ON THE CONTRACTED l^{1}-ALGEBRA OF A POLYCYCLIC MONOID

M.J. Crabb and W.D. Munn

Recommended by J. Almeida

Abstract

Let $P(X)$ denote the polycyclic monoid (Cuntz semigroup) on a nonempty set X and let A denote the Banach algebra $l^{1}(P(X)) / Z$, where Z is the (closed) ideal spanned by the zero of $P(X)$. Then A is primitive. Moreover, A is simple if and only if X is infinite.

The l^{1}-algebra $l^{1}(S)$ of a semigroup S consists of all functions $a: S \rightarrow \mathbb{C}$ (the complex field) of finite or countably infinite support and such that $\sum_{x \in S}|a(x)|<\infty$, where addition and scalar multiplication are defined pointwise and multiplication is taken to be convolution. As noted in $[1], l^{1}(S)$ is a Banach algebra with respect to the norm $\|\|$ defined by $\| a \|:=\sum_{x \in S}|a(x)|$. By identifying each $x \in S$ with its characteristic function, we can write a typical element of $l^{1}(S)$ in the form $\sum_{x \in S} \alpha_{x} x$, where $\sum_{x \in S}\left|\alpha_{x}\right|<\infty,\left(\alpha_{x} \in \mathbb{C}\right)$.

The semigroup algebra $\mathbb{C}[S]$ is the subalgebra consisting of all functions $a: S \rightarrow \mathbb{C}$ of finite support. When S is a nontrivial semigroup with zero z, it is often helpful to replace $\mathbb{C}[S]$ by $\mathbb{C}[S] / \mathbb{C} z$, where $\mathbb{C} z$ is the ideal $\{\alpha z: \alpha \in \mathbb{C}\}$. We have thus, in effect, simply identified z with the zero of the algebra. In $[4$, Chapter 5$], \mathbb{C}[S] / \mathbb{C} z$ is called the 'contracted semigroup algebra' of S over \mathbb{C} and is denoted by $\mathbb{C}_{0}[S]$. With this in mind, we call the Banach algebra $1^{1}(S) / \mathbb{C} z$ the contracted l^{1}-algebra of S and denote it by $l_{0}^{1}(S)$. A typical element u of $l_{0}^{1}(S)$ can be written in the form $u=\sum_{x \in S \backslash 0} \alpha_{x} x$, where $\sum_{x \in S \backslash 0}\left|\alpha_{x}\right|<\infty$, and we define its support, $\operatorname{supp}(u)$, to be $\left\{x \in S \backslash 0: \alpha_{x} \neq 0\right\}$.

In this paper, we study $l_{0}^{1}(S)$ for the case in which S is the polycyclic monoid $P(X)$ on nonempty a set X [13]. It is shown that $l_{0}^{1}(S)$ is primitive for all choices of X (Theorem 1) and is simple if and only if X is infinite (Theorem 2).

We begin by recalling the definition of $P(X)$. Let $M(X)$ denote the free monoid on X. For $w=x_{1} x_{2} \ldots x_{n} \in M(X)$, where each $x_{i} \in X$, we define the length $l(w)$ and the content $c(w)$ of w by $l(w):=n$ and $c(w):=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. In addition, we take $l(1):=0$ and $c(1):=\emptyset$, where 1 denotes the identity of $M(X)$ (the empty word). We say that $u \in M(X)$ is an initial segment of $v \in M(X)$, written $u \preceq v$, if and only if $v=u w$ for some $w \in M(X)$. For $u, v \in M(X)$, we write $u \| v$ if and only if $u \npreceq v$ and $v \npreceq u$.

Let $P(X):=(M(X) \times M(X)) \cup\{0\}$ and define a multiplication in $P(X)$ by

$$
\begin{gathered}
(a, b)(c, d)=\left\{\begin{array}{cl}
(a u, d) & \text { if } c=b u \text { for some } u \in M(X) \\
(a, d v) & \text { if } b=c v \text { for some } v \in M(X) \\
0 & \text { if } b \| c,
\end{array}\right. \\
0(a, b)=(a, b) 0=0^{2}=0
\end{gathered}
$$

Then $P(X)$ is a monoid with identity $(1,1)$ and zero 0 ; further, it admits an involution * given by

$$
(a, b)^{*}=(b, a), \quad 0^{*}=0
$$

(In fact, $P(X)$ is an example of a 0 -bisimple inverse semigroup in which * denotes inversion and in which each subgroup is trivial.) Note that $(a, b)^{2}=(a, b)$ if and only if $a=b$. Thus the set $E(X)$ of idempotents of $P(X)$ is

$$
\{(a, a): a \in M(X)\} \cup\{0\}
$$

Clearly $E(X)$ is a commutative submonoid of $P(X)$ (the 'semilattice' of $P(X)$) and it is easily seen to be partially ordered by

$$
(a, a) \geq(b, b) \Longleftrightarrow a \preceq b, \quad(a, a)>0
$$

Observe that $(a, a) \geq(b, b)$ if and only if $(a, a)(b, b)=(b, b)[=(b, b)(a, a)]$.
An alternative approach to the monoid described above is as follows. Let $F I(X)$ denote the free monoid with involution* on a nonempty set X. Adjoin a zero 0 to $F I(X)$, take $0^{*}=0$ and write $Q(X):=(F I(X) \cup\{0\}) / \rho$, where ρ is the congruence determined by the relations $x^{*} x=1(x \in X)$ and $x^{*} y=0(x, y \in X$ and $x \neq y)$. This monoid is termed the Cuntz semigroup on X. Note that every nonzero ρ-class has a unique representative of the form $a b^{*}$ $(a, b \in M(X))$. We identify this element with its ρ-class and so can write
$Q(X)=\left\{a b^{*}: a, b \in M(X)\right\} \cup\{0\}$. It is routine to verify that $\theta: P(X) \rightarrow Q(X)$ is an isomorphism. Various aspects of algebras associated with $Q(X)$ have been studied in [5], [6] and [2]; see also [14]. For an extended discussion of polycyclic monoids, see [9, §9.3].

Next, we review the concept of primitivity. Let A be a complex algebra and let V be a nonzero right A-module under the action o. A vector $v \in V \backslash 0$ is called cyclic if and only if $v \circ A=V$. Recall that V is termed
(i) faithful if and only if, for all $a \in A, V \circ a=0$ implies $a=0$,
(ii) strictly irreducible if and only if every nonzero vector in V is cyclic.

We say that A is (right) primitive if and only if there exists a faithful strictly irreducible right A-module.

For the case in which A is a Banach algebra, V a Banach space with norm $\left\|\|_{V}\right.$ and \circ a right action of A on V with $\|v \circ a\|_{V} \leq\|v\|_{V}\|a\|(v \in V, a \in A)$, we make a further definition. We say that V is topologically irreducible if and only if, for all $v \in V \backslash 0$, all $u \in V$ and a given positive real number ϵ, there exists $a \in A$ such that

$$
\|v \circ a-u\|_{V}<\epsilon
$$

The following result ($[8],[10]$) is required below. For convenience, we include a proof.

Lemma. Let A and V be as in the preceding paragraph. If V is topologically irreducible and possesses a cyclic vector then V is strictly irreducible.

Proof: Let V be topologically irreducible, with a cyclic vector v_{1}. Since the mapping $f: A \rightarrow V$ defined by $f(a)=v_{1} \circ a$ is continuous, the open mapping theorem shows that, for some positive real number δ,

$$
\left\{v \in V:\|v\|_{V}<\delta\right\} \subseteq\{f(a): a \in A \text { and }\|a\|<1\}
$$

Let $v \in V \backslash 0$. Since V is topologically irreducible, there exists $b \in A$ such that $\left\|v_{1}-v \circ b\right\|_{V}<\delta$. Hence there exists $a \in A$ with $\|a\|<1$ such that $v_{1}-v \circ b=v_{1} \circ a$. Consider $c \in A$ defined by $c=-\sum_{r=1}^{\infty} a^{r}$. Then $a+c-a c=0$. Hence

$$
\begin{aligned}
v \circ(b-b c) & =\left(v_{1}-v_{1} \circ a\right)-\left(v_{1}-v_{1} \circ a\right) \circ c \\
& =v_{1}-v_{1} \circ(a+c-a c)=v_{1} .
\end{aligned}
$$

Consequently, v is cyclic. Thus V is strictly irreducible.

We now come to our first result. Note that since the polycyclic monoid on X admits an involution, so also does its contracted l^{1}-algebra. Thus the term 'primitive' can be used without qualification.

Theorem 1. For every nonempty set $X, l_{0}^{1}(P(X))$ is primitive.
Proof: For a given nonempty set X write $S:=P(X), E:=E(X)$ and $V:=l_{0}^{1}(E)$.
We begin by defining a right action of $1_{0}^{1}(S)$ on V. First note that, if $x \in S$ and $e \in E$ then $x x^{*}, x^{*} e x \in E$. Now define $\circ: E \times S \rightarrow E$ by the rule that

$$
(\forall e \in E) \quad(\forall x \in S) \quad e \circ x=\left\{\begin{array}{cl}
x^{*} e x & \text { if } e \leq x x^{*} \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $e \in E$ and let $x, y \in S$. A straightforward calculation shows that

$$
\begin{equation*}
e \leq x x^{*} \text { and } x^{*} e x \leq y y^{*} \Longleftrightarrow e \leq x y(x y)^{*} \tag{1}
\end{equation*}
$$

Using this, we now prove that

$$
\begin{equation*}
(e \circ x) \circ y=e \circ(x y) \tag{2}
\end{equation*}
$$

Suppose that $e \leq x y(x y)^{*}$. Then $e \circ(x y)=(x y)^{*} e x y$. But, by (1), $e \leq x x^{*}$ and $x^{*} e x \leq y y^{*}$. Hence $(e \circ x) \circ y=\left(x^{*} e x\right) \circ y=y^{*}\left(x^{*} e x\right) y=(x y)^{*} e x y$. Thus (2) holds in this case. Now suppose that $e \not \leq x y(x y)^{*}$. Then $e \circ(x y)=0$. But, by (1), either $e \not \leq x x^{*}$ or $x^{*} e x \not \leq y y^{*}$. If $e \leq x x^{*}$ and $x^{*} e x \not \leq y y^{*}$ then $(e \circ x) \circ y=\left(x^{*} e x\right) \circ y=0$, while if $e \not \leq x x^{*}$ then $e \circ x=0$ and so again $(e \circ x) \circ y=0$. Thus (2) holds in this case also. Since, for all $e \in E$ and $x \in S,\|e \circ x\| \leq\left\|x^{*} e x\right\| \leq 1$ we can extend - to a right action, also denoted by \circ, of $l_{0}^{1}(S)$ on V; and, clearly, for all $v \in V$ and all $u \in l_{0}^{1}(S),\|v \circ u\| \leq\|v\| .\|u\|$.

We show next that V is faithful. Let S^{\prime} and E^{\prime} denote $S \backslash 0$ and $E \backslash 0$, respectively. Observe first that E^{\prime} satisfies the maximal condition with respect to \leq; for if T is a nonempty subset of $M(X)$ and $s \in T$ is chosen such that $l(s) \leq l(t)$ for all $t \in T$ then (s, s) is maximal in the subset $\{(t, t): t \in T\}$ of E^{\prime}. Let $u \in l_{0}^{1}(S) \backslash 0$, say $u=\sum_{x \in S^{\prime}} \alpha_{x} x$, with $\sum_{x \in S^{\prime}}\left|\alpha_{x}\right|<\infty$ and not all $\alpha_{x}=0$. Choose $e \in E^{\prime}$ maximal in $\left\{x x^{*}: x \in \operatorname{supp}(u)\right\}$. Then

$$
\begin{equation*}
e \circ u=\sum_{x x^{*}=e} \alpha_{x}\left(x^{*} e x\right) \tag{3}
\end{equation*}
$$

Now let $x, y \in S^{\prime}$ be such that $x x^{*}=y y^{*}=e$ and $x^{*} e x=y^{*} e y$. We have that $x=(a, b)$ and $y=(c, d)$ for some $a, b, c, d \in M(X)$. Thus $(a, a)=e=(c, c)$ and $(b, b)=x^{*} e x=y^{*} e y=(d, d)$. Hence $a=c, b=d$ and so $x=y$. It follows from (3) that $e \circ u \neq 0$. This shows that V is faithful.

To complete the proof, we show that V is strictly irreducible. Let $v \in V \backslash 0$ and let $e \in \operatorname{supp}(v)$, with coefficient $\alpha \in \mathbb{C} \backslash 0$. We prove first that, for a given positive real number ϵ, there exist $v^{\prime} \in V$ and $u \in l_{0}^{1}(E)\left(\subseteq l_{0}^{1}(S)\right)$ such that

$$
\begin{equation*}
v \circ u=\alpha e+v^{\prime}, \quad\left\|v^{\prime}\right\|<\epsilon . \tag{4}
\end{equation*}
$$

Note that if e is minimal in $\operatorname{supp}(v)$ then $v \circ e=\alpha e$ and so (4) holds with $u=e$ and $v^{\prime}=0$. Suppose, therefore, that e is not minimal in $\operatorname{supp}(v)$. Write $v=w+w^{\prime}$, where $w, w^{\prime} \in V$ are such that
(5) $\quad e \in \operatorname{supp}(w), \quad \operatorname{supp}(w)$ is finite, $\quad \operatorname{supp}(w) \cap \operatorname{supp}\left(w^{\prime}\right)=\emptyset, \quad\left\|w^{\prime}\right\|<\epsilon$.

Without loss of generality, we may assume that e is not minimal in $\operatorname{supp}(w)$. (If need be, transfer a term from w^{\prime} to w.) Let $F:=\{f \in \operatorname{supp}(w): f<e\}$ and define $u \in l_{0}^{1}(E)$ by

$$
u:=\prod_{f \in F}(e-f) .
$$

We now show that

$$
\left(\forall g \in E^{\prime}\right) \quad g \circ u= \begin{cases}g & \text { if } g \leq e \text { and, for all } f \in F, g \not \leq f, \tag{6}\\ 0 & \text { if } g \leq e \text { and, for some } f \in F, g \leq f, \\ 0 & \text { if } g \not \leq e .\end{cases}
$$

Suppose first that $g \in E^{\prime}$ is such that $g \leq e$ and that, for all $f \in F, g \not \leq f$. Then, for all $f \in F, g \circ(e-f)=g$ and so $g \circ u=g$. Next, suppose that $g \in E^{\prime}$ is such that $g \leq e$ and that there exists $f \in F$ with $g \leq f$. Then $g \circ(e-f)=g-g=0$ and so $g \circ u=0$. Finally, suppose that $g \in E^{\prime}$ is such that $g \not \not \subset e$. Then, for any $f \in F, g \not \leq f$ and so $g \circ(e-f)=0$. Hence again $g \circ u=0$. This establishes (6).

It follows from (6) that $w \circ u=\alpha e$. Write $v^{\prime}:=w^{\prime} \circ u$. Since, by (6), for all $g \in \operatorname{supp}\left(w^{\prime}\right), g \circ u$ is either g or 0 we have that $\left\|v^{\prime}\right\| \leq\left\|w^{\prime}\right\|$. Thus, from (5), we see that (4) holds.

Next, let $f \in E^{\prime}$. There exist $a, b \in M(X)$ such that $e=(a, a)$ and $f=(b, b)$. Write $x:=(a, b)$. Then $x x^{*}=e$ and

$$
\begin{equation*}
e \circ x=f \tag{7}
\end{equation*}
$$

Hence, from (4), $v \circ(u x)=\alpha f+\left(v^{\prime} \circ x\right)$ and, in addition, $\left\|v^{\prime} \circ x\right\| \leq\left\|v^{\prime}\right\|<\epsilon$. Thus

$$
\|v \circ(u x)-\alpha f\|<\epsilon,
$$

from which we deduce that V is topologically irreducible. But, from (7), it follows that e is a cyclic vector in V. Hence, by the Lemma, V is strictly irreducible.

The corresponding result for $\mathbb{C}_{0}[P(X)]$ is a consequence of a theorem of Domanov [7]. A short proof is given in [12]. As already remarked, $P(X)$ is a special case of a 0 -bisimple inverse semigroup with only trivial subgroups. In [3], we show that if S is a 0 -bisimple inverse semigroup with a nonzero maximal subgroup G such that $l^{1}(G)$ is primitive then $l_{0}^{1}(S)$ is primitive. This generalises Theorem 1 above, but is harder to prove since we have to allow for the presence of nontrivial subgroups and cannot assume that the semilattice of S satisfies the maximal condition under the natural partial ordering.

Our second result gives a necessary and sufficient condition for $l_{0}^{1}(P(X))$ to be a simple algebra.

Theorem 2. Let X be a nonempty set. Then $l_{0}^{1}(P(X))$ is simple if and only if X is infinite.

Proof: Write $S:=P(X)$ and $S^{\prime}:=S \backslash 0$. Assume first that X is infinite. Let T be a nonzero ideal of $l_{0}^{1}(S)$. We show that $T=l_{0}^{1}(S)$.

Let $t \in T \backslash 0$. Choose $a \in M(X)$ such that a has minimal length amongst the first components of the elements of $\operatorname{supp}(t)$; and choose $b \in M(X)$ such that $(a, b) \in \operatorname{supp}(t)$. Then, for some positive integer n, we may write t in the form

$$
\begin{equation*}
t=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{n} u_{n}+v \tag{1}
\end{equation*}
$$

where $u_{1}, u_{2}, \ldots, u_{n}$ are distinct elements of $\operatorname{supp}(t)$ with $u_{1}=(a, b), \alpha_{i} \in \mathbb{C} \backslash 0$ $(i=1,2, \ldots, n)$ and $v \in l_{0}^{1}(S)$ is such that $\|v\|<\left|\alpha_{1}\right|$. Write $u_{i}=\left(a_{i}, b_{i}\right) \in M(X) \times M(X)$ $(i=1,2, \ldots, n)$ and assume, without loss of generality, that for some $k \in\{1,2, \ldots, n\}$, $(a=) a_{1}=a_{2}=\cdots=a_{k}$, while $a_{i} \neq a$ if $k<i \leq n$. Since $u_{1}, u_{2}, \ldots, u_{k}$ are distinct, it follows that $(b=) b_{1}, b_{2}, \ldots, b_{k}$ are distinct.

Let Y denote $\bigcup_{i=1}^{n}\left(c\left(a_{i}\right) \cup c\left(b_{i}\right)\right)$. Since Y is a finite subset of the infinite set X, there exists $x \in X \backslash Y$. Write

$$
e:=(a x, a x), \quad f:=(b x, b x)
$$

We shall show that

$$
e u_{i} f=\left\{\begin{array}{cl}
(a x, b x) & \text { if } i=1 \tag{2}\\
0 & \text { if } 2 \leq i \leq n
\end{array}\right.
$$

Suppose first that $1 \leq i \leq k$. Then $e u_{i} f=(a x, a x)\left(a, b_{i}\right)(b x, b x)=\left(a x, b_{i} x\right)(b x, b x)$. In particular, $e u_{1} f=(a x, b x)$. Now consider the case where $2 \leq i \leq k$. Here $b_{i} x \npreceq b x$; for otherwise, since $x \notin c(b)$, we would have $b_{i}=b$. Similarly, $b x \npreceq b_{i} x$.

Hence $e u_{i} f=0$. Next, suppose that $k<i \leq n$. Then, by the choice of $x, a x \npreceq a_{i}$. Further, $a_{i} \npreceq a x$; for otherwise $a_{i} \preceq a$, which is impossible since $l\left(a_{i}\right) \nless l(a)$ and $a_{i} \neq a$. Hence $a x \| a_{i}$ and so $e u_{i}=(a x, a x)\left(a_{i}, b_{i}\right)=0$, which gives $e u_{i} f=0$. Thus we have established (2).

Take $p:=(1, a x)$ and $q:=(b x, 1)$. Then, from (1) and (2),

$$
p \operatorname{etfq}=\alpha_{1}(1,1)+p e v f q
$$

But, since $p, e, f, q \in S^{\prime}$, we have that $\|p e v f q\| \leq\|v\|<\left|\alpha_{1}\right|$. Thus

$$
\left\|\alpha_{1}^{-1}(p e t f q)-(1,1)\right\|<1
$$

Consequently, $\alpha_{1}^{-1}\left(\right.$ petfq) is invertible in $l_{0}^{1}(S)$; thus there exists $r \in l_{0}^{1}(S)$ such that $\alpha_{1}^{-1}($ petfqr $)=(1,1)$. Since $t \in T$, it follows that $(1,1) \in T$ and so $T=l_{0}^{1}(S)$. This shows that $l_{0}^{1}(S)$ is simple.

Now assume that X is finite, with elements $x_{1}, x_{2}, \ldots, x_{n}$. For $(a, b) \in S^{\prime}$ define $w_{a, b} \in l_{0}^{1}(S)$ by

$$
w_{a, b}:=(a, b)-\sum_{i=1}^{n}\left(a x_{i}, b x_{i}\right)
$$

Then $\left\|w_{a, b}\right\|=n+1$. Define a subspace T of $l_{0}^{1}(S)$ by

$$
T:=\left\{\sum_{(a, b) \in S^{\prime}} \alpha_{a, b} w_{a, b}: \quad \alpha_{a, b} \in \mathbb{C} \text { and } \sum_{(a, b) \in S^{\prime}}\left|\alpha_{a, b}\right|<\infty\right\}
$$

Let $(a, b),(c, d) \in S^{\prime}$ and consider the product $w_{a, b}(c, d)$. If $b=c u$ for some $u \in M(X)$ then $w_{a, b}(c, d)=(a, d u)-\sum_{i=1}^{n}\left(a x_{i}, d u x_{i}\right)=w_{a, d u} \in T$. If $c=b x_{r} v$ for some r and some $v \in M(X)$ then $w_{a, b}(c, d)=\left(a x_{r} v, d\right)-\left(a x_{r} v, d\right)=0$. If $b \| c$ then $w_{a, b}(c, d)=0$. Thus $T(c, d) \subseteq T$. This shows that T is a right ideal of $l_{0}^{1}(S)$. A similar argument shows that it is a left ideal.

Finally, we prove that the ideal T is proper. Define $\phi: S^{\prime} \rightarrow \mathbb{C}$ by $\phi((a, b))=$ $n^{-(1 / 2)(l(a)+l(b))}$. Since $|\phi((a, b))| \leq 1, \phi$ extends to a continuous linear functional on $l_{0}^{1}(S)$. Now, for all $(a, b) \in S^{\prime}$,

$$
\begin{aligned}
\phi\left(w_{a, b}\right) & =\phi((a, b))-\sum_{i=1}^{n} \phi\left(\left(a x_{i}, b x_{i}\right)\right) \\
& =n^{-(1 / 2)(l(a)+l(b))}-n \cdot n^{-(1 / 2)(l(a)+l(b)+2)}=0
\end{aligned}
$$

Hence, by continuity, $\phi(t)=0$ for all $t \in T$. But $\phi((1,1))=1$ and so $(1,1) \notin T$. Thus T is proper.

The corresponding result for $\mathbb{C}_{0}[P(X)]$ was obtained in [11].

REFERENCES

[1] Barnes, B.A. and Duncan, J. - The Banach algebra $l^{1}(S)$, J. Functional Analysis, 18 (1975), 96-113.
[2] Crabb, M.J.; Duncan, J. and McGregor, C.M. - Spectra in some inverse semigroup algebras, Proc. Roy. Irish Acad., 104 A(2) (2004), 211-218.
[3] Crabb, M.J. and Munn, W.D. - On the contracted l^{1}-algebra of a 0 -bisimple inverse semigroup, Proc. Roy. Soc. Edinburgh Ser. A, 135 (2005), 285-295.
[4] Clifford, A.H. and Preston, G.B. - The algebraic theory of semigroups, Math. Surveys of the Amer. Math. Soc. (Providence RI: AMS, 1961 (vol. 1) and 1967 (vol. 2)).
[5] Cuntz, J. - Simple C^{*}-algebras generated by isometries, Comm. Math. Physics, 57 (1977), 173-185.
[6] Dales, H.G.; Laustsen, N.J. and Read, C.J. - A properly infinite Banach *-algebra with a nonzero bounded trace, Studio Math., 155 (2003), 107-129.
[7] Domanov, O.I. - Semisimplicity and identities of inverse semigroup algebras. Rings and modules, Mat. Issled., 38 (1976), 123-137.
[8] Duncan, J. - Ph.D. thesis (Univ. of Newcastle upon Tyne, 1964).
[9] Lawson, M.V. - Inverse Semigroups, Singapore: World Scientific, 1998.
[10] McGregor, C.M. - A representation for $l^{1}(S)$, Bull. London Math. Soc., 8 (1976), 156-160.
[11] Munn, W.D. - Simple contracted semigroup algebras, In "Proc. Conf. in honor of Alfred H. Clifford", Tulane Univ., 1978, pp. 35-45. (New Orleans: Tulane, 1979).
[12] Munn, W.D. - The algebra of a combinatorial inverse semigroup, J. London Math. Soc. (2), 27 (1983), 35-38.
[13] Nivat, M. and Perrot, J.-F. - Une généralisation du monoïde bicyclique, C. R. Acad. Sci. Paris Sér. A, 271 (1970), 824-827.
[14] Renault, J. - A groupoid approach to C^{*}-algebras, Lect. Notes in Math., 793 (1980), Berlin: Springer-Verlag.

M.J. Crabb and W.D. Munn,

Department of Mathematics, University of Glasgow, Glasgow, G12 8QW - SCOTLAND, U.K.

