [τ−σ, ν0] ⊂ [τ−σ, T ].

Indeed, it is easily to see that the conditions (A1)–(A5) are fulfilled. Then

‖f(t)‖ ≤ χ(t) and ‖g(t)‖ ≤ ε ≤ 1 a.e. t ∈ [τ, ν0] and therefore, by (3.4) and (3.6),

we have

‖uν0
− ϕ‖σ = ‖uν0

− uτ‖σ ≤ ω̃(hn0
) ≤ ω̃(T − τ) ≤ r ,
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hence uν0
∈ Bσ(ϕ, r). Since, by (3.3) and (3.7), we have

uν0
(0) = u(ν0) = ϕ(0) +

∫ τ+hn0

τ

f(s) ds+ hn0
qn0

∈ K ,

it follows that uν0
∈ K0 ∩Bσ(ϕ, r) and thus (A6) is also satisfied. Therefore,

(θ, g, f, u) is an (ε, ψ)-approximate solution on [τ − σ, ν0] and thus we have that

MT is a nonempty set.

Next, we show that there exists at least one (ε, ψ)-approximate solution of

(1.1) and (1.2), defined on the whole interval [τ −σ, T ]. For this aim we shall use

Theorem 2.3 as follows. On MT we introduce a preorder as follows.

If (θ1, g1, f1, u1) and (θ2, g2, f2, u2) are two (ε, ψ)-approximate solutions on

[τ − σ, ν1] and respectively on [τ − σ, ν2], then we say that

(θ1, g1, f1, u1) 4 (θ2, g2, f2, u2)

if and only if ν1≤ ν2, θ1(t) = θ2(t), g1(t) = g2(t) and f1(t) = f2(t) on [τ, ν1].

Let us define the function S : MT → R by

S
(
(θ, g, f, u)

)
= ν ,

for every (ε, ψ)-approximate solution defined on [τ − σ, ν] ⊂ [τ − σ, T ].

It is clear that S is increasing on MT . Further on, we show that each in-

creasing sequence ((θi, gi, f i, ui))i∈N in MT is majorated in MT . We define a

majorant as follows. We define

ν∗ = lim
i
νi

and we observe that ν∗∈(τ, T ]. For each i∈N, we define θ∗(t)=θi(t) if t∈ [τ, νi]

and θ∗(ν∗)=ν∗, g∗(t)=gi(t) and f∗(t)=f i(t) if t∈ [τ, νi], and we observe that,

by the fact that ((θi, gi, f i, ui))i∈N is an increasing sequence in MT , the functions

θ∗, g∗, and f∗ are well defined. Moreover, since for every i ∈ N we have that

‖f i(t)‖ ≤ χ(t) and ‖gi(t)‖ ≤ ε a.e. on [τ, νi] it follows that

(3.8) ‖f∗(t)‖ ≤ χ(t) and ‖g∗(t)‖ ≤ ε a.e. on [τ, ν∗]

and thus we obtain that g∗ ∈ L∞([τ, ν∗], X) and f∗ ∈ L1([τ, ν∗], X).

It is obvious that θ∗ : [τ, ν∗] → [τ, ν∗]. Therefore, we can consider the 4-tuple

(θ∗, g∗, f∗, u∗) with the function u∗ : [τ − σ, ν∗] → X defined by (3.3). Now, we

show that (θ∗, g∗, f∗, u∗) ∈ MT . For this, we fixed an arbitrary i ∈ N and we
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observe that for every t ∈ [τ −σ, τ ] we have u∗(t) = ϕ(t−τ) = ui(t) and for every

t ∈ [τ, νi] we have

u∗(t) = ϕ(0) +

∫ t

τ

f∗(s) ds+

∫ t

τ

g∗(s) ds

= ϕ(0) +

∫ t

τ

f i(s) ds+

∫ t

τ

gi(s) ds = ui(t) .

Therefore, u∗(t) = ui(t) for every t ∈ [τ − σ, νi]. Moreover, since for every

t ∈ [τ, νi] and every s ∈ [−σ, 0] we have

τ − σ ≤ θ∗(t) + s = θi(t) + s ≤ t+ s ≤ t ≤ νi

we obtain that

u∗θ∗(t)(s) = u∗
(
θ∗(t) + s

)
= u∗

(
θi(t) + s

)
= ui

(
θi(t) + s

)
= ui

θi(t)(s)

and thus

(3.9) u∗θ∗(t) = ui
θi(t) for every t ∈ [τ, νi] .

Further on, let us observe that (θ∗, g∗, f∗, u∗) satisfies (A2)–(A5).

Let us verify the conditions (A1) and (A6). For any t ∈ [τ, ν∗) there exists

i ∈ N such that t ∈ [τ, νi] and by (3.9) it follows that

u∗θ∗(t) = ui
θi(t) ∈ K0 ∩Bσ(ϕ, r) .

For t = ν∗ we have θ∗(ν∗) = ν∗ and u∗
θ∗(ν∗) = u∗ν∗ . Then, by (3.8), we can use

the relation (3.4) that, together with (3.6), implies

‖u∗ν∗ − ϕ‖σ = ‖u∗ν∗ − u∗τ‖σ ≤ ω̃(ν∗ − τ) ≤ r .

and thus u∗
θ∗(ν∗) = u∗ν∗ ∈ Bσ(ϕ, r).

By the continuity of u∗ we have

u∗ν∗(0) = u∗(ν∗) = lim
i
u∗(νi) = lim

i
ui(νi)

and since ui
νi ∈ K0∩Bσ(ϕ, r) for every i ∈ N we have that ui

νi(0) ∈ K∩B(ϕ(0), r)

for every i ∈ N. Therefore, since K ∩B(ϕ(0), r) is closed set we obtain that

u∗ν∗(0) ∈ K ∩B(ϕ(0), r) and hence we have that u∗
θ∗(ν∗) = u∗ν∗ ∈ K0.
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Thus we conclude that (θ∗, g∗, f∗, u∗) ∈ MT . In addition (θi, gi, f i, ui) 4

(θ∗, g∗, f∗, u∗) for each i ∈ N and thus the sequence ((θi, gi, f i, ui))i∈N is majo-

rated in MT . Therefore, the set MT , endowed with the preorder 4, and the

function S satisfies the hypotheses of Theorem 2.3.

Before to use the conclusion of Theorem 2.3, we show that every (θ, g, f, u) ∈

MT with S((θ, g, f, u)) < T is majorated in MT by an element (θ̃, g̃, f̃ , ũ) ∈ MT

with S((θ, g, f, u)) < S((θ̃, g̃, f̃ , ũ)).

For this aim let us consider (θ, g, f, u) an (ε, ψ)-approximate solution defined

[τ −σ, ν] with ν ∈ (τ, T ). Since uν ∈ K0 ∩Bσ(ϕ, r) we can apply the Theorem 2.3

on [ν, τ+ρ] for G(.) = F (., uν). We obtain that there exists a measurable function

f : [ν, τ + ρ] → X such that f(t) ∈ F (t, uν) a.e. on [ν, τ + ρ] and

∥∥f(t) − ψ(t)
∥∥ ≤ d

(
ψ(t), F (t, uν)

)
+ ε µ(t) a.e. on [ν, τ + ρ] .

By (H1) it follows that ‖f̄(t)‖≤χ(t) a.e. on [ν, τ+ρ] and hence f̄ ∈L1(ν, τ+ρ;X).

Using tangential condition (H4) applied at (ν, uν) ∈ I×K0 for integrable selection

f(.) ∈ F (., uν) we obtain that there exist (hn)n in R+ with hn ↓0 and (qn)n in X

with qn→ 0 such that

(3.10) uν(0) +

∫ ν+hn

ν

f(s) ds+ hnqn ∈ K , for every n ∈ N .

Since limδ↓0 ω̃(δ) = 0 we can fix ñ ∈ N such that hen ∈ (0, T−τ ], ω̃(hen) ≤ ε,

and ‖qen‖ ≤ ε. Further on, we define ν̃ := ν + hen and

θ̃(t) :=

{
θ(t) if t ∈ [τ, ν] ,

ν if t ∈ (ν, ν̃] ;

g̃(t) :=

{
g(t) if t ∈ [τ, ν] ,

qen if t ∈ (ν, ν̃] ;

f̃(t) :=

{
f(t) if t ∈ [τ, ν] ,

f(t) if t ∈ (ν, ν̃] .

We show that (θ̃, g̃, f̃ , ũ), with ũ given by (3.3), is an (ε, ψ)-approximate

solution defined on [τ − σ, ν̃] ⊂ [τ − σ, T ]. First, we observe that

ũ(t) = u(t) for every t ∈ [τ − σ, ν]
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and

ũ(t) = ϕ(0) +

∫ t

τ

f̃(s) ds+

∫ t

τ

g̃(s) ds

= ũ(ν) +

∫ t

ν

f̃(s) ds+

∫ t

ν

g̃(s) ds

= uν(0) +

∫ t

ν

f(s) ds + (t−ν) qen ,
for every t ∈ [ν, ν̃]. Also, it is obvious that (θ̃, g̃, f̃ , ũ) satisfies (A2)–(A5) on [τ, ν]

and on (ν, ν̃] they are satisfies by our choice of f , hen and qen. Since for every

t ∈ [τ, ν] we have

ũeθ(t) = ũθ(t) = uθ(t) ∈ K0 ∩Bσ(ϕ, r)

and for every t ∈ (ν, ν̃) we have

ũeθ(t) = ũν = uν ∈ K0 ∩Bσ(ϕ, r) ,

we deduce that (A1) is fulfilled.

Let us verify the condition (A6). By (A1), (A3) and (A4) we have that

‖f(t)‖ ≤ χ(t) and ‖g(t)‖ ≤ ε ≤ 1 a.e. on [τ, ν̃] and therefore we can use (3.4)

that, together with (3.6), implies

‖ũeν − ϕ‖σ = ‖ũeν − ũτ‖σ ≤ ω̃(ν̃ − τ) ≤ ω̃(T − τ) ≤ r

and thus ũν̃ ∈ Bσ(ϕ, r). Since by (3.2) and (3.10) we have

ũeν(0) = ũ(ν̃) = uν(0) +

∫ ν+hen
ν

f(s) ds+ henqen ∈ K ,

it follows that ũeν ∈ K0 ∩Bσ(ϕ, r). Therefore, (θ̃, g̃, f̃ , ũ) is an (ε, ψ)-approximate

solution defined on [τ−σ, ν̃]. Moreover, by construction, we have that (θ, g, f, u) 4

(θ̃, g̃, f̃ , ũ) and S((θ, g, f, u)) = ν < ν̃ = S((θ̃, g̃, f̃ , ũ)).

Now, let (θ0, g0, f0, u0) be arbitrary fixed in MT . By Theorem 2.3 we de-

duce that there exists (θ, g, f, u) ∈ MT , with (θ0, g0, f0, u0) 4 (θ, g, f, u), such

that S((θ, g, f, u)) = S((θ̃, g̃, f̃ , ũ)), for each (θ̃, g̃, f̃ , ũ) ∈ MT with (θ, g, f, u) 4

(θ̃, g̃, f̃ , ũ).

It follows that S((θ, g, f, u)) = T because, contrary, by precedent step, there

exists (θ̃, g̃, f̃ , ũ)∈MT with (θ, g, f, u)4(θ̃, g̃, f̃ , ũ) and such that S((θ, g, f, u))<

S((θ̃, g̃, f̃ , ũ)), that is in contradiction with our choice for (θ, g, f, u).

Thus we have proved that there exists an (ε, ψ)-approximate solution of (1.1)

and (1.2) defined on the whole interval [τ − σ, T ].
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We are now prepared to prove Theorem 2.1.

Proof of Theorem 2.1: Let (τ, ϕ) ∈ I×K0 be fixed and we consider

T ∈ (τ, τ+ρ] given as in Lemma 3.1. We introduce now the solution operator

Q : L1([τ, T ], X) → C([τ−σ, T ], X) defined by

(3.11) (Qf)(t) =





ϕ(t− τ) if t ∈ [τ−σ, τ ] ,

ϕ(0) +

∫ t

τ

f(s) ds if t ∈ (τ, T ] .

We notice that u is a solution of (1.1) and (1.2) on [τ−σ, T ] if there exists

f ∈ L1([τ, T ], X) such that u = Qf and f(t) ∈ F (t, u(t)) a.e. on [τ, T ].

Let (εn)n be a decreasing sequence of positive real numbers such that∑∞
n=1 εn < +∞ and εn ∈ (0, 1) for every n ∈ N.

Starting with one measurable selection f0(.) ∈ F (., ϕ) in view of Lemma 3.1,

we can define inductively the sequence ((θn, gn, fn, un))n∈N such that (θn, gn, fn, un)

is an (εn, f
n)-approximate solution on [τ−σ, T ] for every n ∈ N.

Thus, for every n ∈ N we have

(3.12) un(t) =





ϕ(t− τ) if t ∈ [τ − σ, τ ] ,

ϕ(0) +

∫ t

τ

fn(s) ds+

∫ t

τ

gn(s) ds if t ∈ (τ, T ]

and

(B1) un
θn(t) ∈ K0 ∩Bσ(ϕ, r) for every t ∈ [τ, T ) ;

(B2) 0 ≤ t− θn(t) and ω̃(t− θn(t)) ≤ ε for every t ∈ [τ, T ] ;

(B3) ‖gn(t)‖ ≤ εn a.e. on [τ, T ] ;

(B4) fn(t) ∈ F (t, un
θn(t)) a.e. on [τ, T ] ;

(B5)
∥∥fn(t) − fn−1(t)

∥∥ ≤ d
(
fn−1(t), F (t, un

θn(t))
)

+ εn µ(t) a.e. on [τ, T ] ;

(B6) un
T ∈ K0 ∩Bσ(ϕ, r) .

We show that (un)n converge uniformly to a function u : [τ − σ, T ] → X that

is a solution of (1.1) and (1.2).

For this, first we show that for every n ∈ N we have

(C1) ‖fn(t)‖ ≤ χ(t) a.e. on [τ, T ] ;

(C2)
∥∥un

t − un
θn(t)

∥∥
σ
≤ εn for every t ∈ [τ, T ] ;

(C3)
∥∥un(t) − (Qfn)(t)

∥∥ ≤ (T−τ)εn for every t ∈ [τ−σ, T ] ;
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(C4)
∥∥un+1

θn+1(t)
− un

θn(t)

∥∥
σ
≤ 2 εn + ‖un+1− un‖T , for every t ∈ [τ, T ], where

‖ · ‖T is norm in C([τ−σ, T ];X) ;

(C5)
∥∥fn+1(t) − fn(t)

∥∥ ≤ µ(t)
(
‖un+1− un‖T + 3 εn

)
a.e. on [τ, T ] .

Indeed, (C1) follows from (H1) and (B4), (C2) follows from Remark 3.4, and

(C3) follows from (3.11), (3.12) and (B3). For to show (C4) we observe that
∥∥un+1

t − un
t

∥∥
σ

= sup
−σ≤s≤0

∥∥un+1(t+s) − un(t+s)
∥∥

≤ sup
τ−σ≤ν≤T

∥∥un+1(ν) − un(ν)
∥∥

=
∥∥un+1 − un

∥∥
T

and thus by (C2) we obtain that
∥∥un+1

θn+1(t)
− un

θn(t)

∥∥
σ
≤

∥∥un+1
θn+1(t)

− un+1
t

∥∥
σ

+
∥∥un+1

t − un
t

∥∥
σ

+
∥∥un

t − un
θn(t)

∥∥
σ

≤ εn+1 +
∥∥un+1

t − un
t

∥∥
σ

+ εn

≤ 2 εn +
∥∥un+1 − un

∥∥
T

for every t ∈ [τ, T ].

In finally, by (H2), (B5) and (C4) we have

∥∥fn+1(t) − fn(t)
∥∥ ≤ d

(
fn(t), F

(
t, un+1

θn+1(t)

))
+ εn+1 µ(t)

≤ dHP

(
F

(
t, un

θn(t)

)
, F

(
t, un+1

θn+1(t)

))
+ εn+1 µ(t)

≤ µ(t)
(∥∥un

θn(t)− un+1
θn+1(t)

∥∥ + εn+1

)

≤ µ(t)
(
‖un+1− un‖T + 3 εn

)

a.e. on [τ, T ] and hence (C5) is also checked.

Further on, for every t ∈ [τ, T ], by (3.6), (3.11), (C3) and (C5) we have
∥∥un+1(t) − un(t)

∥∥ ≤

≤
∥∥un+1(t) − (Qfn+1)(t)

∥∥ +
∥∥(Qfn+1)(t) − (Qfn)(t)

∥∥ +
∥∥(Qfn)(t) − un(t)

∥∥

≤ (T−τ) (εn+1+ εn) +

∫ T

τ

∥∥fn+1(s) − fn(s)
∥∥ ds

≤ 2 (T−τ) εn +
(
3 εn +

∥∥un+1− un
∥∥

T

) ∫ T

τ

µ(s) ds

≤

(
2 (T−τ) +

3

2

)
εn +

1

2

∥∥un+1− un
∥∥

T
.
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Therefore, since ‖un+1(t) − un(t)‖ = 0 for every t ∈ [τ − σ, τ ] we obtain

∥∥un+1(t) − un(t)
∥∥ ≤

(
2 (T−τ) +

3

2

)
εn +

1

2

∥∥un+1 − un
∥∥

T

for every t ∈ [τ − σ, T ] and so, we have

∥∥un+1 − un
∥∥

T
≤

(
2 (T−τ) +

3

2

)
εn +

1

2

∥∥un+1 − un
∥∥

T
.

Thus we have that

(3.13)
∥∥un+1 − un

∥∥
T

≤
(
4 (T−τ) + 3

)
εn

for every n ∈ N
∗ with

∑∞
n=1 εn <+∞ and thus we deduce that (un)n converge

uniformly to a function u : [τ − σ, T ] → X.

From (C5) and (3.13) we deduce that, for almost all t ∈ [τ, T ], we have

∥∥fn+1(t) − fn(t)
∥∥ ≤ µ(t)

(∥∥un+1 − un
∥∥

T
+ 3 εn

)

≤ µ(t)
(
4 (T−τ) + 6

)
εn

for every n ∈ N
∗. This imply that (fn)n converge pointwise almost everywhere

to a measurable function f . For any fixed t ∈ [τ − σ, T ], by (C1) and Lebesgue’s

Theorem, we obtain that lim
n→∞

(Qfn)(t) = (Qf)(t). Consequently, by (C3), we

conclude that u(t) = (Qf)(t) for every t ∈ [τ − σ, T ]. For every t ∈ [τ, T ] and

every n ∈ N
∗, by (C2), we have

∥∥un
θn(t)− ut

∥∥
σ
≤

∥∥un
θn(t)− un

t

∥∥
σ

+
∥∥un

t − ut

∥∥
σ
≤ εn +

∥∥un − u
∥∥

T

and thus un
θn(t)→ ut in Cσ as n→ ∞.

From (B1) and Remark 3.1 it follows that ut∈K0∩Bσ(ϕ, r) for every t∈ [τ,T ].

Now, we observe that, a.e. on [τ, T ], we have

d
(
f(t), F (t, ut)

)
≤

∥∥f(t) − fn(t)
∥∥ + d

(
F

(
t, un

θn(t)

)
, F (t, ut)

)

≤
∥∥f(t) − fn(t)

∥∥ + µ(t)
∥∥un

θn(t) − ut)

∥∥
σ

for every n∈N
∗. Therefore, by letting n→∞, we obtain that d(f(t), F (t, ut))=0

and thus, because the multifunction F has closed values, f(t) ∈ F (t, ut) a.e on

[τ, T ].



NONCONVEX DIFFERENTIAL INCLUSIONS WITH MEMORY 349

Finally, from ut ∈ K0 ∩ Bσ(ϕ(0), r), by Remark 3.1, we deduce that u(t) ∈

K ∩B(ϕ(0), r) for every t ∈ [τ, T ].

We have proved that u : [τ−σ, T ] → X is a solution of (1.1) and (1.2), and so,

(τ, ϕ) being arbitrarily fixed in I×K0, we have showed that K is a viable domain

for (1.1).
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210152 — ROMANIA

E-mail: vasile@utgjiu.ro

and

Mihai Necula,

Faculty of Mathematics, “A.I. Cuza” University of Iaşi,
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