
PORTUGALIAE MATHEMATICA

Vol. 63 Fasc. 3 – 2006

Nova Série

A BILINEAR OPTIMAL CONTROL PROBLEM APPLIED

TO A TIME DEPENDENT HARTREE–FOCK EQUATION

COUPLED WITH CLASSICAL NUCLEAR DYNAMICS

Lucie Baudouin

Recommended by J.P. Dias

Abstract: We study a problem of bilinear optimal control for the electronic wave

function of an Helium atom by an external time dependent electric field. The behavior of

the atom is modeled by the Hartree–Fock equation, whose solution is the wave function

of the electrons, coupled with the classical Newtonian dynamics, corresponding to the

motion of the nucleus. We prove the existence of a bilinear optimal control in the case

when the position of the nucleus is known and also prove the corresponding optimality

condition. Then, we detail the proof of the existence of an optimal control for the coupled

system and complete the study giving a formal optimality condition to define the electric

control.

1 – Introduction

We are interested in a bilinear optimal control problem applied to the mathe-

matical model of the behavior of a simplified chemical system, in fact an Helium

atom, controlled by an external electric field. We describe the chemical system in

terms of ordinary and partial differential equations using very classical approxi-

mations of quantum chemistry.

On the one hand, since the nucleus is much heavier than the electrons, we

consider it as a point particle which moves according to the Newton dynamics in

the external electric field and in the electric potential created by the electronic
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density (nucleus-electron attraction of Hellman-Feynman type). We obtain a sec-

ond order in time ordinary differential equation solved by the position a(t) of the

nucleus (of mass m). On the other hand, under the restricted Hartree–Fock for-

malism, we describe the behavior of the electrons by a wave function, solution

of a time dependent Hartree–Fock equation. We can define it as a Schrödinger

equation with a coulombian potential due to the nucleus, singular at finite dis-

tance, an electric potential corresponding to the external electric field, possibly

unbounded, and a nonlinearity of Hartree type in the right hand side. We want

precisely to study the optimal control of the wave function of the electrons only,

the control being performed by the electric potential.

We are in fact considering the following coupled system:




i ∂tu+ ∆u+
1

|x− a(t)|u+ V1u =

(
|u|2 ⋆ 1

|x|

)
u , in R

3×(0, T )

u(0) = u0 , in R
3

m
d2a

dt2
=

∫

R3

−|u(x)|2 ∇ 1

|x− a| dx−∇V1(a) , in (0, T )

a(0) = a0 ,
da

dt
(0) = v0

(1)

where V1 is the external electric potential depending on space and time variables,

which takes its values in R and satisfy the assumptions:

(
1 + |x|2

)− 1

2V1 ∈ L∞
(
(0, T ) × R

3
)
,

(
1 + |x|2

)− 1

2∂tV1 ∈ L1
(
0, T ;L∞(R3)

)
,

(
1 + |x|2

)− 1

2∇V1 ∈ L1
(
0, T ;L∞(R3)

)
,

∇V1 ∈ L2
(
0, T ;W 1,∞

loc (R3)
)
.

(2)

We will define later on the optimal control problem related to this system and

recall the precise results of existence and regularity of the solution we need in the

sequel. One can already find in reference [2] the study of existence and regularity

of solutions to this coupled system.

The Cauchy problem for this kind of non-adiabatic approximation of the

general chemical Schrödinger equation has also been studied in the particular

case when the atom is subjected to a uniform external time-dependent electric

field I(t) such that in equation (1), one has V1 = −I(t) · x as in reference [5].

The authors remove the electric potential from the equation using a change of

unknown function and variables (gauge transformation given in [8]). From then

on, they have to deal with the nonlinear Schrödinger equation with only a time

dependent coulombian potential.
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We work in R
3 and throughout this paper, we use the following notations:

∇v =

(
∂v

∂x1
,
∂v

∂x2
,
∂v

∂x3

)
, ∆v =

3∑

i=1

∂2v

∂x2
i

, ∂tv =
∂v

∂t
,

Re and Im are the real and the imaginary parts of a complex number ,

〈 . , . 〉 stands for the scalar product in an Hilbert space ,

W 2,1(0, T ) = W 2,1(0, T ; R3), for p ≥ 1, Lp = Lp(R3) ,

the usual Sobolev spaces are H1 = H1(R3) and H2 = H2(R3) .

We also define

H1 =

{
v ∈ L2(R3),

∫

R3

(
1 + |x|2

) ∣∣v(x)
∣∣2 dx < +∞

}
,

H2 =

{
v ∈ L2(R3),

∫

R3

(
1 + |x|2

)2 ∣∣v(x)
∣∣2 dx < +∞

}
.

One can notice that H1 and H2 are respectively the images of H1 and H2 under

the Fourier transform.

On a mathematical point of view, the optimal control problem consists in

minimizing a cost functional depending on the solution of a state equation (here, a

coupled system of partial differential equations) and to characterize the minimum

of the functional by an optimality condition. One will see in the sequel that

even if we can prove existence of an optimal control for system (1), we cannot

justify the optimality condition we formally obtain. However, the process will be

described and fully proved in the following section in the simpler situation where

the position of the nucleus is known at every moment.

Let (u, a) be a solution of system (1) where the external electric field V1 is

the control, and u1 ∈ L2 be a given target. We define the cost functionnal J by

J(V1, u) =
1

2

∫

R3

∣∣u(T ) − u1

∣∣2 dx +
r

2
‖V1‖2

H

where r > 0 is a weight affecting the control cost and

H =

{
V,

(
1 + |x|2

)− 1

2V ∈ H1(0, T ;W) and ∇V ∈ L2(0, T ;W 1,∞)

}

where W is an Hilbert space which satisfies W →֒W 1,∞(R3). The problem is:

Can one find a minimizer V1 ∈ H for inf
{
J(V, u), V ∈ H

}
?
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Remarks. 1) For example, in the space H, we can choose the Hilbert space

W = H3 ⊕ Span
{
ψ1, ψ2, ..., ψm

}

where m ∈ N, and for all i ∈ [[1,m]], ψi ∈W 1,∞(R3)\H3(R3).

2) In H, we can replace the hypothesis on ∇V by ∇V ∈ L2
(
0, T ;W 1,∞

loc

)
as

in assumption (2). Indeed, since we do not use any hypothesis on ∇V1 to prove

that the solution a is bounded in C([0, T ]) (see [2]), then we do not need any

information on ∇V1 at infinity in R
3. We will give details later on.

We can actually prove the following theorem:

Theorem 1. There exists an optimal control V1 ∈ H such that

J(V1, u) = inf
{
J(V, u), V ∈ H

}
.

One can notice that we first need an existence result for a solution of the

coupled system (1) in order to be able to formulate the bilinear optimal control

problem. We have already proved one, in reference [2] (also in [1]), actually with

a more general hypothesis on V1. Indeed, we have

Theorem 2. We assume that T is a positive arbitrary time and

(
1 + |x|2

)−1
V1 ∈ L∞

(
(0, T ) × R

3
)
,

(
1 + |x|2

)−1
∂tV1 ∈ L1

(
0, T ;L∞(R3)

)
,

(
1 + |x|2

)−1∇V1 ∈ L1
(
0, T ;L∞(R3)

)
,

∇V1 ∈ L2
(
0, T ;W 1,∞

loc (R3)
)
.

(3)

If u0 ∈ H2 ∩H2, a0, v0 ∈ R, then system (1) has at least a solution

(u, a) ∈
(
W 1,∞(0, T ;L2) ∩ L∞(0, T ;H2 ∩H2)

)
×W 2,1(0, T ) .

Moreover, for any solution of (1) in this class, if ρ0 > 0 is such that

∥∥(1 + |x|2
)−1

V1

∥∥
W 1,1(0,T,L∞)

≤ ρ0 ,

then there exists R > 0 depending on ρ0 such that ‖a‖C([0,T ]) ≤ R and if ρ1> 0

is such that
∥∥∥∥

V1

1 + |x|2
∥∥∥∥

W 1,1(0,T,L∞)

+

∥∥∥∥
∇V1

1 + |x|2
∥∥∥∥

L1(0,T,L∞)

+
∥∥∇V1

∥∥
L2(0,T ;W 1,∞(BR))

≤ ρ1
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then there exists a non-negative constant K0
T,ρ1

depending on the time T , on ρ1,

on ‖u0‖H2∩H2
and on |a0|, |v0|, such that:

(4)
∥∥u
∥∥

L∞(0,T ;H2∩H2)
+
∥∥∂tu

∥∥
L∞(0,T ;L2)

+ m

∥∥∥∥
da

dt

∥∥∥∥
L∞(0,T )

+ m

∥∥∥∥
d2a

dt2

∥∥∥∥
L1(0,T )

+

+ sup
t∈[0,T ]

(∫

R3

(∣∣u(t, x)
∣∣2 ⋆ 1

|x|

) ∣∣u(t, x)
∣∣2
)1

2

≤ K0
T,ρ1

.

One can notice that if V1 ∈ H then it satisfies assumptions (2) and (3), and

we have at least a solution to equation (1) with Theorem 2. The optimal control

problem is then well defined.

The reader may also notice that we do not give any uniqueness result for

the coupled system (1) in Theorem 2. Indeed, even if we are convinced that the

solution in this class is unique, we do not have a proof of this result up to now.

Actually, E. Cancès and C. Le Bris give a proof of existence and uniqueness

of solutions for the analogous system without electric potential in [5]. Of course,

the method for proving uniqueness used in this article cannot be applied here

because the Marcinkiewicz spaces which are used do not suit the general electric

potential V1 satisfying (3).

We underline that the lack of proof for uniqueness of the solution has no

effects on the proof of existence of an optimal control (Theorem 1) but of course

it is a main obstruction to the obtention of an optimality condition.

The next section presents the study of the situation where the position of the

nucleus is known, instead of being the solution of an ordinary differential equa-

tion coupled to the Hartree–Fock equation. Without any coupling, the problem

comes down to the difficulty of dealing with a nonlinear Schrödinger equation.

In section 3, we give the proof of Theorem 1 and a formal optimality condition.

2 – Nonlinear Schrödinger equation

Before studying the optimal control problem linked with the coupled situation

described in the introduction, we will consider the position a(t) of the nucleus as

known at any time t ∈ [0, T ] and forget the second equation in (1). Of course,

this is too restrictive for the study of the control of chemical reactions by an

external electric potential, but this section is only a first step in the study of the

more realistic coupled situation. Moreover, in this present case, we will give a
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full result for the optimal control problem described further, from the existence

of an optimal control to the proof of a necessary optimality condition.

2.1. Existence, uniqueness and regularity of solution

We consider the following nonlinear Schrödinger equation:




i ∂tu+ ∆u+

1

|x− a|u+ V1u =

(
|u|2 ⋆ 1

|x|

)
u , R

3×(0, T )

u(0) = u0 , R
3

(5)

where V1 takes its values in R and we make the following assumptions:

a ∈ W 2,1(0, T ) is known ,
(
1 + |x|2

)−1
V1 ∈ L∞

(
(0, T ) × R

3
)
,

(
1 + |x|2

)−1
∂tV1 ∈ L1

(
0, T ;L∞

)
,

(
1 + |x|2

)−1∇V1 ∈ L1
(
0, T ;L∞(R3)

)
.

(6)

We have to underline that one can find in reference [7] the proof of existence,

uniqueness and regularity for the analogous equation without the electric po-

tential V1. This paper also deals with the more general case of an atom with

more than two electrons. We draw the reader’s attention on the fact that one

of the main difficulty we encounter in the situation we are interested in is the

coexistence of two potentials whose singularities are non-comparable.

Before describing the optimal control problem we will consider here, we first

give two regularity results, very useful in the sequel. The first one is a theorem

about the linear Schrödinger equation, given in [4] and proved in reference [3]

(also in [1]). The next one gives existence and regularity of the unique solution

to equation (5) and its proof is given in reference [2].

We first consider the linear Schrödinger equation




i ∂tu+ ∆u+

1

|x− a|u+ V1u = 0, R
3×(0, T )

u(0) = u0 , R
3 ,

we set ρ > 0 and α > 0 such that

(7)

∥∥∥∥
V1

1 + |x|2
∥∥∥∥

W 1,1(0,T,L∞)

+

∥∥∥∥
∇V1

1 + |x|2
∥∥∥∥

L1(0,T,L∞)

≤ ρ and

∥∥∥∥
d2a

dt2

∥∥∥∥
L1(0,T )

≤ α

and we have the following result:
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Theorem 3. Let the initial data u0 belongs to H2 ∩H2 and the electric

potential V1 and the position a of the nucleus satisfy assumption (6). We define

the family of Hamiltonians {H(t), t ∈ [0, T ]} by H(t) = −∆− 1

|x−a(t)| − V1(t).

Then, there exists a unique family of evolution operators {U(t, s), s, t ∈ [0, T ]}
(the so called propagator associated with H(t)) on H2 ∩ H2 such that for u0 ∈
H2 ∩H2 we have

(i) U(t, s)U(s, r)u0 = U(t, r)u0 and U(t, t)u0 = u0 for all s, t, r ∈ [0, T ];

(ii) (t, s) 7→ U(t, s)u0 is strongly continuous in L2 on [0, T ]2 and U(t, s) is

an isometry on L2, that is ‖U(t, s)u0‖L2 = ‖u0‖L2 ;

(iii) U(t, s) ∈ L(H2∩H2) for all (s, t)∈ [0, T ]2 and (t, s) 7→U(t, s)u0 is weakly

continuous from [0, T ]2 to H2 ∩H2; moreover, there exists MT,α,ρ>0

such that: ∀ t,s∈ [0, T ], ∀f ∈H2∩H2, ‖U(t,s)f‖H2∩H2
≤MT,α,ρ‖f‖H2∩H2

.

(iv) Equalities i ∂tU(t,s)u0 =H(t)U(t,s)u0 and i ∂sU(t,s)u0 =−U(t,s)H(s)u0

hold in L2.

Now, Theorem 3 is the main ingredient to prove the following result of exis-

tence along with a Picard fixed point theorem.

Theorem 4. Let T be a positive arbitrary time and α and ρ satisfy (7).

Under assumption (6), and if we also assume u0 ∈ H2 ∩H2, then equation (5)

has a unique solution

u ∈ L∞(0, T ;H2 ∩H2) with ∂tu ∈ L∞(0, T ;L2)

and there exists a real constant C > 0 depending on T , u0, α and ρ such that:

‖u‖L∞(0,T ;H2∩H2) + ‖∂tu‖L∞(0,T ;L2) ≤ C‖u0‖H2∩H2
.

We draw the reader’s attention to the uniqueness of the solution of (5) in this

result. Thus, we can correctly define an optimal control problem on equation (5),

the control being the external electric potential V1 and the solution u.

From now on, we may denote
1

|x− a| by V0 and we mean a ∈ W 2,1(0, T ).

Theorem 3 is also useful to give a meaning to the equations we will encounter in

the sequel. More precisely, we consider the general equation
{
i ∂tv + ∆v + V0v + V1v = f(v) , R

3×(0, T )

v(0) = v0 , R
3

(8)

and we give the following result:
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Proposition 5. Let T be a positive arbitrary time. Under assumption (6),

if we assume v0 ∈ L2 and if we also assume that there exists C,CM > 0 such that

for all u, v ∈ C([0, T ];L2),

‖f(u)‖L1(0,T,L2) ≤ C T
(
‖u‖C([0,T ];L2) + 1

)

and when ‖u‖C([0,T ];L2) ≤M and ‖v‖C([0,T ];L2) ≤M,

‖f(u) − f(v)‖L1(0,T,L2) ≤ CM T‖u− v‖C([0,T ];L2) ,

then equation (8) has a unique solution v ∈ C([0, T ];L2).

The proof uses a Picard fixed point theorem on the functional Φ defined on the

space C([0,T ];L2) by Φ: v 7→ v0−i
∫ ·

0
U(·, s)f(v(s)) ds where U is the propagator

of Theorem 3.

2.2. Optimal control problem

On the evolution system (5), we define an optimal control problem which

reads as follows: if u1 ∈ L2 is a given target, find a minimizer V1 ∈ H for

(9) inf
{
J(V ), V ∈ H

}

where the cost functionnal J is defined by

(10) J(V1) =
1

2

∫

R3

∣∣u(T ) − u1

∣∣2 dx +
r

2
‖V1‖2

H , r > 0 .

There,

H =
{
V,

(
1 + |x|2

)− 1

2 V ∈ H1(0, T ;W )
}

where W is an Hilbert space such that W →֒W 1,∞(R3) and in (10), u is the

solution of equation (5).

Remarks. 1) One can notice that if V1 belongs to H, then it satisfies (6)

and we can apply Theorem 4 that gives a unique solution u.

2) This space H has been chosen here as an Hilbert space in order to have a

differentiable norm.

3) This optimal control problem is a so-called “bilinear optimal control prob-

lem” and the mapping control → state (V1 7→ u) is strongly nonlinear.



A BILINEAR OPTIMAL CONTROL PROBLEM 301

Let us now formulate the result on the bilinear optimal control problem.

Theorem 6. There exists an optimal control V1 ∈ H such that

J(V1) = inf
{
J(V ), V ∈ H

}

and for all δV in H, V1 satisfies

(11) r〈V1, δV 〉H = Im

∫ T

0

∫

R3

δ V (x, t)u(x, t) p̄(x, t) dx dt

where u is solution of (5) and p is solution of the following adjoint problem, set

in R
3×(0, T ).





i ∂tp+ ∆p+ V0p+ V1p =

(
|u|2 ⋆ 1

|x|

)
p+ 2 i

(
Im(up) ⋆

1

|x|

)
u

p(T ) = u(T ) − u1 .

(12)

Remark. If we substitute the Hilbert space H by a reflexive space satisfying

assumption (6) in the definition of J and in (9), the existence of an optimal control

can also be proved. Nevertheless, the proof of an optimality condition needs an

Hilbert space.

A result of existence for a bilinear optimal control problem, governed by a

Schrödinger equation with the same Hartree nonlinearity
(
|u|2 ⋆ 1

|x|

)
u, has also

been given by E. Cancès, C. Le Bris and M. Pilot in [6]. The authors deal

with an electric potential homogeneous in space V1 = −I(t) ·x with I ∈ L2(0, T ),

while we take into account here a more general electric potential optimal control.

For instance, in the definition of H, we can consider the Hilbert space W = H3 ⊕
Span{ψ1, ψ2, ..., ψm} with m ∈ N, and for all i ∈ [[1,m]], ψi ∈W 1,∞(R3)\H3(R3).

Then W →֒ W 1,∞ and this example enables us to deal both with the particular

case of [6] where V1(x, t) = −I(t) ·x but for I ∈ H1(0, T ) and with general electric

potentials (1 + |x|2)− 1

2V1(t) ∈ H2(R3) which are non-homogeneous in space.

We can also specify the optimality condition in the particular case where

W = H3(R3) ⊕ Span{ψ1} by an optimality system. We choose for instance ψ1 = 1

where ψ1(x) = 1, for all x ∈ R
3. Therefore, from the optimality condition (11),
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we can get an optimality system that reads:




r (I−∂2
t ) (I−∆)Y1 = (I−∆)−1

(
Im(up)

√
1+|x|2

)
in R

3×D(0, T )

∂t(Y1−∆Y1)(T ) = ∂t(Y1−∆Y1)(0) = 0 in R
3

r

(
E− d2E

dt2

)
= Im

∫

R3

up
√

1+|x|2 dx in (0, T )

dE

dt
(T ) =

dE

dt
(0) = 0

where V1(x, t) =
(
1 + |x|2

) 1

2

[
(I − ∆)−1 Y1(x, t) + E(t)

]
and p is the solution of

the adjoint equation (12). The proof when W = H3 can be read for the problem

of optimal control for the linear Schrödinger equation in reference [3], the only

changes being the adjoint equation solved by p and the absence of E.

The proof of Theorem 6 is divided in two steps. Existence of an optimal

control can be treated first while the optimality condition requires the proof of

the continuity and the differentiability of J . The regularity result of Theorem 4

is strongly needed for proving this differentiability result.

2.2.1. Existence of an optimal control

We will prove here the existence of an electric optimal control minimizing the

cost functional. Indeed, we are going to prove:

∃ V1 ∈ H such that J(V1) = inf
{
J(V ), V ∈ H

}
.

Remark. The structure of the proof given in reference [3], for a bilinear

optimal control problem defined on the linear Schrödinger equation, is analogous

to the one we will follow here.

We consider a minimizing sequence (V n
1 )n≥0 in H for the functional J :

inf
H
J(V ) = lim

n→∞
J(V n

1 ) .

Since

J(V n
1 ) =

1

2

∫

R3

∣∣un(T ) − u1

∣∣2 dx +
r

2
‖V n

1 ‖2
H

where un is solution of (5) with potential V1 = V n
1 , we then obtain that (V n

1 )n≥0

is bounded in H, independently of n. Up to a subsequence, we have V n
1 ⇀ V1

weakly in H and

(13) ‖V1‖H ≤ lim ‖V n
1 ‖H .
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The difficulty comes from the term ‖un(T )−u1‖2
L2 . More precisely, the point is to

prove the weak convergence of un(T ) toward u(T ) in L2 and this is not obvious.

It will imply lim‖un(T )−u1‖2
L2 ≥‖u(T )−u1‖2

L2 but actually, we are going to prove

the strong convergence of un(T ) toward u(T ) in L2. Indeed, if for all t in [0, T ],

un(t) −→ u(t) in L2, where u is the solution associated with V1, then

(14) lim
n→+∞

∥∥un(T ) − u1

∥∥2

L2 =
∥∥u(T ) − u1

∥∥2

L2 ,

and from (13) and (14) we obtain

J(V1) ≤ limJ(V n
1 ) = inf

V ∈H
J(V ) .

As V1∈H, we get J(V1) = inf
H
J and the existence of an optimal control is proved.

We set F (u) =
(
|u|2 ⋆ 1

|x|

)
u and we consider wn = un− u solution of the fol-

lowing equation:
{
i ∂twn + ∆wn + V0wn + V n

1 wn = F (un) − F (u) + u(V1−V n
1 ) , R

3×(0, T )

wn(0) = 0 , R
3 .

(15)

We are going to prove that for all t in [0, T ], ‖wn(t)‖L2 −→ 0.

In order to deal with the nonlinearity, we observe that we have, from Cauchy–

Schwarz and Hardy’s inequality,

∥∥F (u) − F (un)
∥∥

L2
≤
∥∥∥∥
(
|u|2 ⋆ 1

|x|

)
u−

(
|un|2 ⋆

1

|x|

)
un

∥∥∥∥
L2

≤
∥∥∥∥
(
|u|2 ⋆ 1

|x|

)
(u− un)

∥∥∥∥
L2

+

∥∥∥∥
((

|u|2 − |un|2
)
⋆

1

|x|

)
un

∥∥∥∥
L2

≤ 2 ‖u‖L2 ‖∇u‖L2 ‖u− un‖L2(16)

+ 2 ‖un‖L2

(
‖∇u‖L2 + ‖∇un‖L2

)
‖u− un‖L2

≤ C
(
‖u‖2

H1 + ‖un‖2
H1

)
‖u− un‖L2 .

Therefore, if we multiply equation (15) by wn integrate on R
3 and take the

imaginary part, which means we calculate Im

∫

R3

(15) . wn(x) dx, we obtain:

d

dt

(∫

R3

|wn|2 dx
)

≤ C
∥∥F (u) − F (un)

∥∥
L2

‖wn‖L2 + C

∫

R3

|V n
1 − V1| |u| |wn| dx

≤ C
(
‖un‖2

H1 + ‖u‖2
H1

)
‖wn‖2

L2

+ C
∥∥V n

1 − V1

∥∥
H

∫

R3

|u|
(
1+|x|2

) 1

2

∣∣wn| dx .
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From Theorem 4, we have:

‖un‖L∞(0,T ;H2∩H2) + ‖∂tun‖L∞(0,T ;L2) ≤ C ‖u0‖H2∩H2

where C is independent of n since (V n
1 )n≥0 is bounded in H. Then,

∀ t ∈ [0, T ] , ‖un(t)‖2
H1 + ‖u(t)‖2

H1 ≤ C

and we actually obtain (C denoting a generic constant depending on T ),

(17)
d

dt

(
‖wn(t)‖2

L2

)
≤ C ‖wn(t)‖2

L2 + C

∫

R3

|u(t)|
(
1+|x|2

) 1

2 |wn(t)| dx

Moreover, we will need the following compactness lemma (see reference [9]

for its proof).

Lemma 7. Let X, B and Y be Banach spaces and p ∈ [1,∞].

We assume that X →֒ B →֒ Y with compact embedding X →֒ B.

If {fn, n ∈ N} is bounded in Lp(0, T ;X) and if {∂tfn, n ∈ N} is bounded in

Lp(0, T ;Y ) then {fn, n ∈ N} is relatively compact in Lp(0, T ;B) (and in

C([0, T ];B) if p = ∞).

Then, it has to be noticed that up to a subsequence we also have un −→ u

in C([0, T ];H1
loc). Indeed, we can use Lemma 7 since (un)n≥0 is bounded in

L∞(H2 ∩H2) and (∂tun)n≥0 is bounded in L∞(L2). Then for all R > 0,

(18)
∥∥wn

∥∥
C([0,T ];L2(B(0,R))

n→∞−→ 0

and on the other hand, for all t in [0, T ],

(∫

B(0,R)c

|wn(t)|2
1 + |x|2 dx

)1

2

≤
(

1

1 +R2

)1

2

‖wn(t)‖L2 .

Thus, using Cauchy–Schwarz inequality, we can write
∫

R3

|u(t)|
(
1 + |x|2

) 1

2 |wn(t)| dx ≤

≤
∫

B(0,R)
|u(t)|

(
1 + |x|2

) 1

2

∣∣wn(t)| dx

+

∫

B(0,R)c

|u(t)|
(
1 + |x|2

) |wn(t)|
(
1 + |x|2

) 1

2

dx

(19)

≤ ‖u(t)‖H1
‖wn(t)‖L2(B(0,R)) +

1√
1 +R2

‖u(t)‖H2
‖wn(t)‖L2

≤ C

(
‖wn‖C([0,T ];L2(B(0,R)) +

1√
1 +R2

‖wn(t)‖L2

)
.
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We set En(t) = ‖wn(t)‖2
L2 + ‖wn‖C([0,T ];L2(B(0,R)), where one can notice that

‖wn‖C([0,T ];L2(B(0,R)) does not depend on t. From (17) and (19), it satisfies

dEn

dt
(t) ≤ CEn(t) +

C√
1 +R2

√
En(t) .

Since En(0) = ‖wn‖C([0,T ];L2(B(0,R)) and since we have actually

d
√
En

dt
(t) ≤ C

√
En(t) +

C√
1 +R2

,

then, from Gronwall lemma, we obtain that for all t in [0, T ],

√
En(t) ≤ C T

eCT

√
1 +R2

+ eCT ‖wn‖
1

2

C([0,T ];L2(B(0,R))
.

It means that since T is fixed and since we have (18), then for any ε > 0, there

exists R > 0 and n0 large enough in N such that

C T
eCT

√
1 +R2

≤ ε

2
and ∀n ≥ n0, eCT ‖wn‖

1

2

C([0,T ];L2(B(0,R))
≤ ε

2
.

We finally obtain that for all t in [0, T ], ‖wn(t)‖L2

n→∞−→ 0 and therefore, u is the

solution of (5) in the sense of distributions and we have proved the existence of

an optimal control V1 associated with the functionnal J . We then have to write

an optimality condition for V1.

2.2.2. Optimality condition

The usual way to obtain an optimality condition is to prove that the cost

functional J is differentiable and to translate the necessary condition

DJ(V1)[δV1] = 0 , ∀ δV1 ∈ H

in terms of the adjoint state. Since J(V1) = 1
2‖u(T )−u1‖2

L2 + r
2‖V1‖2

H , as an-

nounced in the introduction, the main difficulty comes from the necessity to dif-

ferentiate the state variable u with respect to the control V1, in order to calculate

the gradient DJ(V1). We postpone the proof of the following lemma.

Lemma 8. Let u be the solution of (5). The functional φ defined by

φ : H → L2(R3)

V1 7→ u(T )
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is differentiable and if z is the solution of the following equation, set in R
3×(0, T ):

(20)




i ∂tz + ∆z + V0z + V1z = −δV1u+

(
|u|2 ⋆ 1

|x|

)
z + 2 Re

(
uz ⋆

1

|x|

)
u ,

z(t=0) = 0

we have z ∈ C([0, T ];L2) and Dφ(V1)[δV1] = z(T ).

We deduce from Lemma 8 that J is differentiable with respect to V1. There-

after, since Dφ(V1)[δV1] = z(T ), the condition

DJ(V1)[δV1] = 0 , ∀ δV1 ∈ H

reads

(21) Re

∫

R3

(
u(T, x) − u1(x)

)
z(T, x) dx + r〈V1, δV1〉H = 0 .

Remarks. 1) As for the study of the same bilinear optimal control problem

for the linear Schrödinger equation one has read in reference [3], we can prove

the differentiability of V1 7→ u(T ) with values in L2 but we don’t know whether

this remains true if we consider the same mapping with values in H1 for example.

We think that the differentiability is not true anymore. Therefore, in the func-

tional J , the first term cannot be replaced by a stronger norm of u(T ) − u1.

2) We can also underline the choice of H we made on purpose. As it is

an Hilbert space, we can easily take the derivative of the norm ‖ · ‖H in the

functional J .

Now, we consider the adjoint system (12):




i ∂tp+ ∆p+ V0p+ V1p =

(
|u|2 ⋆ 1

|x|

)
p+ 2 i

(
Im(up) ⋆

1

|x|

)
u in R

3×(0, T )

p(T ) = u(T ) − u1 in R
3 .

Using Proposition 5, one can prove that the equivalent integral equation has a

unique solution p ∈ C([0, T ];L2) since we have

∥∥∥∥
(
|u|2 ⋆ 1

|x|

)
p+ 2 i

(
Im(up) ⋆

1

|x|

)
u

∥∥∥∥
L1(0,T ;L2)

≤ C T ‖p‖C([0,T ];L2) .
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We then multiply equation (20) by p, integrate on [0, T ]×R
3 and take the imag-

inary part. We obtain:

Im

∫ T

0

∫

R3

(
i ∂tz + ∆z + V0z + V1z

)
p =

= Im

∫ T

0

∫

R3

−δV1up + Im

∫ T

0

∫

R3

(
|u|2⋆ 1

|x|

)
zp + 2 Im

∫ T

0

∫

R3

Re

(
uz ⋆

1

|x|

)
up .

Then z(0) = 0 implies

Im

∫ T

0

∫

R3

z
(
i ∂tp+ ∆p+ (V0+V1)p

)
+ Im i

∫

R3

z(T ) p(T ) =

= − Im

∫ T

0

∫

R3

δV1up + Im

∫ T

0

∫

R3

z

(
|u|2⋆ 1

|x|

)
p + 2

∫ T

0

∫

R3

(
Im(up) ⋆

1

|x|

)
Re(uz)

and since p satisfies equation (12), we get

Im i

∫

R3

z(T ) .
(
u(T ) − u1

)
= − Im

∫ T

0

∫

R3

δV1up

which gives

(22) Re

∫

R3

z(T )
(
u(T ) − u1

)
= − Im

∫ T

0

∫

R3

δV1up .

Using (22), the optimality condition (21) can be written:

r〈V1, δV1〉H = Im

∫ T

0

∫

R3

δV1up dx dt , ∀ δV1 ∈ H .

The proof of Theorem 6 will be complete with the proof of Lemma 8.

Proof of Lemma 8: Actually, we will first study the continuity of φ and

then the differentiability. We recall the definition of the functional φ: if u is the

solution of (5) with electric potential V1 in H, then

φ : H → L2(R3)

V1 7→ u(T ) .

According to Proposition 5 and to the properties of F , we consider the solution

δu ∈ C([0, T ];L2) of the following equation set in R
3×(0, T ):

{
i ∂tδu+ ∆δu+ V0δu+ (V1+δV1)δu = −δV1u+ F (u+δu) − F (u)

δu(0) = 0 .
(23)
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In order to prove the continuity of φ, we will prove that

‖δu‖L∞(0,T ;L2) = O
(
‖δV1‖H

)
.

Let us calculate Im

∫

R3

(23) . δu(x) dx. Using the property (16) of F , we obtain

d

dt

(∫

R3

|δu|2 dx
)

≤ C ‖δV1‖H ‖u‖H1
‖δu‖L2 + C

∥∥F (u+δu) − F (u)
∥∥

L2
‖δu‖L2

≤ C ‖δV1‖H ‖u‖H1
‖δu‖L2 + C

(
‖δu+u‖2

L2 + ‖δu‖2
L2

)
‖δu‖2

L2

≤ C ‖δV1‖H ‖δu‖L2 + C ‖δu‖2
L2 .

Indeed, the solution u of equation (5) and the solution u+δu of the same equation

but with potential V1+δV1, are bounded in L2. As δu(0) = 0 and using Gronwall’s

lemma, it follows

‖δu(t)‖L2 ≤ C T eCt‖δV1‖H , ∀ t ∈ [0, T ] .

Eventually, we get ‖δu‖C([0,T ];L2) = O(‖δV1‖H), the continuity of φ is proved and

we will now prove the differentiability.

We first have to prove that z(T ) is well defined in L2 where z is solution of

(20) and then, if we set w = δu− z, we will prove that

‖w(T )‖L2 = o
(
‖δV1‖H

)

which means that Dφ(V1)[δV1] = z(T ) and completes the proof of Lemma 8.

Since we can prove the right hand side of equation (20) satisfies
∥∥∥∥
(
|u|2 ⋆ 1

|x|

)
z + 2 Re

(
uz ⋆

1

|x|

)
u− δV1u

∥∥∥∥
L1(0,T ;L2)

≤ C T
(
‖z‖C([0,T ],L2) + 1

)
,

then Proposition 5 gives a unique solution z ∈ C([0, T ];L2) to equation (20).

Moreover, if we calculate Im

∫

R3

(20) . z(x) dx, we obtain from Hardy’s inequality:

d

dt

(∫

R3

|z|2 dx
)

= −2 Im

∫

R3

δV1uz dx + 2

∫

R3

(
Re(uz) ⋆

1

|x|

)
Im(uz) dx

≤ C ‖δV1‖H ‖u‖H1
‖z‖L2 + C

∫

R3

∫

R3

|u(x)||z(x)|
|x− y| |u(y)| |z(y)| dx dy

≤ C ‖δV1‖H ‖z‖L2 + C ‖∇u‖L2 ‖z‖L2

∫

R3

|u(x)| |z(x)| dx

≤ C ‖δV1‖H ‖z‖L2 + C ‖z‖2
L2 .
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It implies

(24) ‖z(t)‖2
L2 ≤ C ‖δV1‖H

∫ t

0
‖z(s)‖L2 ds + C

∫ t

0
‖z(s)‖2

L2 ds

and a Gronwall argument leads us easily to deduce that there exists a constants

CT >0 such that

(25) ‖z(t)‖L2 ≤ CT ‖δV1‖H , ∀ t ∈ [0, T ] .

In order to simplify the right hand side of the equation solved by w = δu− z,

we consider the source terms of equation (23) solved by δu:

F (u+ δu) − F (u) − δV1u =

=

(
|u+ δu|2 ⋆ 1

|x|

)
(u+ δu) −

(
|u|2 ⋆ 1

|x|

)
u− δV1u

=

(
|u|2 ⋆ 1

|x|

)
δu+ 2 Re

(
uδu ⋆

1

|x|

)
(u+ δu) +

(
|δu|2 ⋆ 1

|x|

)
(u+ δu) − δV1u

and since z satisfies (20), we have finally the following right hand side

F (u+ δu) − F (u) − δV1u−
(
−δV1u+

(
|u|2 ⋆ 1

|x|

)
z + 2 Re

(
uz ⋆

1

|x|

)
u

)
=

=

(
|u|2 ⋆ 1

|x|

)
δu+ 2 Re

(
uδu ⋆

1

|x|

)
(u+ δu)

+

(
|δu|2 ⋆ 1

|x|

)
(u+ δu) −

(
|u|2 ⋆ 1

|x|

)
z − 2 Re

(
uz ⋆

1

|x|

)
u

=

(
|u|2 ⋆ 1

|x|

)
w + 2 Re

(
uw ⋆

1

|x|

)
u+ 2 Re

(
uδu ⋆

1

|x|

)
δu

+

(
|δu|2 ⋆ 1

|x|

)
(u+ w + z) .

Therefore, the equation satisfied by w in R
3 × (0, T ) is:





i ∂tw + ∆w + V0w + (V1+ δV1)w =

= −δV1z +

(
|u|2 ⋆ 1

|x|

)
w + 2 Re

(
uw ⋆

1

|x|

)
u+ 2 Re

(
uδu ⋆

1

|x|

)
δu

+

(
|δu|2 ⋆ 1

|x|

)
(u+ w + z)

w(t=0) = 0 .

(26)
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Using Proposition 5, since the right hand side of equation (26) belongs to

L1(0, T ;L2) and has the good properties, we can prove that there exists a unique

solution w ∈ C([0, T ];L2). We can also formally calculate Im

∫

R3

(26) . w(x) dx

in the same way we did to prove (25). Since we have ‖δu‖L∞(L2) = O(‖δV1‖H),

we obtain:

d

dt

(
‖w‖2

L2

)
≤ C

∫

R3

|δV1| |z| |w| dx + C

∫

R3

∣∣∣∣
(

Re(uw) ⋆
1

|x|

)
Im(uw)

∣∣∣∣ dx

+ C

∫

R3

∣∣∣∣Re

(
uδu ⋆

1

|x|

)
Im(δuw)

∣∣∣∣ dx

+ C

∫

R3

∣∣∣∣
(
|δu|2 ⋆ 1

|x|

)
Im
(
(u+ z)w

)∣∣∣∣ dx

≤ C ‖δV1‖H ‖z‖H1
‖w‖L2 + C ‖∇u‖L2 ‖u‖L2 ‖w‖2

L2

+ C
(
‖∇u‖L2 + ‖∇z‖L2

)
‖δu‖2

L2 ‖w‖L2

≤ C ‖δV1‖H ‖z‖H1
‖w‖L2 + C ‖w‖2

L2 + C ‖δV1‖2
H ‖w‖L2

+ C ‖z‖H1‖δV1‖2
H ‖w‖L2

which means that for all t in [0, T ],

(27)
d

dt

(
‖w(t)‖L2

)
≤ C ‖δV1‖H

(
‖z(t)‖H1∩H1

+ ‖δV1‖H

)
+ C‖w(t)‖L2 .

Since we want to prove that ‖w‖L∞(0,T ;L2) ≤ C‖δV1‖2
H , we have to work more

on equation (20) in order to obtain an H1 ∩H1 estimate on z. Actually, we

could have directly proved with Theorem 3 and a Picard fixed point theorem

that z ∈ C([0, T ];H1∩H1). If we calculate Im

∫

R3

(20) . |x|2 z(x) dx, we obtain the

following estimate in the usual way:

d

dt

(∥∥|x| z(t)
∥∥2

L2

)
≤ C ‖∇z(t)‖L2 ‖|x| z(t)‖L2 + C ‖δV1‖H ‖u(t)‖H1

‖|x|z(t)‖L2

+ C ‖∇u(t)‖L2 ‖u(t)‖H2
‖z(t)‖2

H1

≤ C ‖∇z(t)‖2
L2 + C ‖z(t)‖2

H1
+ C ‖δV1‖H ‖|x|z(t)‖L2 .

Therefore, an integration on [0, t] and z(0) = 0 give

∥∥|x| z(t)
∥∥2

L2 ≤ C

∫ t

0
‖∇z(s)‖2

L2 ds + C

∫ t

0
‖z(t)‖2

H1
ds(28)

+ C

∫ t

0
‖δV1‖H ‖|x| z(t)‖L2 ds .
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Now, as we need to estimate ∇z, we will calculate Re

∫

R3

(20) . ∂tz(x) dx.

Before, we can notice that:

Re

∫

R3

(
|u|2 ⋆ 1

|x|

)
z ∂tz =

1

2

d

dt

(∫

R3

(
|u|2 ⋆ 1

|x|

)
|z|2
)
−
∫

R3

(
Re(u∂tu) ⋆

1

|x|

)
|z|2

and

2 Re

∫

R3

(
Re(uz) ⋆

1

|x|

)
u ∂tz =

=
d

dt

(∫

R3

(
Re(uz) ⋆

1

|x|

)
Re(uz)

)
− 2

∫

R3

(
Re(uz) ⋆

1

|x|

)
Re(z ∂tu) .

After some calculations and integrations by parts, we obtain

d

dt

(∫

R3

V0|z|2 +

∫

R3

V1|z|2 −
∫

R3

|∇z|2
)

=

=

∫

R3

∂tV0|z|2 +

∫

R3

∂tV1|z|2 − 2
d

dt

(∫

R3

δV1 Re(uz)

)

+ 2

∫

R3

∂t(δV1)Re(uz) + 2

∫

R3

δV1 Re(∂tu z) +
d

dt

(∫

R3

(
|u|2 ⋆ 1

|x|

)
|z|2
)

− 2

∫

R3

(
Re(u∂tu) ⋆

1

|x|

)
|z|2 + 2

d

dt

(∫

R3

(
Re(uz) ⋆

1

|x|

)
Re(uz)

)

− 4

∫

R3

(
Re(uz) ⋆

1

|x|

)
Re(z ∂tu) .

We recall here that V0(x, t) =
1

|x−a(t)| with a ∈W 2,1(0, T ; R3) thus we have

|∂tV0(x, t)| =
|∂ta(t)|

|x−a(t)|2 . We also remind Hardy’s inequality for u ∈ H1(R3):

∫

R3

|u(x)|2
|x|2 dx ≤ 4

∫

R3

|∇u(x)|2 dx .

Therefore we obtain

d

dt

(∫

R3

|∇z(t)|
)

≤ d

dt

(∫

R3

(
V0(t) + V1(t)

)
|z(t)|2 + 2 Re

∫

R3

δV1(t)u(t) z(t)

)

+
d

dt

(
2

∫

R3

(
Re
(
u(t) z(t)

)
⋆

1

|x|

)
Re
(
u(t) z(t)

))

+
d

dt

(∫

R3

(
|u(t)|2 ⋆ 1

|x|

)
|z(t)|2

)

+ C ‖∇z(t)‖2
L1 + C ‖V1‖H ‖|x| z(t)‖2

L2

+ C ‖∂tu(t)‖L2 ‖∇u(t)‖L2 ‖z(t)‖L2

+ C ‖δV1‖H

(
‖u(t)‖L2 + ‖∂tu(t)‖L2

)
‖|x| z(t)‖L2 .
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We integrate this, between 0 and t ∈ [0, T ], using z(0)=0, u ∈ L∞(0, T ;H2∩H2)

and ∂tu ∈ L∞(0, T ;L2). We obtain:

‖∇z(t)‖2
L2 ≤

∫

R3

(
V0(t) + V1(t)

)
|z(t)|2 + 2

∫

R3

|δV1(t)| |u(t)| |z(t)|

+ 2

∫

R3

(
|u(t)| |z(t)| ⋆ 1

|x|

)
|u(t)| |z(t)| +

∫

R3

(
|u(t)|2 ⋆ 1

|x|

)
|z(t)|2

+ C

∫ t

0

(
‖∇z(s)‖2

L2 + ‖z(s)‖2
H1

)
ds + C ‖δV1‖H

∫ t

0
‖z(s)‖H1

ds .

We set

E(t) = ‖z(t)‖2
H1 + ‖z(t)‖2

H1
=

∫

R3

(
1 + |x|2

)
|z(t, x)|2 dx +

∫

R3

∣∣∇z(t, x)
∣∣2 dx .

Moreover, we remind that we have (24) and (28) and adding this to (29), we get,

for all t in [0, T ],

E(t) ≤ C ‖δV1‖H

∫ t

0

√
E(s) ds + C

∫ t

0
E(s) ds

+

∫

R3

(
V0(t) + V1(t)

)
|z(t)|2 + C ‖δV1‖H ‖u(t)‖H1

‖z(t)‖L2

+ C ‖u(t)‖L2 ‖u(t)‖H1‖z(t)‖2
L2 .

Then, we can prove that for all η > 0 there exists a constant Cη > 0 such that

(29)

∫

R3

(
V0(t) + V1(t)

)
|z(t)|2 ≤ Cη‖z(t)‖2

L2 + η‖z(t)‖2
H1∩H1

.

Indeed, from Cauchy–Schwarz and Hardy’s inequalities, we have
∫

R3

V0(t) |z(t)|2 ≤
∫

R3

|z(t)|2
|x− a(t)| ≤ C ‖z(t)‖H1‖z(t)‖L2 ,

∫

R3

V1(t) |z(t)|2 ≤ ‖V1‖H

∫

R3

(
1 + |x|2

) 1

2 |z(t)|2 ≤ ‖V1‖H ‖z(t)‖L2 ‖z(t)‖H1

and we obtain (29) from Young’s inequality. Consequently, if we choose η small

enough, we obtain

E(t) ≤ C ‖δV1‖H

∫ t

0

√
E(s) ds + C

∫ t

0
E(s) ds + Cη‖z(t)‖2

L2 + C ‖δV1‖H ‖z(t)‖L2

and using (25), we get

E(t) ≤ C ‖δV1‖H

∫ t

0

√
E(s) ds + C

∫ t

0
E(s) ds + C ‖δV1‖2

H .
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We recall that here again, C denotes various positive constants, depending only

on the time T . We set

F (t) = ‖δV1‖H

∫ t

0

√
E(s) ds +

∫ t

0
E(s) ds + ‖δV1‖2

H .

We have both

E(t) ≤ C F (t) and

dF

dt
(t) = E(t) + ‖δV1‖H

√
E(t)

≤ C F (t) + C ‖δV1‖H

√
F (t) .

Then,
d

dt

(
e−Ct

√
F (t)

)
≤ e−CtC ‖δV1‖H and we obtain after an integration in

time:

∀ t ∈ (0, T ) , F (t) ≤ C ‖δV1‖2
H .

This implies that there exists a constant CT > 0 such that

∀ t ∈ (0, T ) , E(t) = ‖z(t)‖2
H1∩H1

≤ CT ‖δV1‖2
H .

Eventually, we have proved that,

sup
t∈[0,T ]

(∥∥(1+|x|
)
z(t)

∥∥
L2 + ‖∇z(t)‖L2

)
‖δV1‖H→0−−−−−−−→ 0 .

Now, using this in (27), we obtain

d

dt

(
‖w(t)‖L2

)
≤ C ‖δV1‖2

H + C ‖w(t)‖L2

and applying Gronwall lemma we get: ∀ t ∈ [0, T ], ‖w(t)‖L2 ≤ CT ‖δV1‖2
H .

Therefore, we have

‖w(T )‖L2 = o
(
‖δV1‖H

)

and the proof of Lemma 8 is complete.
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3 – Optimal control of the coupled system

We recall the coupled system (1) we are considering:




i ∂tu+ ∆u+
u

|x−a| + V1u =

(
|u|2 ⋆ 1

|x|

)
u , in R

3×(0, T )

u(0) = u0 , in R
3

m
d2a

dt2
=

∫

R3

−|u(x)|2 ∇ 1

|x−a| dx − ∇V1(a) , on (0, T )

a(0) = a0 ,
da

dt
(0) = v0 .

The electric potential V1 takes its values in R and satisfy assumption (2):

(
1 + |x|2

)− 1

2V1 ∈ L∞
(
(0, T )×R

3
)
,

(
1 + |x|2

)− 1

2∂tV1 ∈ L1(0, T ;L∞) ,
(
1 + |x|2

)− 1

2∇V1 ∈ L1(0, T ;L∞) ,

∇V1 ∈ L2
(
0, T ;W 1,∞

loc

)
.

(30)

On this evolution system we define the following optimal control problem:

If (u, a) is a solution of system (1) and if u1 ∈ L2 is a given target, find a

minimizer V1 ∈ H for

inf
{
J(V, u), V ∈ H

}

where the cost functionnal J is defined by

J(V1, u) =
1

2

∫

R3

∣∣u(T, x) − u1(x)
∣∣2 dx +

r

2
‖V1‖2

H

and

H =

{
V,
(
1+|x|2

)− 1

2V ∈ H1(0, T ;W) and ∇V ∈ L2
(
0, T ;W 1,∞

)}

where W is an Hilbert space which satisfies W →֒W 1,∞(R3).

We are now going to prove Theorem 1 and we will make, at the end of the

proof, a remark about the obtaining an optimality condition.

Proof of Theorem 1: We consider a minimizing sequence (V n
1 )n≥0 in H

for the functional J . It means that

inf
{
J(V, u), V ∈ H

}
= lim

n→∞
J(V n

1 , un)
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where (un, an) ∈
(
W 1,∞(0, T ;L2) ∩ L∞(0, T ;H2 ∩H2)

)
×W 2,1(0, T ) is solution

of





i ∂tun + ∆un +
un

|x−an|
+ V n

1 un =

(
|un|2 ⋆

1

|x|

)
un , in R

3×(0, T )

un(0) = u0 , in R
3

m
d2an

dt2
=

∫

R3

−|un(x)|2 ∇ 1

|x−an|
dx − ∇V n

1 (an) , on (0, T )

an(0) = a0 ,
dan

dt
(0) = v0 .

(31)

Since

J(V n
1 , un) =

1

2

∫

R3

∣∣un(T, x) − u1(x)
∣∣2 dx +

r

2
‖V n

1 ‖2
H ,

we then obtain that (V n
1 )n≥0 is bounded in H, independently of n. Up to a

subsequence, we have V n
1 ⇀ V1 weakly in H and

‖V1‖H ≤ lim ‖V n
1 ‖H .

The difficulty comes again from the term ‖un(T ) − u1‖2
L2 . We will prove that

the limit (u, a) of (un, an)n∈N is a solution of system (1) associated with V1.

If we consider a solution (un, an) of system (31), since the sequence of the electric

potentials (V n
1 ) is bounded in H, we can apply Theorem 2 and obtain that the

sequence (un, an) is bounded in

(
W 1,∞(0, T ;L2) ∩ L∞(0, T ;H2∩H2)

)
×W 2,1(0, T )

independently of n. We get an→ a in L∞(0, T ) strongly and un⇀ u weak in

C([0, T ], L2).

Therefore, since the application u 7→ ‖u(T )− u1‖2
L2 is lower semi-continuous,

then un(T ) ⇀ u(T ) weak in L2(R3) implies

‖u(T ) − u1‖2
L2 ≤ lim ‖un(T ) − u1‖2

L2

and we finally obtain

J(V1, u) ≤ limJ(V n
1 , un) = inf

V ∈H
J(V, u) .

Since V1∈ H, that leads to J(V1, u) = inf
V ∈H

J(V, u) and the existence of an optimal

control is proved.
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Remark. As mentioned in the introduction, we can replace ∇V∈L2(0,T ;W 1,∞)

by ∇V ∈ L2
(
0, T ;W 1,∞

loc

)
in the definition of H. Then, in the cost functional J ,

‖V1‖H has to be replaced by
∥∥(1 + |x|2)− 1

2V1

∥∥
H1(0,T ;W)

+ ‖∇V1‖L2(0,T ;W 1,∞(Bρ))

where Bρ = B(0, ρ) ⊂ R
3 and the point is to choose ρ > 0 conveniently.

From reference [2], and as one can read in Theorem 2, we know that without

any hypothesis on ∇V1, we can bound a in C([0, T ]). In fact, we only need

(1 + |x|2)− 1

2 V1 ∈ H1(0, T ;W). Moreover, when we consider a minimizing se-

quence (V n
1 )n≥0 in H, as soon as J(V n

1 , un) is then bounded, for instance by

J(0, un), we obtain an a priori bound for ‖(1 + |x|2)− 1

2V1‖H1(0,T ;W) and then for

‖an‖C([0,T ]). Thus, if ρ is chosen large enough to satisfy ‖an‖C([0,T ]) ≤ ρ for all

n ∈ N, we will be able to proceed to the same proof as follows.

For clarity, we denote by (32) and (33) the two equations solved by u and a:

i ∂tu+ ∆u+
u

|x− a| + V1u =

(
|u|2 ⋆ 1

|x|

)
u, in R

3×(0, T ) ,(32)

m
d2a

dt2
= −

∫

R3

|u(x)|2 ∇ 1

|x− a| dx + ∇V1(a), in (0, T )(33)

and we want to prove that the limit (u, a) of (un, an)n∈N is a solution of (1).

Up to a subsequence, we have ∂tun → ∂tu and ∆un → ∆u in D′((0, T )×R
3).

Moreover, on the one hand, since V1 is bounded in H, we have

(
V n

1

(1+|x|2) 1

2

)

n≥0

bounded in H1(0, T ;W). Since the embedding W 1,∞(R3) →֒ L2
loc(R

3) is com-

pact and since W →֒ W 1,∞(R3), then from Lemma 7, we get the local strong

convergence

V n
1(

1 + |x|2
) 1

2

n→+∞−−−−−→ V1
(
1 + |x|2

) 1

2

in L2(0, T ;L2
loc) .

On the other hand, (un)n≥0 is bounded in L∞(0, T ;H2) and since (un)n≥0 is

bounded in L∞(0, T ;H2)∩W 1,∞(0, T ;L2), we have the local strong convergence

un
n→+∞−−−−−→ u in L∞(0, T ;L2

loc) .

We have, for all R > 0,

∫ T

0

∫

R3

|V n
1 un − V1u| ≤

∫ T

0

∫

BR

|V n
1 un − V1u| +

∫ T

0

∫

Bc
R

|V n
1 un − V1u| ≤
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≤
∫ T

0

∫

BR

∣∣∣∣∣∣
V n

1 − V1
(
1 + |x|2

) 1

2

un

(
1 + |x|2

) 1

2

∣∣∣∣∣∣

+ (1 +R2)
1

2

∫ T

0

∫

BR

∣∣∣∣∣∣
V1

(
1 + |x|2

) 1

2

(un − u)

∣∣∣∣∣∣

+
1

(
1 +R2

) 1

2

∫ T

0

∫

Bc
R

|V n
1 un| + |V1u|
(
1 + |x|2

) 1

2

(
1 + |x|2

)
.

Then, using Cauchy–Schwarz inequality, we can prove:

∫ T

0

∫

BR

∣∣∣∣∣∣
V n

1 − V1
(
1 + |x|2

) 1

2

un

(
1 + |x|2

) 1

2

∣∣∣∣∣∣
≤

≤
∫ T

0

(∫

BR

|V n
1 − V1|2(
1 + |x|2

)
)1

2
(∫

BR

|un|2
(
1 + |x|2

))1

2

≤
√
T
∥∥∥(V n

1 − V1)
(
1 + |x|2

)− 1

2

∥∥∥
L2(0,T ;L2(BR))

‖un‖L∞(0,T ;H2)

≤ CT

∥∥∥(V n
1 − V1)

(
1 + |x|2

)− 1

2

∥∥∥
L2(0,T ;L2(BR))

n→+∞−−−−−→ 0

and

(1 +R2)
1

2

∫ T

0

∫

BR

∣∣∣∣∣∣
V1

(
1 + |x|2

) 1

2

(un − u)

∣∣∣∣∣∣
≤

≤ CT

∥∥∥V1

(
1 + |x|2

)− 1

2

∥∥∥
L2(0,T ;L2)

‖un − u‖L∞(0,T ;L2(BR))

≤ CT ‖un − u‖L∞(0,T ;L2(BR))
n→+∞−−−−−→ 0

and for all ε > 0, there exists R > 0 such that

1

(1 +R2)
1

2

∫ T

0

∫

Bc
R

|V n
1 un| + |V1u|
(
1 + |x|2

) 1

2

(
1 + |x|2

)
≤

≤ 2
√
T

(1 +R2)
1

2

∥∥∥V n
1

(
1 + |x|2

)− 1

2

∥∥∥
L2(0,T ;L2)

‖un‖L∞(0,T ;H2)

≤ CT

(1 +R2)
1

2

≤ ε .

Eventually, we obtain V n
1 un→ V1u in L1((0, T )×R

3).
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Then, we have to work on the terms
un

|x− an|
and

(
|un|2 ⋆

1

|x|

)
un of

system (31). One can notice that (an)n≥0 is bounded in W 2,1(0, T ). We then

have, up to a subsequence, the strong convergence an
n→+∞−−−−−→ a in L∞(0, T ).

We will check later that a, together with u, is a solution of coupled system (1).

We set ϕ ∈ D((0, T )×R
3) which means in particular that Suppϕ is a compact

set of (0, T )×R
3.

We have
un

|x− an|
=

(
1

|x− an|
− 1

|x− a|

)
un +

un

|x− a|
and we will prove that in D′((0, T )×R

3), we have the following convergences

un

|x− a|
n→+∞−−−−−→ u

|x− a| and

(
1

|x− an|
− 1

|x− a|

)
un

n→+∞−−−−−→ 0 .

On the one hand, since Suppϕ is compact, from Hardy’s inequality we have

∣∣∣∣∣

∫

[0,T ]×R3

(
un(t, x) − u(t, x)

)
ϕ(t, x)∣∣x− a(t)

∣∣ dt dx

∣∣∣∣∣ ≤ C ‖un − u‖L∞(0,T ;H1(BR))

where Suppϕ ⊂ (0, T )×BR and (un)n≥0 being bounded in the space L∞(0, T ;H2)

∩W 1,∞(0, T ;L2) gives the local strong convergence

un
n→+∞−−−−−→ u in C

(
[0, T ];H1

loc

)
.

Then ‖un − u‖L∞(0,T ;H1(BR)) → 0 and we get
un

|x− a|
n→+∞−−−−−→ u

|x− a| in D′.

On the other hand, for the same reasons, we have

∣∣∣∣∣

∫

[0,T ]×R3

(
1

|x− an(t)| −
1

|x− a(t)|

)
un(t, x)ϕ(t, x) dt dx

∣∣∣∣∣ ≤

≤
∫

[0,T ]×R3

|un(t, x)| |ϕ(t, x)| |an(t) − a(t)|
|x− an(t)| |x− a(t)| dt dx

≤ ‖un‖L∞(0,T ;H1(BR)) |an− a|L∞(0,T )

(∫

Supp ϕ

|ϕ(t, x)|2
|x− a(t)|2 dt dx

)1

2

≤ C |an − a|L∞(0,T )
n→+∞−−−−−→ 0

which means

(
1

|x− an|
− 1

|x− a|

)
un

n→+∞−−−−−→ 0 in D′.
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Finally, we are going to prove that
(
|un|2 ⋆ 1

|x|

)
un −

(
|u|2 ⋆ 1

|x|

)
u

n→+∞−−−−−→ 0

in D′((0, T )×R
3). We have

(
|un|2⋆

1

|x|

)
un−

(
|u|2⋆ 1

|x|

)
u =

(
|un|2⋆

1

|x|

)
(un−u)+

((
|un|2−|u|2

)
⋆

1

|x|

)
u .

First of all, using Cauchy–Schwarz inequality and omitting the time t fixed in

[0, T ], we can write

∫

R3

|ϕ|
∣∣∣∣
(
|un|2 ⋆

1

|x|

)
un −

(
|u|2 ⋆ 1

|x|

)
u

∣∣∣∣ dx ≤

≤
∫

R3

|ϕ| |un− u|
(
|un|2 ⋆

1

|x|

)
dx +

∫

R3

|ϕ| |u|
((

|un| + |u|
)
|un− u| ⋆ 1

|x|

)
dx

≤
(∫

R3

|ϕ| |un − u|2 dx
)1

2

(∫

R3

|ϕ|
(
|un|2 ⋆

1

|x|

)2

dx

)1

2

+

(∫

R3

|u|2 dx
)1

2

(∫

R3

|ϕ|2
((

|un| + |u|
)
|un − u| ⋆ 1

|x|

)2

dx

)1

2

which gives

∫

R3

|ϕ|
∣∣∣∣
(
|un|2 ⋆

1

|x|

)
un −

(
|u|2 ⋆ 1

|x|

)
u

∣∣∣∣ dx ≤

≤ ‖un− u‖L2(BR)

(∫

R3

|ϕ|
(
|un|2 ⋆

1

|x|

)2

dx

)1

2

(34)

+ ‖u‖L2

(∫

R3

|ϕ|2
((

|un| + |u|
)
|un − u| ⋆ 1

|x|

)2

dx

)1

2

.

Next, from Hardy’s inequality, we have

(
|un|2 ⋆

1

|x|

)
(x) ≤ ‖un‖L2 ‖∇un‖L2 , ∀x ∈ R

3

and since ϕ ∈ D((0, T )×R
3),

(35)

(∫

R3

ϕ(x)

(
|un|2 ⋆

1

|x|

)2

(x) dx

)1

2

≤ C ‖un‖2
H1 .

We will also need the following:
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Lemma 9. Let r > 0, v ∈ H1 and vn ∈ L2. If we assume that vn
n→+∞−−−−−→ 0

in L2
loc, then

∀ |x| < r ,

∫

R3

v(y) vn(y)

|x− y| dy
n→+∞−−−−−→ 0 .

Proof: We set R > r and BR = {y ∈ R
3, |y| < R}. From Cauchy–Schwarz

and Hardy’s inequalities, we obtain for all x such that |x| < r,

∣∣∣∣
∫

R3

v(y) vn(y)

|x− y| dy

∣∣∣∣ ≤
∫

BR

|v(y)| |vn(y)|
|x− y| dy +

∫

Bc
R

|v(y)| |vn(y)|
|y − x| dy

≤ ‖v‖H1‖vn‖L2(BR) +
1

R−|x| ‖v‖L2 ‖vn‖L2

≤ C

(
‖vn‖L2(BR) +

1

R− r

)
.

Moreover, if we set ε > 0, then there exists n0 ∈ N and R0 > 0 such that

C

R0 − r
≤ ε

2
and ∀n > n0, C ‖vn‖L2(BR0

) ≤
ε

2
.

Thus, for all ε > 0 there exists n0 ∈ N such that for all n > n0,

∣∣∣∣
∫

R3

v(y) vn(y)

|x− y| dy

∣∣∣∣ ≤ ε

and the lemma has been proved.

We use this result to deal with the term

∫

R3

ϕ2

((
|un|+ |u|

)
|un − u| ⋆ 1

|x|

)2

.

Let t ∈ (0, T ) be fixed. Since Suppϕ is compact, we apply Lebesgue’s theorem

on a bounded domain to the sequence
(
fn(t)

)
n∈N

defined by

fn(x, t) =

((
|un(t)| + |u(t)|

) ∣∣un(t) − u(t)
∣∣ ⋆ 1

|x|

)2

(x) .

Indeed, since un− u
n→+∞−−−−−→ 0 in C([0, T ];L2

loc), u ∈ L∞(0, T ;H1) and un is

bounded in L∞(0, T ;H1) independently of n, using Lemma 9 we obtain that for

all t in [0, T ] and for all x in Suppϕ, fn(x, t) → 0. Then, from usual estimates

we prove that |fn(t)| ≤ C ∈ L1
loc(R

3) and we finally get: ∀ t ∈ [0, T ],

(36)

∫

R3

ϕ2(t, x) fn(x, t) dx = In(t)
n→+∞−−−−−→ 0 .
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Now, plugging (35) and (36) in (34) we obtain, for all t in [0, T ],

∫

R3

ϕ(t)

∣∣∣∣∣

(
|un(t)|2 ⋆ 1

|x|

)
un(t) −

(
|u(t)|2 ⋆ 1

|x|

)
u(t)

∣∣∣∣∣ ≤

≤ C ‖un‖2
L∞(0,T ;H1) ‖un − u‖L∞(0,T ;L2(BR)) + ‖u‖L∞(0,T ;L2)

√
In(t)

≤ C
(
‖un − u‖L∞(0,T ;L2(BR)) +

√
In(t)

)
n→+∞−−−−−→ 0 .

Thus we have proved

(
|un|2 ⋆

1

|x|

)
un −

(
|u|2 ⋆ 1

|x|

)
u

n→+∞−−−−−→ 0 in D′
(
(0, T )×R

3
)
.

Therefore, we have all the elements to insure that (un) is converging in a weak

sense towards u which is a solution of (32) in the sense of distributions. We finally

have to prove that the limit a of the sequence (an) is a solution of (33). We already

know that (an)n≥0 is bounded in W 2,1(0, T ) and that an→ a in L∞(0, T ) and

we have in [0,T],

m
d2an

dt2
=

∫

R3

−|un(x)|2 ∇ 1

|x− an|
dx + ∇V n

1 (an) .

On the one hand, omitting again the fixed time t in [0, T ], we have

∇V n
1 (an) −∇V1(a) =

(
∇V n

1 (an) −∇V n
1 (a)

)
+
(
∇V n

1 (a) −∇V1(a)
)

and of course, since V n
1 is bounded in H and V n

1 ⇀ V1 weakly in H, we get

∇V n
1 (a) −∇V1(a)

n→+∞−−−−−→ 0 in D′(0, T ) ,

∥∥∇V n
1 (an) −∇V n

1 (a)
∥∥

L2(0,T )
≤ ‖∇V n

1 ‖L2(0,T ;W 1,∞) |an − a|L∞(0,T )
n→+∞−−−−−→ 0 .

Therefore we obtain

∇V n
1 (an) → ∇V1(a) in D′(0, T ) .

On the other hand, using the idea of the proof of Lemma 9 we will prove

∫

R3

|un(x)|2 ∇ 1

|x− an|
dx

n→+∞−−−−−→
∫

R3

|u(x)|2 ∇ 1

|x− a| dx in D′(0, T ) .
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Actually for all t in [0, T ], we can prove that an integration by parts gives

∣∣∣∣∣

∫

R3

|un(t, x)|2 ∇ 1∣∣x− an(t)
∣∣ dx −

∫

R3

|u(t, x)|2 ∇ 1∣∣x− a(t)
∣∣ dx

∣∣∣∣∣ ≤

≤
∣∣∣∣
∫

R3

|un|2 ∇
(

1

|x−an|
− 1

|x−a|

)
dx

∣∣∣∣+
∣∣∣∣
∫

R3

(
|un|2 − |u|2

)
∇ 1

|x−a| dx
∣∣∣∣(37)

≤ C

∫

R3

(
|un| |∇un|

∣∣∣∣
1

|x−an|
− 1

|x−a|

∣∣∣∣+
(
|un| + |u|

)
|un − u|

|x− a|2

)
dx .

Since un is bounded in L∞(0, T ;H2), using Cauchy–Schwarz and Hardy’s in-

equality we are able to deal with the first right hand side term. Indeed,

∫

R3

|un(t)| |∇un(t)|
∣∣∣∣

1

|x−an(t)| −
1

|x−a(t)|

∣∣∣∣ ≤

≤
∫

R3

|un| |∇un|
|x− an| |x− a| |an − a|

≤ ‖un‖L2(0,T ;H1) ‖∇un‖L2(0,T ;H1) |an − a|L∞(0,T )(38)

≤ ‖un‖2
L∞(0,T ;H2) |an − a|L∞(0,T )

≤ C |an− a|L∞(0,T )
n→+∞−−−−−→ 0 .

Now, since a is bounded on (0, T ), un− u
n→+∞−−−−−→ 0 in C([0, T ];H1

loc), u belongs

to L∞(0, T ;H1) and un is bounded in L∞(0, T ;H1) independently of n, then we

obtain in an analogous way as in the proof of Lemma 9 that for all t in [0, T ],

(39)

∫

R3

(
|un(t)| + |u(t)|

)
|un(t) − u(t)|

∣∣x− a(t)
∣∣2 dx = Jn(t)

n→+∞−−−−−→ 0 .

In fact, omitting the time t, we have from Hardy’s inequality

Jn ≤
∫

BR

(
|un| + |u|

)
|un− u|

|x− a|2 dx +

∫

Bc
R

(
|un| + |u|

)2

|x− a|2 dx

≤
(
‖u‖H1 + ‖un‖H1

)
‖un− u‖H1(BR) +

2

R− |a(t)|
(
‖u‖2

L2 + ‖un‖2
L2

)

≤ C

(
‖un− u‖H1(BR) +

1

R− ‖a‖L∞(0,T )

)

and we can prove (see Lemma 9) that for all t in [0, T ] and for all ε > 0, there

exists n0 ∈ N such that for all n > n0, Jn(t) ≤ ε.
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Thus, using (38) and (39) together with (37), we get, for all t in [0, T ],

∣∣∣∣∣

∫

R3

|un(t, x)|2 ∇ 1∣∣x− an(t)
∣∣ dx −

∫

R3

|u(t, x)|2 ∇ 1∣∣x− a(t)
∣∣ dx

∣∣∣∣∣ ≤

≤ C |an− a|L∞(0,T ) + Jn(t)
n→+∞−−−−−→ 0

and we finally obtain the awaited result.

We then have proved that a is a solution of (33). As a consequence, the limit

(u, a) of (un, an) is a solution in the sense of distribution of system (1). More-

over, since (u, a) belongs to the class
(
W 1,∞(0, T ;L2) ∩ L∞(0, T ;H2 ∩H2)

)
×

W 2,1(0, T ), then it satisfies the estimate (4) of Theorem 2 and is in fact a strong

solution of system (1).

Hence the proof of Theorem 1.

Remark. First order optimality condition. As we did in the case when the

position a of the nucleus is known (Section 2.2.2), we would like to give an

optimality condition for the optimal control V1. A first step is to study the

differentiability of the functional

Φ: H̃ −→ L∞
(
0, T ;L2(R3)

)
×L∞(0, T )

V1 7−→
(
u(V1), a(V1)

)
,

where H̃ is an appropriate Hilbert space. One can notice that the lack of proof

for the uniqueness of the solution (u, a) of system (1) makes the study of opti-

mality conditions completely formal. It is a first and main obstacle to prove the

differentiability with respect to V1 of Φ and of the cost functional

J : (V1, u) 7→ 1

2

∥∥u(T ) − u1

∥∥2

L2 +
r

2

∥∥V1

∥∥2eH .

Nevertheless, one can obtain a formal derivative of J and an optimal system.

We present these following formal results in order to make completely explicit

the difficulty encountered in trying to show the differentiability of the mapping

Φ: control → state and to give the possibility to make direct computations on

approximations of the optimality system after regularization of the singularities.

Thus, assuming that we have uniqueness of the solution of system (1) and

assuming that Φ is differentiable, if we set DΦ(δV1) = (z, b), then one can prove
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that
(
z(t, x), b(t)

)
has to satisfy the following coupled system set in R

3×(0, T )




i ∂tz + ∆z + V0z + V1z = −∂V0

∂a
·b u− δV1u+

(
|u|2⋆ 1

|x|

)
z + 2

(
Re(uz)⋆

1

|x|

)
u

z(0) = 0 , b(0) = 0 ,
db

dt
(0) = 0

m
d2b

dt2
= −

∫

R3

|u|2 ∇∂V0

∂a
· b − 2

∫

R3

Re(uz)∇V0 −∇δV1(a) −∇(∇V1) · b(a)

where V0 =
1

|x− a| . Thereafter, if J is differentiable with respect to V1, we obtain

that the condition DJ(V1, u)[δV1] = 0, ∀ δV1∈ H̃ now reads

(40) Re

∫

R3

(
u(T, x) − u1(x)

)
z(T, x) dx + r〈V1, δV1〉 eH = 0 .

The main difficulty we encounter when trying to give a meaning to the system

of equations satisfied by the couple (z, b) is of same nature than the one we

had when we studied the equations solved by the difference of two solutions of

system (1). Indeed, as for the proof of uniqueness which misses in Theorem 2,

even in a formal study of the solutions, we have to deal with singularities of

type u
|x|2

that we cannot bound with Hardy’s inequality. Moreover, the use of

Marcinkiewicz (or Lorentz) spaces as in reference [5] is not directly appropriate

here because of the properties of V1.

At last, the following formal adjoint system




i ∂tp+ ∆p+ V0p+ V1p =

(
|u|2 ⋆ 1

|x|

)
p+ 2i

(
Im(up) ⋆

1

|x|

)
u− 2 i u ∇V0 · ̺

p(T ) = u(T ) − u1

m
d2̺

dt2
= −

∫

R3

∂V0

∂a
Im(up) − 2

∫

R3

Re(u∇u) ∂V0

∂a
· ̺ − ∇(∇V1)(a) · ̺

̺(T ) = 0 ,
d̺

dt
(T ) = 0

is such that we have

(41) Re

∫

R3

z(T )
(
u(T ) − u1

)
= − Im

∫ T

0

∫

R3

δV1up −
∫ T

0
̺ · ∇δV1(a) .

Eventually, if δa denotes the Dirac mass at point a ∈ R
3, and using (40) and

(41), we prove that the bilinear optimal control V1 is the solution of a partial

differential equation defined by variational formulation: ∀ δV1∈ H̃

r〈V1, δV1〉 eH =

∫ T

0

∫

R3

Im
(
u(t, x) p(t, x)

)
δV1(t, x) dx dt−

∫ T

0

〈
̺(t)·∇δa(t), δV1(t)

〉
dt .
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