PORTUGALIAE MATHEMATICA Vol. 63 Fasc. 3 – 2006 Nova Série

ON THE CONTRACTED *l*¹-ALGEBRA OF A POLYCYCLIC MONOID

M.J. CRABB and W.D. MUNN

Recommended by J. Almeida

Abstract: Let P(X) denote the polycyclic monoid (Cuntz semigroup) on a nonempty set X and let A denote the Banach algebra $l^1(P(X))/Z$, where Z is the (closed) ideal spanned by the zero of P(X). Then A is primitive. Moreover, A is simple if and only if X is infinite.

The l^1 -algebra $l^1(S)$ of a semigroup S consists of all functions $a: S \to \mathbb{C}$ (the complex field) of finite or countably infinite support and such that $\sum_{x \in S} |a(x)| < \infty$, where addition and scalar multiplication are defined pointwise and multiplication is taken to be convolution. As noted in [1], $l^1(S)$ is a Banach algebra with respect to the norm || || defined by $||a|| := \sum_{x \in S} |a(x)|$. By identifying each $x \in S$ with its characteristic function, we can write a typical element of $l^1(S)$ in the form $\sum_{x \in S} \alpha_x x$, where $\sum_{x \in S} |\alpha_x| < \infty$, $(\alpha_x \in \mathbb{C})$.

The semigroup algebra $\mathbb{C}[S]$ is the subalgebra consisting of all functions $a: S \to \mathbb{C}$ of finite support. When S is a nontrivial semigroup with zero z, it is often helpful to replace $\mathbb{C}[S]$ by $\mathbb{C}[S]/\mathbb{C}z$, where $\mathbb{C}z$ is the ideal $\{\alpha z : \alpha \in \mathbb{C}\}$. We have thus, in effect, simply identified z with the zero of the algebra. In [4, Chapter 5], $\mathbb{C}[S]/\mathbb{C}z$ is called the 'contracted semigroup algebra' of S over \mathbb{C} and is denoted by $\mathbb{C}_0[S]$. With this in mind, we call the Banach algebra $l^1(S)/\mathbb{C}z$ the contracted l^1 -algebra of S and denote it by $l_0^1(S)$. A typical element u of $l_0^1(S)$ can be written in the form $u = \sum_{x \in S \setminus 0} \alpha_x x$, where $\sum_{x \in S \setminus 0} |\alpha_x| < \infty$, and we define its support, $\sup(u)$, to be $\{x \in S \setminus 0: \alpha_x \neq 0\}$.

Received: May 5, 2004.

In this paper, we study $l_0^1(S)$ for the case in which S is the polycyclic monoid P(X) on nonempty a set X [13]. It is shown that $l_0^1(S)$ is primitive for all choices of X (Theorem 1) and is simple if and only if X is infinite (Theorem 2).

We begin by recalling the definition of P(X). Let M(X) denote the free monoid on X. For $w = x_1 x_2 \dots x_n \in M(X)$, where each $x_i \in X$, we define the length l(w) and the content c(w) of w by l(w) := n and $c(w) := \{x_1, x_2, \dots, x_n\}$. In addition, we take l(1) := 0 and $c(1) := \emptyset$, where 1 denotes the identity of M(X)(the empty word). We say that $u \in M(X)$ is an initial segment of $v \in M(X)$, written $u \leq v$, if and only if v = uw for some $w \in M(X)$. For $u, v \in M(X)$, we write $u \parallel v$ if and only if $u \not\leq v$ and $v \not\leq u$.

Let $P(X) := (M(X) \times M(X)) \cup \{0\}$ and define a multiplication in P(X) by

$$(a,b)(c,d) = \begin{cases} (au,d) & \text{if } c = bu \text{ for some } u \in M(X) ,\\ (a,dv) & \text{if } b = cv \text{ for some } v \in M(X) ,\\ 0 & \text{if } b \parallel c ,\\ 0(a,b) = (a,b)0 = 0^2 = 0 . \end{cases}$$

Then P(X) is a monoid with identity (1,1) and zero 0; further, it admits an involution * given by

$$(a,b)^* = (b,a)$$
, $0^* = 0$.

(In fact, P(X) is an example of a 0-bisimple inverse semigroup in which * denotes inversion and in which each subgroup is trivial.) Note that $(a, b)^2 = (a, b)$ if and only if a = b. Thus the set E(X) of idempotents of P(X) is

$$\left\{(a,a)\colon a\in M(X)\right\}\cup\left\{0\right\}\ .$$

Clearly E(X) is a commutative submonoid of P(X) (the 'semilattice' of P(X)) and it is easily seen to be partially ordered by

$$(a,a) \ge (b,b) \iff a \le b$$
, $(a,a) > 0$.

Observe that $(a, a) \ge (b, b)$ if and only if (a, a)(b, b) = (b, b) [= (b, b)(a, a)].

An alternative approach to the monoid described above is as follows. Let FI(X) denote the free monoid with involution^{*} on a nonempty set X. Adjoin a zero 0 to FI(X), take $0^* = 0$ and write $Q(X) := (FI(X) \cup \{0\})/\rho$, where ρ is the congruence determined by the relations $x^*x = 1$ $(x \in X)$ and $x^*y = 0$ $(x, y \in X \text{ and } x \neq y)$. This monoid is termed the *Cuntz semigroup* on X. Note that every nonzero ρ -class has a unique representative of the form ab^* $(a, b \in M(X))$. We identify this element with its ρ -class and so can write

 $Q(X) = \{ab^*: a, b \in M(X)\} \cup \{0\}$. It is routine to verify that $\theta: P(X) \to Q(X)$ is an isomorphism. Various aspects of algebras associated with Q(X) have been studied in [5], [6] and [2]; see also [14]. For an extended discussion of polycyclic monoids, see [9, §9.3].

Next, we review the concept of primitivity. Let A be a complex algebra and let V be a nonzero right A-module under the action \circ . A vector $v \in V \setminus 0$ is called *cyclic* if and only if $v \circ A = V$. Recall that V is termed

- (i) faithful if and only if, for all $a \in A$, $V \circ a = 0$ implies a = 0,
- (ii) strictly irreducible if and only if every nonzero vector in V is cyclic.

We say that A is (right) primitive if and only if there exists a faithful strictly irreducible right A-module.

For the case in which A is a Banach algebra, V a Banach space with norm $|| ||_V$ and \circ a right action of A on V with $||v \circ a||_V \leq ||v||_V ||a||$ ($v \in V$, $a \in A$), we make a further definition. We say that V is topologically irreducible if and only if, for all $v \in V \setminus 0$, all $u \in V$ and a given positive real number ϵ , there exists $a \in A$ such that

$$||v \circ a - u||_V < \epsilon$$
.

The following result ([8], [10]) is required below. For convenience, we include a proof.

Lemma. Let A and V be as in the preceding paragraph. If V is topologically irreducible and possesses a cyclic vector then V is strictly irreducible.

Proof: Let V be topologically irreducible, with a cyclic vector v_1 . Since the mapping $f: A \to V$ defined by $f(a) = v_1 \circ a$ is continuous, the open mapping theorem shows that, for some positive real number δ ,

$$\left\{ v \in V \colon \|v\|_V < \delta \right\} \subseteq \left\{ f(a) \colon a \in A \text{ and } \|a\| < 1 \right\}$$

Let $v \in V \setminus 0$. Since V is topologically irreducible, there exists $b \in A$ such that $\|v_1 - v \circ b\|_V < \delta$. Hence there exists $a \in A$ with $\|a\| < 1$ such that $v_1 - v \circ b = v_1 \circ a$. Consider $c \in A$ defined by $c = -\sum_{r=1}^{\infty} a^r$. Then a + c - ac = 0. Hence

$$v \circ (b - bc) = (v_1 - v_1 \circ a) - (v_1 - v_1 \circ a) \circ c$$

= $v_1 - v_1 \circ (a + c - ac) = v_1$.

Consequently, v is cyclic. Thus V is strictly irreducible.

We now come to our first result. Note that since the polycyclic monoid on X admits an involution, so also does its contracted l^1 -algebra. Thus the term 'primitive' can be used without qualification.

Theorem 1. For every nonempty set X, $l_0^1(P(X))$ is primitive.

Proof: For a given nonempty set X write S := P(X), E := E(X) and $V := l_0^1(E)$.

We begin by defining a right action of $l_0^1(S)$ on V. First note that, if $x \in S$ and $e \in E$ then $xx^*, x^*ex \in E$. Now define $\circ : E \times S \to E$ by the rule that

$$(\forall e \in E) \ (\forall x \in S) \qquad e \circ x = \begin{cases} x^* e x & \text{if } e \leq x x^* \\ 0 & \text{otherwise} \end{cases},$$

Let $e \in E$ and let $x, y \in S$. A straightforward calculation shows that

(1)
$$e \le xx^*$$
 and $x^*ex \le yy^* \iff e \le xy(xy)^*$.

Using this, we now prove that

(2)
$$(e \circ x) \circ y = e \circ (xy) .$$

Suppose that $e \leq xy(xy)^*$. Then $e \circ (xy) = (xy)^*exy$. But, by (1), $e \leq xx^*$ and $x^*ex \leq yy^*$. Hence $(e \circ x) \circ y = (x^*ex) \circ y = y^*(x^*ex)y = (xy)^*exy$. Thus (2) holds in this case. Now suppose that $e \nleq xy(xy)^*$. Then $e \circ (xy) = 0$. But, by (1), either $e \nleq xx^*$ or $x^*ex \nleq yy^*$. If $e \leq xx^*$ and $x^*ex \nleq yy^*$ then $(e \circ x) \circ y = (x^*ex) \circ y = 0$, while if $e \nleq xx^*$ then $e \circ x = 0$ and so again $(e \circ x) \circ y = 0$. Thus (2) holds in this case also. Since, for all $e \in E$ and $x \in S$, $||e \circ x|| \leq ||x^*ex|| \leq 1$ we can extend \circ to a right action, also denoted by \circ , of $l_0^1(S)$ on V; and, clearly, for all $v \in V$ and all $u \in l_0^1(S)$, $||v \circ u|| \leq ||v|| . ||u||$.

We show next that V is faithful. Let S' and E' denote $S \setminus 0$ and $E \setminus 0$, respectively. Observe first that E' satisfies the maximal condition with respect to \leq ; for if T is a nonempty subset of M(X) and $s \in T$ is chosen such that $l(s) \leq l(t)$ for all $t \in T$ then (s, s) is maximal in the subset $\{(t, t) : t \in T\}$ of E'. Let $u \in l_0^1(S) \setminus 0$, say $u = \sum_{x \in S'} \alpha_x x$, with $\sum_{x \in S'} |\alpha_x| < \infty$ and not all $\alpha_x = 0$. Choose $e \in E'$ maximal in $\{xx^* : x \in \text{supp}(u)\}$. Then

(3)
$$e \circ u = \sum_{xx^*=e} \alpha_x(x^*ex) \; .$$

Now let $x, y \in S'$ be such that $xx^* = yy^* = e$ and $x^*ex = y^*ey$. We have that x = (a, b) and y = (c, d) for some $a, b, c, d \in M(X)$. Thus (a, a) = e = (c, c) and $(b, b) = x^*ex = y^*ey = (d, d)$. Hence a = c, b = d and so x = y. It follows from (3) that $e \circ u \neq 0$. This shows that V is faithful.

ON THE CONTRACTED *l*¹-ALGEBRA OF A POLYCYCLIC MONOID 331

To complete the proof, we show that V is strictly irreducible. Let $v \in V \setminus 0$ and let $e \in \operatorname{supp}(v)$, with coefficient $\alpha \in \mathbb{C} \setminus 0$. We prove first that, for a given positive real number ϵ , there exist $v' \in V$ and $u \in l_0^1(E) (\subseteq l_0^1(S))$ such that

(4)
$$v \circ u = \alpha e + v'$$
, $||v'|| < \epsilon$.

Note that if e is minimal in $\operatorname{supp}(v)$ then $v \circ e = \alpha e$ and so (4) holds with u = eand v' = 0. Suppose, therefore, that e is not minimal in $\operatorname{supp}(v)$. Write v = w + w', where $w, w' \in V$ are such that

(5)
$$e \in \operatorname{supp}(w)$$
, $\operatorname{supp}(w)$ is finite, $\operatorname{supp}(w) \cap \operatorname{supp}(w') = \emptyset$, $||w'|| < \epsilon$.

Without loss of generality, we may assume that e is not minimal in $\operatorname{supp}(w)$. (If need be, transfer a term from w' to w.) Let $F := \{f \in \operatorname{supp}(w) \colon f < e\}$ and define $u \in l_0^1(E)$ by

$$u := \prod_{f \in F} (e - f)$$

We now show that

(6)
$$(\forall g \in E')$$
 $g \circ u = \begin{cases} g & \text{if } g \leq e \text{ and, for all } f \in F, g \nleq f, \\ 0 & \text{if } g \leq e \text{ and, for some } f \in F, g \leq f, \\ 0 & \text{if } g \nleq e. \end{cases}$

Suppose first that $g \in E'$ is such that $g \leq e$ and that, for all $f \in F$, $g \nleq f$. Then, for all $f \in F$, $g \circ (e-f) = g$ and so $g \circ u = g$. Next, suppose that $g \in E'$ is such that $g \leq e$ and that there exists $f \in F$ with $g \leq f$. Then $g \circ (e-f) = g-g = 0$ and so $g \circ u = 0$. Finally, suppose that $g \in E'$ is such that $g \nleq e$. Then, for any $f \in F$, $g \nleq f$ and so $g \circ (e-f) = 0$. Hence again $g \circ u = 0$. This establishes (6).

It follows from (6) that $w \circ u = \alpha e$. Write $v' := w' \circ u$. Since, by (6), for all $g \in \operatorname{supp}(w')$, $g \circ u$ is either g or 0 we have that $||v'|| \leq ||w'||$. Thus, from (5), we see that (4) holds.

Next, let $f \in E'$. There exist $a, b \in M(X)$ such that e = (a, a) and f = (b, b). Write x := (a, b). Then $xx^* = e$ and

(7)
$$e \circ x = f$$

Hence, from (4), $v \circ (ux) = \alpha f + (v' \circ x)$ and, in addition, $||v' \circ x|| \le ||v'|| < \epsilon$. Thus

$$\left\| v \circ (ux) - \alpha f \right\| < \epsilon ,$$

from which we deduce that V is topologically irreducible. But, from (7), it follows that e is a cyclic vector in V. Hence, by the Lemma, V is strictly irreducible.

The corresponding result for $\mathbb{C}_0[P(X)]$ is a consequence of a theorem of Domanov [7]. A short proof is given in [12]. As already remarked, P(X) is a special case of a 0-bisimple inverse semigroup with only trivial subgroups. In [3], we show that if S is a 0-bisimple inverse semigroup with a nonzero maximal subgroup G such that $l^1(G)$ is primitive then $l_0^1(S)$ is primitive. This generalises Theorem 1 above, but is harder to prove since we have to allow for the presence of nontrivial subgroups and cannot assume that the semilattice of S satisfies the maximal condition under the natural partial ordering.

Our second result gives a necessary and sufficient condition for $l_0^1(P(X))$ to be a simple algebra.

Theorem 2. Let X be a nonempty set. Then $l_0^1(P(X))$ is simple if and only if X is infinite.

Proof: Write S := P(X) and $S' := S \setminus 0$. Assume first that X is infinite. Let T be a nonzero ideal of $l_0^1(S)$. We show that $T = l_0^1(S)$.

Let $t \in T \setminus 0$. Choose $a \in M(X)$ such that a has minimal length amongst the first components of the elements of $\operatorname{supp}(t)$; and choose $b \in M(X)$ such that $(a, b) \in \operatorname{supp}(t)$. Then, for some positive integer n, we may write t in the form

(1)
$$t = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n + v ,$$

where $u_1, u_2, ..., u_n$ are distinct elements of $\operatorname{supp}(t)$ with $u_1 = (a, b), \alpha_i \in \mathbb{C} \setminus 0$ (i=1, 2, ..., n) and $v \in l_0^1(S)$ is such that $||v|| < |\alpha_1|$. Write $u_i = (a_i, b_i) \in M(X) \times M(X)$ (i=1, 2, ..., n) and assume, without loss of generality, that for some $k \in \{1, 2, ..., n\}$, $(a =) a_1 = a_2 = \cdots = a_k$, while $a_i \neq a$ if $k < i \leq n$. Since $u_1, u_2, ..., u_k$ are distinct, it follows that $(b =) b_1, b_2, ..., b_k$ are distinct.

Let Y denote $\bigcup_{i=1}^{n} (c(a_i) \cup c(b_i))$. Since Y is a finite subset of the infinite set X, there exists $x \in X \setminus Y$. Write

$$e := (ax, ax)$$
, $f := (bx, bx)$.

We shall show that

(2)
$$eu_i f = \begin{cases} (ax, bx) & \text{if } i = 1, \\ 0 & \text{if } 2 \le i \le n \end{cases}$$

Suppose first that $1 \le i \le k$. Then $eu_i f = (ax, ax)(a, b_i)(bx, bx) = (ax, b_ix)(bx, bx)$. In particular, $eu_1 f = (ax, bx)$. Now consider the case where $2 \le i \le k$. Here $b_i x \ne bx$; for otherwise, since $x \notin c(b)$, we would have $b_i = b$. Similarly, $bx \ne b_ix$.

Hence $eu_i f = 0$. Next, suppose that $k < i \leq n$. Then, by the choice of x, $ax \not\leq a_i$. Further, $a_i \not\leq ax$; for otherwise $a_i \leq a$, which is impossible since $l(a_i) \not\leq l(a)$ and $a_i \neq a$. Hence $ax \parallel a_i$ and so $eu_i = (ax, ax)(a_i, b_i) = 0$, which gives $eu_i f = 0$. Thus we have established (2).

Take p := (1, ax) and q := (bx, 1). Then, from (1) and (2),

$$p e t f q = \alpha_1(1,1) + p e v f q .$$

But, since $p, e, f, q \in S'$, we have that $||p e v f q|| \le ||v|| < |\alpha_1|$. Thus

$$\left\| \alpha_1^{-1}(p \, e \, t f q) - (1, 1) \right\| < 1$$
.

Consequently, $\alpha_1^{-1}(p \, e \, t f q)$ is invertible in $l_0^1(S)$; thus there exists $r \in l_0^1(S)$ such that $\alpha_1^{-1}(p \, e \, t f q \, r) = (1, 1)$. Since $t \in T$, it follows that $(1, 1) \in T$ and so $T = l_0^1(S)$. This shows that $l_0^1(S)$ is simple.

Now assume that X is finite, with elements $x_1, x_2, ..., x_n$. For $(a, b) \in S'$ define $w_{a,b} \in l_0^1(S)$ by

$$w_{a,b} := (a,b) - \sum_{i=1}^{n} (ax_i, bx_i) .$$

Then $||w_{a,b}|| = n+1$. Define a subspace T of $l_0^1(S)$ by

$$T := \left\{ \sum_{(a,b)\in S'} \alpha_{a,b} \, w_{a,b} \colon \alpha_{a,b} \in \mathbb{C} \text{ and} \sum_{(a,b)\in S'} |\alpha_{a,b}| < \infty \right\} \,.$$

Let $(a,b), (c,d) \in S'$ and consider the product $w_{a,b}(c,d)$. If b = cu for some $u \in M(X)$ then $w_{a,b}(c,d) = (a,du) - \sum_{i=1}^{n} (ax_i, dux_i) = w_{a,du} \in T$. If $c = bx_r v$ for some rand some $v \in M(X)$ then $w_{a,b}(c,d) = (ax_r v, d) - (ax_r v, d) = 0$. If $b \parallel c$ then $w_{a,b}(c,d) = 0$. Thus $T(c,d) \subseteq T$. This shows that T is a right ideal of $l_0^1(S)$. A similar argument shows that it is a left ideal.

Finally, we prove that the ideal T is proper. Define $\phi: S' \to \mathbb{C}$ by $\phi((a, b)) = n^{-(1/2)(l(a)+l(b))}$. Since $|\phi((a, b))| \leq 1$, ϕ extends to a continuous linear functional on $l_0^1(S)$. Now, for all $(a, b) \in S'$,

$$\phi(w_{a,b}) = \phi((a,b)) - \sum_{i=1}^{n} \phi((ax_i, bx_i))$$

= $n^{-(1/2)(l(a)+l(b))} - n \cdot n^{-(1/2)(l(a)+l(b)+2)} = 0$

Hence, by continuity, $\phi(t) = 0$ for all $t \in T$. But $\phi((1, 1)) = 1$ and so $(1, 1) \notin T$. Thus T is proper.

The corresponding result for $\mathbb{C}_0[P(X)]$ was obtained in [11].

REFERENCES

- [1] BARNES, B.A. and DUNCAN, J. The Banach algebra $l^1(S)$, J. Functional Analysis, 18 (1975), 96–113.
- [2] CRABB, M.J.; DUNCAN, J. and MCGREGOR, C.M. Spectra in some inverse semigroup algebras, Proc. Roy. Irish Acad., 104 A(2) (2004), 211–218.
- [3] CRABB, M.J. and MUNN, W.D. On the contracted l¹-algebra of a 0-bisimple inverse semigroup, Proc. Roy. Soc. Edinburgh Ser. A, 135 (2005), 285–295.
- [4] CLIFFORD, A.H. and PRESTON, G.B. The algebraic theory of semigroups, Math. Surveys of the Amer. Math. Soc. (Providence RI: AMS, 1961 (vol. 1) and 1967 (vol. 2)).
- [5] CUNTZ, J. Simple C*-algebras generated by isometries, Comm. Math. Physics, 57 (1977), 173–185.
- [6] DALES, H.G.; LAUSTSEN, N.J. and READ, C.J. A properly infinite Banach *-algebra with a nonzero bounded trace, *Studio Math.*, 155 (2003), 107–129.
- [7] DOMANOV, O.I. Semisimplicity and identities of inverse semigroup algebras. Rings and modules, *Mat. Issled.*, 38 (1976), 123–137.
- [8] DUNCAN, J. Ph.D. thesis (Univ. of Newcastle upon Tyne, 1964).
- [9] LAWSON, M.V. Inverse Semigroups, Singapore: World Scientific, 1998.
- [10] MCGREGOR, C.M. A representation for $l^1(S)$, Bull. London Math. Soc., 8 (1976), 156–160.
- [11] MUNN, W.D. Simple contracted semigroup algebras, In "Proc. Conf. in honor of Alfred H. Clifford", Tulane Univ., 1978, pp. 35–45. (New Orleans: Tulane, 1979).
- [12] MUNN, W.D. The algebra of a combinatorial inverse semigroup, J. London Math. Soc. (2), 27 (1983), 35–38.
- [13] NIVAT, M. and PERROT, J.-F. Une généralisation du monoïde bicyclique, C. R. Acad. Sci. Paris Sér. A, 271 (1970), 824–827.
- [14] RENAULT, J. A groupoid approach to C*-algebras, Lect. Notes in Math., 793 (1980), Berlin: Springer-Verlag.

M.J. Crabb and W.D. Munn, Department of Mathematics, University of Glasgow, Glasgow, G12 8QW — SCOTLAND, U.K.